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Abstract

Measuring representational similarity between
neural recordings and computational models is
challenging due to constraints on the number of
neurons that can be recorded simultaneously. In
this work, we investigate how such limitations
affect similarity measures, focusing on Canonical
Correlation Analysis (CCA) and Centered Kernel
Alignment (CKA). Leveraging tools from Ran-
dom Matrix Theory, we develop a predictive spec-
tral framework for these measures and demon-
strate that finite neuron sampling systematically
underestimates similarity due to eigenvector de-
localization. To overcome this, we introduce a
denoising method to infer population-level simi-
larity, enabling accurate analysis even with small
neuron samples. Our theory is validated on syn-
thetic and real datasets, offering practical strate-
gies for interpreting neural data under finite sam-
pling constraints.

1. Introduction
Understanding how artificial neural networks relate to bio-
logical neural activity remains one of the central challenges
in computational neuroscience (Carandini et al., 2005; van
Gerven, 2017; Naselaris et al., 2011). As deep learning mod-
els become increasingly sophisticated at matching human-
level performance on complex tasks, there is growing in-
terest in whether these models actually learn representa-
tions that mirror those found in the brain (Yamins et al.,
2014; Khaligh-Razavi & Kriegeskorte, 2014; Kell et al.,
2018; Richards et al., 2019; Lindsay, 2021). However, a
fundamental obstacle stands in the way of making this com-
parison: while artificial networks can be analyzed in their
entirety, neuroscientists can only record from a small sub-
set of neurons in any given brain region (Cai et al., 2016;
Walther et al., 2016; Schütt et al., 2023). This sampling
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limitation poses a critical challenge for the field. When we
measure the similarity between model and neural represen-
tations using standard techniques like Canonical Correlation
Analysis (CCA) or Centered Kernel Alignment (CKA), how
much does our limited neural sample size distort the true
relationship? The stakes for answering this question are
high - these similarity metrics are increasingly used to eval-
uate competing neural network architectures and training
approaches based on their match to brain data.

Our work provides the first rigorous theoretical framework
for understanding how neuron sampling affects representa-
tional similarity measures. Our analysis reveals that mea-
suring CCA and CKA with a limited number of recorded
neurons systematically underestimates the true population-
level similarity. This underestimation stems primarily from
eigenvector delocalization (Aggarwal et al., 2023; Cizeau &
Bouchaud, 1994; Baik et al., 2004)—a phenomenon where
sample eigenvectors become increasingly misaligned with
their population counterparts as the number of recorded
neurons decreases. Understanding and accounting for this
effect is crucial for accurate interpretation of neural repre-
sentational similarities, particularly in experimental settings
where only a subset of neurons can be recorded.

Our analysis proceeds in two parts. First, in the forward
problem, we investigate how neuron sub-sampling from
the full underlying population distorts the population eigen-
components and how this distortion affects the computed
similarity measures. Second, in the backward problem, we
ask whether observations from a finite number of neurons
can be used to reliably infer the population representational
similarity.

1.1. Our Contributions

• Eigencomponent-wise Analysis of Representation
Similarity: We show how neuron sub-sampling alters
the eigenvalues and eigenvectors of the Gram matrix,
leading to a systematic underestimation of CCA/CKA
due to eigenvector delocalization.

• Backward Inference via Denoising Eigenvectors:
We introduce a denoising method that leverages popu-
lation eigenvalue priors (e.g., power law) to infer the
true population similarity from limited data, substan-
tially correcting the sampling bias.
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• Validation on Real Neural Data: Applying our frame-
work to primate visual cortex recordings confirms that
even modest neuron counts can lead to severe underes-
timation of model–brain similarity and that our method
effectively recovers the missing signal.

1.2. Related Works

Representation similarity measures expressed in terms of
eigencomponents were presented in detail by (Kornblith
et al., 2019), who showed that CCA, CKA, and linear re-
gression scores can all be written in terms of the eigenvalues
and eigenvectors of the Gram matrices.

A key question is how these similarity measures behave un-
der different kinds of noise. Broadly, there are two primary
noise sources:

1. Additive noise, which arises from trial-to-trial variabil-
ity and measurement error. In many studies, repeated
trials and averaging can substantially mitigate this type
of noise.

2. Sampling noise, which occurs because we can only
record from a limited subset of neurons rather than
the entire population. Consequently, the sample eigen-
vectors and eigenvalues differ from their population
counterparts.

In this work, we focus on the latter issue—sampling noise—
since we assume trial averaging already reduces the additive
noise to a manageable level.

One approach to address sampling noise is by studying the
moments of the Gram matrix (Kong & Valiant, 2017; Chun
et al., 2024). While these methods provide a way to ap-
proximate the effect of sampling on the scalar values of
certain similarity measures, they do not directly offer an
interpretable description of what happens to the underly-
ing eigencomponents. Recent work by (Pospisil & Pillow,
2024) provides bounds on representation similarity mea-
sures when the number of sampled neurons is limited. How-
ever, these bounds are tight only under the assumption of
a white Wishart model (i.e., all population eigenvalues are
1). For more realistic data, where eigenvalues often decay
according to a power-law, these bounds can become too
loose to be practically informative.

Instead, we directly investigate how sampling noise affects
both the eigenvalues and eigenvectors of the sample Gram
matrix using random matrix theory (Potters & Bouchaud,
2020; Bun et al., 2018; 2017). Extensive results exist for
white Wishart matrices and low-rank “spiked” models, in-
cluding the Baik–Ben Arous–Péché (BBP) phase transition
(Baik et al., 2004), which reveals that sample eigenvectors
often serve as poor estimators of their population counter-

parts. These ideas have been extended to canonical corre-
lation analysis (CCA) (Ma & Yang, 2022; Bykhovskaya &
Gorin, 2025). However, the power-law-like spectra observed
in neural data have not yet received comparable attention.
Our work attempts to bridge this gap by studying sampling
noise in representations with strongly decaying eigenvalues,
which are ubiquitous in neural datasets.

2. Notation & Problem Setup
We use bold fonts for matrices and bracket notation for
vectors. We use a tilde to denote quantities related to their
population values.

We consider two centered population activations X̃ ∈
RP×Ñx and Ỹ ∈ RP×Ñy with Ñx and Ñy neurons,
recorded in response to a fixed set of stimuli of size P .
Centered means that we subtracted column-wise mean.
Their corresponding population Gram matrices are given by
Σ̃x = X̃X̃⊤ and Σ̃y = ỸỸ⊤ with eigendecomposition:

Σ̃x =

P∑
i=1

λ̃i |ũi⟩⟨ũi| , Σ̃y =

P∑
a=1

µ̃a |w̃a⟩⟨w̃a| . (1)

The sample activations X ∈ RP×Nx and Y ∈ RP×Ny

are assumed to be generated from the population ones by
a random projection X = X̃R where R ∈ RÑ×N is a
random matrix with Gaussian i.i.d entries. Their Gram
matrices are defined as Σx = XX⊤ and Σy = YY⊤ with
eigendecomposition:

Σx =

P∑
i=1

λi |ui⟩⟨ui| , Σy =

P∑
a=1

µa |wa⟩⟨wa| . (2)

Random projections serve as an effective approach for
sampling high-dimensional data due to their geometry-
preserving properties (Lahiri et al., 2016) and a popular
method in analyzing neural dynamics from limited record-
ings (Gao et al., 2017). It also reduces our problem when
we consider sample Gram matrices as structured random
Wishart matrices (see SI.A.1).

We define the overlap as the squared inner product of two
unit vectors. The overlap matrices are:

Qx
ij := E[⟨ui|ũj⟩2] (brain_1 sample vs population)

Qy
ab := E[⟨wa|w̃b⟩2] (brain_2 sample vs population)

(3)

Mia := E[⟨ui|wa⟩2] (brain_1 vs brain_2 sample)

M̃ia := ⟨ũi|w̃a⟩2 (brain_1 vs brain_2 population)
(4)

where the expectations are over different instances of neuron
samplings. Here, the matrices Q represent the self-overlap
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between sample and population eigenvectors, M represents
the cross-overlap between two sample eigenvectors, and M̃
between two population eigenvectors.

2.1. Common Representational Similarity Measures

Here, we review common representational similarity mea-
sures and show that these measures can be expressed in
terms of the average quantities presented above.

Canonical Correlation Analysis (CCA) is an algorithm
that sequentially finds a set of orthonormal vectors {vα} for
which the correlation coefficients ρα = corr(Xvα,Yvα)
for two matrices X,Y are maximized (Hotelling, 1936).
The squared sum of these coefficients gives the CCA simi-
larity CCA =

∑
α ρ

2
α, and can be expressed in terms of the

overlap matrix Mia (Bjorck & Golub, 1973; Kornblith et al.,
2019)

CCA =

Ny∑
a=1

⟨ui|wa⟩2

min(Nx, Ny)
=

Nx∑
i=1

Ny∑
a=1

Mia

min(Nx, Ny)
. (5)

CCA has emerged as a popular tool in deep learning to
compare neural representations (Raghu et al., 2017).

Canonical Correlation Analysis (CCA) is sensitive to per-
turbations when the condition number of X or Y is large
(Golub & Zha, 1995). To enhance robustness, Singular
Value CCA (SVCCA) performs CCA on truncated singular
values of X and Y. In this approach, the sum of the overlap
matrix M is truncated to include only the first few compo-
nents. To avoid confusion, from now on, we will refer to
SVCCA truncated to the top ten components for both X and
Y as CCA, i.e (SV)CCA = 1

10

∑10
i=1

∑10
a=1Mia.

Centered Kernel Alignment (CKA) is a summary statistic
of whether two representations agree on the (dis)similarity
between a pair of examples based on their dot products
(Cristianini et al., 2001). CKA is defined as TrΣxΣy√

TrΣ2
x TrΣ2

y

and essentially measures the angle between two Gram ma-
trices. In terms of spectral components, it can be expressed
as:

CKA =

P∑
i=1

P∑
a=1

λi√∑P
j=1 λ

2
j

µa√∑P
b=1 µ

2
b

Mia. (6)

Note that CKA is very similar to CCA but with additional
(normalized) eigenvalue terms. CKA will be the main focus
of our work.

Representational Similarity Analysis (RSA) is a popular
method in neuroscience used to compare different brain re-
gions in response to the same set of stimuli (Kriegeskorte
et al., 2008). It is similar to CKA, except RSA compares
pair-wise Euclidean distances instead of dot products. Re-
cent work has established its equivalence to CKA when

RSA is combined with an extra centering step (Williams,
2024). Therefore, our analyses are directly applicable to
(centered-)RSA.

3. Theoretical Background
Treating Σx and Σy as random matrices described in Sec.2,
we leverage results from random matrix theory (Potters
& Bouchaud, 2020) to compute deterministic equivalents
of average CCA and CKA in the asymptotic limit. Defin-
ing qx = P/Nx and qx = P/Ny, we consider the limit
P,Nx, Ny →∞ by keeping qx, qy ∼ O(1).

Both similarity measures depend on the cross-overlap be-
tween sample eigenvectors Mia defined in Eq. (4). Asymp-
totically Mia decouples as (Bun et al., 2018)

Mia =
∑
j,b

Qx
ijM̃jbQ

y
ba, (7)

where the self-overlaps Qx
ij and Qy

ab can be computed ana-
lytically (Ledoit & Péché, 2011). The self-overlap matrix
for X can be expressed in terms of the resolvent matrix
G(z) = (z −Σ)−1 given by:

Qij = const. lim
η→0+

ImGjj(λi − iη), (8)

where the resolvent G(z) has a deterministic equivalent
given by the following self-consistent equation

Gij(z) =
δij

z − λ̃j(1 + q(zg(z)− 1))
, g(z) =

1

P
TrG(z).

(9)

We provide a detailed derivation of these results in SI.A.
Here, we note that the complex function g(z) and Eq. (8)
can be solved numerically (see SI.D for details). Plugging
in the formula for expected Mia in Eq. (5) and Eq. (6), we
get an analytical formula for CCA and CKA, respectively.
Several remarks are in order:

– While our theory is applicable to the general cases where
observations from both models are sampled, henceforth,
we fix one of the models to be deterministic for practical
reasons. Often, neural similarity measures are applied to
compare biological data with limited neuron recordings to
an artificial model where the entire population is available.
For example fixing model Y implies that its self-overlap
Qy is just an identity matrix, hence simplifying Eq. (7) to
M = QxM̃.

– The analytical formula for CCA and CKA depends only on
the population quantities. However, since the self-overlap
matrix Qij in Eq. (8) explicitly depends on individual eigen-
components, its deterministic equivalent specifically de-
pends on the population eigenvalue for the jth component
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(λ̃j), and the expected value of the sample eigenvalue for
the ith component (E[λi]).

Sample Eigenvalues: Theoretical values of sample eigen-
values E[λi], in principle, can be computed by solving the
following integral equation (Potters & Bouchaud, 2020)

∫ ∞

E[λi]

ρ(λ) dλ =
i

P
, ρ(λ) =

1

π
lim

η→0+
Im g(λ− iη).

(10)

Here, ρ(λ) is the deterministic equivalent of the empiri-
cal eigenvalue density and depends only on the population
eigenvalues (see SI.A.2). This may be problematic due to
numerical instabilities.

However, we know that each single-trial eigenvalue con-
centrates around this mean with trial-to-trial fluctuations of
O(1/

√
P ) (Potters & Bouchaud, 2020). In large P limit,

we can neglect these fluctuations and replace E[λi] with a
single-trial observation. We provide a detailed account of
this approximation with supporting numerical experiments
in SI.A.5.

Sample Eigenvectors: Unlike eigenvalues, the sample
eigenvectors ⟨ui|ũj⟩2 exhibit trial-to-trial fluctuations that
does not vanish even as P →∞ (see SI.A.6). Instead, we
need to compute the mean value of the overlap represented
by the squared overlap Qij in Eq. (4) (Bun et al., 2018).

BBP Phase Transition: Despite the inevitable fluctuation
in the sample eigenvectors, their mean behavior can still
differ markedly from that of the population eigenvectors.
A classic example is the Baik–Ben Arous–Péché (BBP)
phase transition (Baik et al., 2004). Consider a population
Gram matrix with one large “spike” eigenvalue and the rest
equal to 1. If the spike strength exceeds a critical threshold
determined by P/N , then the sample eigenvector associated
with that spike has an overlap on the order of OP (1) with
the population spike eigenvector. If the spike strength is
below that threshold, however, the corresponding sample
eigenvector becomes delocalized, and its overlap with the
spike is of order O

(
1/P

)
. We provide a detailed discussion

of this in SI.A.6).

Numerical Confirmation: Finally, we numerically test
the theoretical prediction for self-overlap given by Eq. (8)
on the eigenvectors of deep neural network activations. We
extract layer activations from a pre-trained ResNet18 on
CIFAR-10 images and subsample N neurons through ran-
dom projection. In Fig. 2a, we show the self-overlap Qii

for the first few eigenvectors of the layer activations and
demonstrate a perfect match with theory. As the number
of neurons decreases, the number of delocalized eigenvec-
tors increases since fewer eigenvectors have self-overlap
Qii ≈ 1.

RP

Spike > λc (Localized)

RP

Spike < λc (Delocalized)

Figure 1: Illustration of BBP phase transition. On the left
is the case where the spike is bigger than the critical value,
and thus, the sample eigenvector related to the spike is close
to the actual spike, lying at the cone with a small angle.
On the right is the case where the spike is smaller than the
critical value; in this case, sample eigenvector related to the
spike mixes with bulk eigenvectors, ending up completely
delocalized.

100 101 102

Index of eigenvector i
10 3

10 2

10 1

100

Q
ii

a) Theory
Experiment

N = 10
N = 50
N = 100
N = 500
N = 1000
N = 5000

101 102 103

Neuron size N

0.4

0.6

0.8

1.0

CK
A

b)

CKA (Empirical)
CKA (Theory)
CKA (True)

Figure 2: a) Self-overlap Qii between sample and popu-
lation eigenvectors for ResNet18 activations. b) CKA be-
tween population and sample activations when N neurons
are sampled. The gray-shaded region represents the stan-
dard deviation of empirical CKA across different random
samplings.

The effect of eigenvector delocalization is reflected in the
CKA between the sampled and population layer activations
as shown in Fig. 2b. The alignment is completely misleading
when small amounts of neurons are sampled and pose a
significant problem for practical purposes.

4. Applying Theory to Representation
Similarity

4.1. Forward Problem: Impact of Neuron Sampling on
Similarity

In the forward problem, we assume that the population
eigenvalues and eigenvectors are known. The first step
is to obtain the typical sample eigenvalues by running a
single-trial numerical simulation. We then move on to the
eigenvectors by computing Q(x) using Eq. (8). Finally,
we calculate the overlap between the two systems, M, us-
ing Eq. (7). Having these components allows us to evaluate
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both CCA and CKA as functions of the number of neurons
N .

As illustrated in Fig. 3, the theoretical predictions obtained
from this eigen-decomposition match the observed CCA
and CKA across different values of N . Notice that CKA
decreases when the number of neurons N is reduced. As
discussed above, both of these effects can be explained by
the delocalization of eigenvectors.

4.2. Backward Problem: Inferring Population
Similarity from Limited Neurons

Just like in our earlier analysis, inferring the population rep-
resentational similarity begins with estimating the eigenval-
ues of the underlying population. In general, this is difficult
because sample eigenvalues can deviate substantially from
their population counterparts. Moreover, if N < P , there
are P −N zero eigenvalues in the sample covariance matrix,
further complicating the problem.

However, if we adopt a parametric form, we can often
achieve significant improvements in accuracy (Pospisil &
Pillow, 2024). Here, we assume a power-law spectrum of
the form λ̃i = i−1−δ (Stringer et al., 2019). We develop
a numerical method based on random matrix theory that
reliably infers the true decay rate of population eigenvalues
based on only the sample eigenvalues (see SI.C for detailed
analysis). More sophisticated approaches—such as allowing
a broken power law and minimizing the error using unbiased
moment estimators—are also possible (Pospisil & Pillow,
2024).

After estimating the population eigenvalues λ̃i, we address
the eigenvectors by computing Q(x) using Eq. (8). Since
every population eigenbasis produces the same mean self-
overlap, having λ̃i is sufficient to find Q(x).

Our final goal is to estimate the population cross-overlaps
M̃, which are required to infer the true population similarity
between two systems. A straightforward way to do this
is to invert the forward relationship M = Q(x) M̃. Two
challenges arise in this naive approach. First, eigenvector
statistics do not self-average (Potters & Bouchaud, 2020),
so the empirical cross-overlap differs from M, its expected
value. This discrepancy can be partially mitigated by trial
averaging or statistical bootstrapping.

Even if we obtain the mean cross-overlap, a second issue
emerges: Q(x) is not invertible unless P ≪ N . As a result,
it is impossible to recover the entire matrix M̃. Intuitively,
only the first few eigenvectors are well-localized; the rest
delocalize and lose information, so we can only reliably
retrieve the corresponding columns of M̃.

To handle this practically, we use a constrained optimization:

min
M̃

∥∥M−Q(x) M̃
∥∥
F

(11)

where each element of M̃ is restricted to lie in [0, 1], as these
entries represent squared inner products of eigenvectors.
We provide the pseudo-code for this denoising algorithm in
Alg.1

Algorithm 1 Inference of Population Cross-Overlap M̃

Require: {λi}Pi=1: Sample eigenvalues
P : Number of stimuli
N : Number of sampled neurons
M ∈ RP×P : sample cross-overlap matrix

1: Step 1: Estimate Population Eigenvalues
2: Assume power-law ansatz: λ̃i ∝ i−1−δ

3: Find δ that best explains observed {λi}Pi=1

4: Step 2: Compute Self-overlap matrix
5: Q(x) ← function({λ̃i}, P,N)

6: Step 3: Optimize Population Similarity
7: Solve constrained optimization problem:
8: minM̃ ∥M−Q(x) · M̃∥F
9: subject to M̃ij ∈ [0, 1] for ∀i, j

10: return M̃

4.2.1. UP TO HOW MANY EIGENVECTORS CAN WE
RESOLVE FOR GIVEN N,P ?

Consider a power-law spectrum, which decays relatively
quickly. Under such a spectrum, only the leading sample
eigenvectors tend to be well-localized, as shown in Fig. 4. If
we run the backward algorithm, we observe that for a given
N,P , we can reliably recover only those initial components
that remain localized.

We can explicitly truncate these eigenvectors by taking a
partial inverse of Q(x) (see SI. E). However, this approach
can be numerically unstable and might produce values of
Mij outside the [0, 1] range.

Additionally, Fig. 5 demonstrates that, under a power-law of
the same exponent, varying P has a subtler effect on these
leading indices than varying N , which significantly affects
localization.

4.2.2. WHY THIS IS SUFFICIENT FOR INFERRING
POPULATION SIMILARITY

Although our denoising approach only manages to recover
the leading few eigencomponents (those that remain local-
ized), it is precisely these components that matter most for
similarity measures like CKA and (SV)CCA. As shown in
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Theory
Sample CCA

Figure 3: Comparison of sample vs population measures for CKA and CCA: Error bars represent empirical sample
similarity and dotted lines the theoretical predictions. The black dotted line marks the true population similarity which is
set to 1 for both measures. Solid lines indicate inferred true similarity from samples. Sample similarity is lower due to
eigenvector delocalization, while our method consistently provides a closer estimate of the true value.
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Figure 4: Participation ratio (P.R.) of self-overlap
(1/

∑
j Q

2
ij), indicating the onset of eigenvector delocal-

ization, for a power-law spectrum λ̃i ∼ i−1.2. For fixed
N , increasing P marginally affects the leading eigenvectors.
By contrast, for fixed P , increasing N makes more eigen-
vectors localized. Only sample eigenvectors below the black
horizontal line are localized (P.R. ≈ 1). Heuristically, M̃ia

can be recovered reliably for only indices below this line.

Fig. 3, these metrics are governed primarily by the initial
eigenvalues and eigenvectors. Thus, even with a very limited
number of neurons, estimating those leading components is
sufficient for practical purposes.

To estimate population CKA from sample observations, one
could focus solely on the denominator, as the sample numer-
ator’s expected value matches the population value (Gretton
et al., 2005). This allows applying methods from (Kong &
Valiant, 2017; Chun et al., 2024), exploiting the fact that the
changes in eigenvalues and eigenvectors offset each other.
However, this approach estimates CKA using only eigenval-
ues, ignoring eigenvector statistics. In contrast, our method
incorporates both inferred eigenvalues and eigenvectors for
a more complete estimation.
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Figure 5: Recovering population overlaps: Each column
shows the single-trial empirical M, the theoretical predic-
tion of M, the inferred population overlap ˜̂

M, and the actual
population overlap M̃.With fewer neurons N , sample eigen-
vectors become delocalized, causing large discrepancies.
Nevertheless, our inference method successfully recovers
the dominant overlaps, which are enough for global similar-
ity measures such as CKA and CCA.

5. Experiments
5.1. Synthetic Data with a Known Population Gram

Matrix

We first evaluate our approach on a synthetic dataset where
the population Gram matrix is fully specified, allowing us to
directly compare our estimated similarity measures against
the ground-truth population values. For simplicity, we set
the two population Gram matrices to be identical, i.e., Σ̃x =
Σ̃y . Under this setup, the population CKA and CCA should
both be 1.

Fig. 3 illustrates that our forward and backward procedures
work well. In the forward approach, we show that the
eigencomponent-based analysis matches the empirical re-
sults closely. In the backward approach, even with an ex-
tremely limited number of neurons (N ≈ 20), our method
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infers a population similarity close to 1, despite the observed
sample similarity being substantially lower.

Since the population eigenvectors (and hence the popula-
tion cross-overlaps M̃ ) are known, we can also verify how
well the inferred overlaps ˆ̃M match the true overlaps M̃ .
Specifically, Fig. 5 displays the top-left 10 × 10 block of
each matrix: the empirical M, the theoretical M (second
column), the inferred population overlap ˆ̃M (third column),
and the actual population overlap M̃ (fourth column). Be-
cause we set Σ̃x = Σ̃y , the actual population cross-overlap
M̃ should be the identity matrix. However, with fewer neu-
rons, the sample eigenvectors become more delocalized, as
evident in the first column. Our theoretical prediction of
this phenomenon (second column) aligns closely with the
empirical observation. Notably, even with severely limited
neurons, our backward-inference method recovers a cross-
overlap matrix ˆ̃M (third column) much closer to the true
identity than the naive observed M.

5.1.1. SAMPLING NEURONS CAN CHANGE
REPRESENTATION SIMILARITY RANKING

Next, we showcase a synthetic example in which sampling
can lead to a reversal in the similarity rankings of models.
Specifically, we construct two models:

• Model 1 has significant overlap with the “Brain” rep-
resentation on its first 3 population eigenvectors.

• Model 2 has significant overlap with the Brain on the
next 3 eigenvectors.

We set the total population (SV)CCA of Model 2 to be
higher than that of Model 1. However, as neurons are sam-
pled, eigenvectors corresponding to larger indices (smaller
eigenvalues) tend to delocalize more. Hence, the empirical
cross-overlap M for Model 2 deteriorates faster, causing its
(SV)CCA to drop more than that of Model 1. Eventually,
Model 1 overtakes Model 2 in the sample-based (SV)CCA
ranking, as illustrated in Fig. 7.

Fig. 8 presents the empirical and population cross-overlaps
of the two models (each compared to the Brain). We set
P = 200 and N = 30, and all population eigenvalues
follow a power-law with exponent −1.2. Model 2’s higher-
dimensional overlaps delocalize more strongly, producing
an apparent discrepancy that flips their observed ranking
once neuron sampling is taken into account.

5.2. Brain Data

Finally, we apply our denoising framework to real neural
recordings in the primate visual cortex, comparing them
against various computational model predictions. (for ex-
perimental details see SI.D)

In Fig. 6, we illustrate a scatter plot of the representation
similarity for different models compared to neural responses
from V2 cortex (Freeman et al., 2013; Schrimpf et al., 2018),
given an artificially limited neuron count of N = 20 out
of 103 neurons. The x-axis corresponds to the observed
sample CKA or CCA, while the y-axis is our inferred popu-
lation measure. Observe that our inference method consis-
tently produces higher population similarity estimates than
the naive sample estimates. In particular, certain models
that appear to have lower similarity (when judged by the
raw, sample-based metric) can actually exhibit higher true
similarity to the brain once sampling effects are taken into
account.

6. Conclusion and Outlook
We have presented an eigencomponent-based analysis of
how sampling a finite number of neurons affects represen-
tational similarity measures, including CCA and CKA. By
applying methods from Random Matrix Theory, we estab-
lished that this limited sampling systematically underesti-
mates similarity because of eigenvector delocalization in
the sample Gram matrices. Our framework provides:

• Forward Analysis: A procedure to predict how popu-
lation eigenvalues and eigenvectors will manifest under
neuron sampling, thus explaining the observed drop in
representation similarity.

• Backward Inference: A denoising algorithm capable
of inferring the population representation similarity
from limited data, overcoming the biases introduced
by sampling noise.

We validated our approach on both synthetic and real
datasets. In the synthetic experiments, where the popu-
lation Gram matrices were fully known, we showed that our
method reliably recovers the true population overlaps and
similarity values, even in regimes with very few neurons.
Importantly, we highlighted a striking effect of sampling:
under certain configurations, the ranking of two models with
respect to the brain can be inverted when only a limited set
of neurons is recorded. In real datasets from primate visual
cortex, our method consistently produced higher population
similarity estimates than naive sample-based methods, un-
derscoring that the observed decrease in similarity is largely
a sampling artifact.

Future Directions. There are several promising avenues
for extending our work. First, it would be valuable to ex-
plore more sophisticated spectral priors—such as broken
power-law spectra—to account for multiple functional sub-
populations in the data, each contributing a distinct spectral
structure. Second, while we have focused on sampling noise,

7



Spectral Analysis of Representational Similarity

0.15 0.20 0.25 0.30 0.35
Sample CKA

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Es

t.
 P

op
. C

KA
Region: V2

alexnet
barlowtwins
convnext
cornet
densenet

efficientnet
mobilenet
moco
resnet

simclr
vgg
vonenet
wide_resnet

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
La

ye
r D

ep
th

0.16 0.18 0.20 0.22 0.24 0.26 0.28
Sample CCA

0.2

0.3

0.4

0.5

0.6

Es
t.

 P
op

. C
CA

Region: V2

alexnet
barlowtwins
convnext
cornet
densenet

efficientnet
mobilenet
moco
resnet

simclr
vgg
vonenet
wide_resnet

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
La

ye
r D

ep
th

Figure 6: Scatter plots of observed sample similarity vs. inferred population similarity for multiple models compared to V2
cortex, using only N = 20 neurons (out of a larger set). (Left) CKA results; (Right) CCA results. The dotted line y = x
indicates equality. Notice that the inferred population similarity is consistently higher than the naive sample-based measure,
demonstrating how limited neuron sampling can lead to underestimation of the true model-brain correspondence.
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Figure 7: Sample-based CCA ranking flips despite Model 2
having a larger population CCA than Model 1. The decrease
in Model 2’s CCA is more pronounced due to its stronger re-
liance on higher-indexed eigenvectors, which become more
delocalized with limited neuron sampling.

future work should incorporate explicit models of additive
noise that arises in real-time neurophysiological recordings,
relaxing the assumption that trial averaging eliminates most
of it. Third, improved denoising methods could be devel-
oped by adopting Bayesian approaches to model the joint
distribution of sample eigenvectors and population eigenvec-
tors (Monasson & Villamaina, 2015), thus allowing more
accurate recovery of the population eigenspaces. Finally,
as we outline in SI.B, our framework naturally extends to
regression settings, where sampling-induced distortions in
eigencomponents can adversely affect regression scores,
much like their impact on representational similarity mea-
sures.

Overall, our results suggest that practical neuroscience stud-
ies must account for sampling-induced eigenvector delo-
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Figure 8: Empirical vs. population cross-overlaps for Model
1 vs. Brain and Model 2 vs. Brain. Here, P = 200 and
N = 30. All three population eigenvalue spectra follow a
power law with exponent −1.2. Although Model 2’s true
overlap is higher at the population level, it relies on higher-
indexed (smaller eigenvalue) components, which delocalize
more severely in the sample.

calization when interpreting representational similarity. By
unveiling the intrinsic biases introduced by limited neuron
sampling and proposing a systematic solution, we aim to
provide neuroscientists and machine learning researchers
with more reliable tools for comparing computational mod-
els and neural data.

7. Impact Statement
Our work may be highly impactful in providing reliable, ro-
bust similarity measures and check the reliability of existing
studies based on neural recordings. Furthermore our method
may help comparing similarities of artificial networks and
may potentially be used in distilling large models.
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A. Detailed Derivation of the Main Result
A.1. The Sample Gram Matrix

Let X̃ ∈ RP×Ñx denote the true population matrix with P samples and Ñx neurons. We consider sampling only in the
neuron/feature axis. The sample data X ∈ RP×Nx is obtained by applying an Ñx ×Nx random projection matrix Rx on X̃

X = X̃Rx, (Rx)ij ∼ N
(
0,

1

Nx

)
. (S1)

The population and sample Gram matrices and their corresponding eigen-components are denoted as

Σ̃x = X̃X̃⊤ =

P∑
i=1

λ̃i |ũi⟩⟨ũi| ,

Σx = XX⊤ =

P∑
i=1

λi |ui⟩⟨ui| . (S2)

In Random Matrix Theory (RMT), it is often convenient to consider matrices of the form M =
√
CW

√
C, where

W = RR⊤ is a random Wishart matrix and C is a deterministic square matrix. We first put Σx into this form to simplify
our calculations (Knowles & Yin, 2017). The sample Gram matrix can be written in terms of the SVD components of
X̃ = UΛ̃

1/2
x V⊤

Σx = X̃RxR
⊤
x X̃

⊤ = UΛ̃1/2
x

(
V⊤RxR

⊤
x V

)
Λ̃1/2

x U⊤, (S3)

where Λ̃x ∈ RP×Ñx is a diagonal matrix, and U ∈ RP×P and V ∈ RÑx×Ñx orthogonal matrices. Since deterministic
orthogonal transformations of Wishart matrices are again Wishart matrices, we get:

Σx = UΛ̃1/2
x WxΛ̃

1/2
x U⊤, (S4)

where Wx = V⊤RxR
⊤
x V is a random Wishart matrix with aspect ratio ϕx = Ñx/Nx. We divide our discussion into two

cases:

• When P ≥ Ñx, the eigenvalue matrix can be completed to a P × P -matrix by zero padding and replacing Wx with a
Wishart matrix with qx = P/Nx. Using the orthogonality of U, this allows us to express Σx as

Σx = (UΛ̃1/2
x U⊤)(UWxU

⊤)(UΛ̃1/2
x U⊤) =

√
Σ̃xWx

√
Σ̃x, (S5)

where Wx is a Wishart matrix with aspect ratio qx = P/Nx.

• When P < Nx, the eigenvalue matrix and the Wishart matix can be written as

Λ̃x =
(
Λ̃′

x 0
)
, Wx =

(
R1

R2

)(
R⊤

1 R⊤
2

)
, (S6)

where the P × P matrix Λ̃′
x is the non-zero part of Λ̃x and R1 ∈ RP×Nx , R2 ∈ R(Ñx−P )×Nx are two projection

matrices. Plugging these back in, we arrive at the same form as the previous case.

In both cases, the statistics of Σx does not depend explicitly on Ñx.

A.2. Eigenvalue statistics of sample Gram matrices

One of the main objectives of RMT is to understand the eigenvalue distribution of random matrices in terms of deterministic
quantities (Potters & Bouchaud, 2020). Here, we review some classical results on the eigenvalue statistics of random
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matrices of the form Σ =
√

Σ̃W
√
Σ̃ where W is a P × N Wishart matrix with ratio q = P

N . Here, Σ and Σ̃ are the
sample and population Gram matrices, and they have the following eigendecompositions

Σ =

P∑
i=1

λi |ui⟩⟨ui| , Σ̃ =

P∑
i=1

λ̃i |ũi⟩⟨ũi| . (S7)

We denote their (discrete-)eigenvalue distribution by ρ(λ) and ρ̃(λ̃):

ρ(λ) =
1

P

P∑
i=1

δ(λ− λi), ρ̃(λ̃) =
1

P

P∑
i=1

δ(λ̃− λ̃i). (S8)

We define the resolvent of the random matrix X and its trace as

G(z) = (z −Σ)−1 =

P∑
i=1

|ui⟩⟨ui|
z − λi

. (S9)

The Stieltjes transform of the empirical spectral distribution is defined as

gP (z) :=

∫
ρ(λ)

z − λ
dλ =

1

P
TrG(z). (S10)

In large P limit, this quantity is self-averaging and there is a deterministic equivalent g(z) ∼ gP (z) given by the self-
consistent equation

g(z) =

∫
ρ̃(λ̃)

z − λ̃(1− q + qzg(z))
dλ̃, (S11)

which only depends on the deterministic eigenvalues ρ̃x(λ̃) and the ratio q = P/N (Potters & Bouchaud, 2020). In practical
applications, ρ̃x(λ̃) is often replaced by with the uniform measure over the population eigenvalues {λ̃i} as defined in
Eq. (S8). This remarkable result was first obtained in (Marchenko & Pastur, 1967) for white Wishart matrices (for which
Σ̃ = I).

Due to the equivalence g(z) ∼ gP (z) in large P limit, these two integrals are equivalent∫
ρ(λ)

z − λ
dλ →

P→∞

∫
ρ̃(λ̃)

z − λ̃(1− q + qzg(z))
dλ̃, (S12)

from which one can obtain the density of the limiting spectral density using the inversion formula (Bun et al., 2017)

ρ(λ) =
1

π
lim

η→0+
Im g(λ− iη). (S13)

The Stieltjes transform also connects to the effective regularization in ridge regression (Bordelon et al., 2020; Jacot et al.,
2020; Canatar et al., 2021; Atanasov et al., 2024). We define a new function κ(z) as

κ(z) := − z

1− q + qzg(z)
, g(z) = z−1 − q−1(z−1 + κ(z)−1) (S14)

and express Eq. (S11) in terms of this quantity:

g(z) =
κ(z)

z

∫
ρ̃(λ̃)

λ̃+ κ(z)
dλ̃ = z−1 − q−1(z−1 + κ(z)−1). (S15)

Then, we obtain a new self-consistent equation for κ

κ(z) = −z + κ(z)

∫
qλ̃

λ̃+ κ(z)
ρ̃(λ̃)dλ̃, (S16)
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which is also known as the Silverstein equation (Silverstein & Choi, 1995). Expressing this in terms of the discrete population
eigenvalues, and evaluating it at z = −λ, we get

κ = λ+ κ
1

N

P∑
i=1

λ̃i

λ̃i + κ
, (S17)

which is exactly the equation for the renormalized ridge parameter in (Canatar et al., 2021; Atanasov et al., 2024) with the
scaling λ̃i → Nλ̃i.

A.3. Eigenvector statistics of sample Gram matrices and the self-overlap matrix

This result from Eq. (S11) can also be generalized to the resolvent matrix itself (Knowles & Yin, 2017; Bun et al., 2017),
which becomes diagonal in the population eigenbasis:

G(z) =

P∑
i=1

|ui⟩⟨ui|
z − λi

∼
P∑
i=1

|ũi⟩⟨ũi|
z − λ̃i(1− q + qzg(z))

, (S18)

where the integral over eigenvalues is replaced by the discrete measure over population eigenvalues. This allows us to study
the eigenvector statistics by analyzing the quantity

⟨ũj |G(z)|ũj⟩ =
P∑
i=1

⟨ui|ũj⟩2

z − λi
∼ 1

z − λ̃j(1− q + qzg(z))
. (S19)

In large P limit, the sum over empirical eigenvalues become an integral:

⟨ũj |G(z)|ũj⟩ −→
P→∞

∫
Q(λ, λ̃j)

z − λ
ρ(λ)dλ, (S20)

where we defined Q(λi, λ̃j) := P ⟨ui|ũj⟩2 is the overlap between the ith sample eigenvector and the jth population
eigenvector. Now, we can obtain Q(λi, λ̃j) using the following inversion formula

Q(λi, λ̃j) =
1

πρ(λi)
lim

η→0+
Im ⟨ũj |G(λi − iη)|ũj⟩ . (S21)

Using the equivalence in Eq. (S19) and evaluating this expression explicitly:

Q(λi, λ̃j) =
qλiλ̃j[

λ̃j(1− q)− λi + qλiλ̃jh(λi)
]2

+
[
qλiλ̃jπρ(λj)

]2 , (S22)

we get an explicit formula for eigenvector overlaps (Ledoit & Péché, 2011; Bun et al., 2017), where ρ(λi) is given by
Eq. (S13) and h(z) is its Hilbert transform:

h(z) = p.v.
∫

ρ(λ)

z − λ
dλ. (S23)

and can be obtained from the Stieltjes transform via

lim
η→0+

g(z − iη) = h(z) + iπρ(z). (S24)

A.4. Overlap formula for two Gram matrices

Here, we provide a short review of the work by Bun et al. (2018) which derives an overlap formula between eigenvectors
from random matrices. We consider observations from two representations X ∈ RP×Nx and Y ∈ RP×Ny in response to a
common set of inputs of size P . Their sample Gram matrices have decompositions:

Σx = XX⊤ =

P∑
i=1

λi |ui⟩⟨ui| , Σy = YY⊤ =

P∑
a=1

µa |wa⟩⟨wa| . (S25)
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We assume that X and Y are observations sampled from the underlying population features X̃ ∈ RP×Ñx and Ỹ ∈ RP×Ñy

through independent random projections. The corresponding population Gram matrices are decomposed as:

Σ̃x = X̃X̃⊤ =

P∑
i=1

λ̃i |ũi⟩⟨ũi| , Σ̃y = ỸỸ⊤ =

P∑
a=1

µ̃a |w̃a⟩⟨w̃a| . (S26)

We consider two sample data matrices X ∈ RP×Nx and Y ∈ RP×Ny . In Sec. A.1, we showed that the sample Gram
matrices can be expressed in terms of the population ones as:

Σx =

√
Σ̃xWx

√
Σ̃x,

Σy =

√
Σ̃yWy

√
Σ̃y, (S27)

where the Wishart matrices Wx and Wy have aspect ratios qx = P/Nx and qy = P/Ny, respectively. Resolvents of the
sample Gram matrices are

Gx(z) ≡ (z −Σx)
−1 =

P∑
i=1

|ui⟩⟨ui|
z − λi

, Gy(z
′) ≡ (z′ −Σy)

−1 =

P∑
a=1

|wa⟩⟨wa|
z′ − µa

. (S28)

We want to compute

ψP (z, z
′) = E

[
1

P
Tr

[
Gx(z)Gy(z

′)
]]

= E

 1

P 2

P∑
i,a=1

P ⟨ui|wa⟩2

(z − λi)(z′ − µa)

 , (S29)

where the expectation is over random realizations of sample Gram matrices (Bun et al., 2018). In the limit P → ∞, as
empirical eigenvalues become continuous, this object approaches a deterministic function

ψP (z, z
′) ∼ ψ(z, z′) =

∫
ρx(λ)ρy(µ)

(z − λ)(z′ − µ)
M(λ, µ)dλ dµ, M(λi, µa) ∼ E

[
P ⟨ui|wa⟩2

]
(S30)

Here, ρx(λ), ρy(µ) are the eigenvalue densities of Σx, Σy given by Eq. (S13). The function M(λi, µa) ∼ E
[
P ⟨ui|wa⟩2

]
denotes the expected overlap between two eigenvectors associated with eigenvalues λi and µa, and it is the central object for
our analysis since it directly appears in CCA and CKA. This quantity can be obtained by computing ψ(λi − iη, µa + iη′),
collecting the term proportional to ηη′ and taking the limit η, η′ → 0 (Bun et al., 2018):

ψ(λi − iη, µa + iη′) =

∫
(λi − λ+ iη)ρx(λ)

(λi − λ)2 + η2
(µa − µ− iη′)ρy(µ)
(µa − µ)2 + η′2

M(λ, µ)dλ dµ

=

∫
ηρx(λ)

(λi − λ)2 + η2
η′ρy(µ)

(µa − µ)2 + η′2
M(λ, µ)dλ dµ+ (. . . )

=
η,η′→0

π2ρx(λi)ρy(µa)M(λi, µa) + (. . . ) (S31)

To simplify, we will assume that the population eigenvectors form a complete set of basis:

I =

P∑
i=1

|ũi⟩⟨ũi| =
P∑

a=1

|w̃a⟩⟨w̃a| . (S32)

Then each resolvent in Eq. (S29) can be expressed in these bases:

Gx(z) =
∑
i,j

∣∣ũi〉〈ũj∣∣Φx
ij(z), Φx

ij(z) : ⟨ũi|Gx(z)|ũj⟩ ,

Gy(z) =
∑
a,b

|w̃a⟩⟨w̃b|Φy
ab(z

′), Φy
ab(z

′) := ⟨w̃a|Gy(z)|w̃b⟩ , (S33)

15



Spectral Analysis of Representational Similarity

where Φx
ij and Φy

ab are the matrix elements of resolvents Gx(z) and Gy(z
′) in their respective deterministic bases. Then,

Eq. (S29) simplifies to

ψP (z, z
′) = E

 1

P

∑
i,j,a,b

Φx
ij(z)C̃jaΦ

y
ab(z

′)C̃⊤
bi

 =
1

P

∑
i,j,a,b

E[Φx
ij(z)]C̃jaE[Φy

ab(z
′)]C̃⊤

bi , (S34)

where we defined the deterministic overlap matrix elements C̃ia := ⟨ũi|w̃a⟩. In the second equality, we assumed that two
resolvents are independent, reducing the problem to computing the expected resolvent of a single Gram matrix.

As discussed around Eq. (S19), the resolvent Gx has a limiting value for P → ∞ that is diagonal in the corresponding
deterministic basis (Bun et al., 2017), and its matrix elements are given by:

Φx
ij(z) =

δij

z − λ̃i(1− qx + qxzgx(z))
+O(P−1/2), (S35)

where gx(z) satisfies the self-consistency condition in Eq. (S11).

In order to compute the overlap M(λi, µa), we use Eq. (S31) and collect the term proportional to ηη′. Thanks to Eq. (S34)
and Eq. (S35), this term simplifies to:

π2ρx(λi)ρy(µa)M(λi, µa) =
1

P

∑
j,b

(
lim
η→0

ImΦx
jj(λi − iη)

)
C̃2

jb

(
lim
η′→0

ImΦy
bb(µa − iη′)

)
. (S36)

Defining

Qx(λi, λ̃j) :=
1

πρx(λi)
lim
η→0

ImΦx
jj(λi − iη), Qy(µa, µ̃b) :=

1

πρy(ηa)
lim
η′→0

ImΦy
bb(µa − iη′) (S37)

we get an equation for M as

M(λi, µa) =
1

P

∑
j,b

Qx(λi, λ̃j)C̃
2
jbQy(µa, µ̃b). (S38)

Here, Qx and Qy were already calculated in Eq. (S22). Identifying the following quantities

Qx
ij ≡ E ⟨ui|ũj⟩2 =

1

P
Qx(λi, λ̃j), Qy

ab ≡ E ⟨wa|w̃b⟩2 =
1

P
Qy(µa, µ̃b),

Mia ≡ E ⟨ui|wa⟩2 =
1

P
M(λi, µa), M̃ia := ⟨ũi|w̃a⟩2 = C̃2

ia, (S39)

we get our main result (Bun et al., 2018):

M = QxM̃Qy⊤,

Qx
ij =

1

P

qxλiλ̃j[
λ̃j(1− qx)− λi + qxλiλ̃jhx(λi)

]2
+
[
qxλiλ̃jπρx(λi)

]2 ,
Qy

ab =
1

P

qyµaµ̃b[
µ̃b(1− qy)− µa + qyµaµ̃bhy(µa)

]2
+

[
qyµaµ̃bπρy(µa)

]2 . (S40)

A.5. Statistics of sample eigenvalues and its concentration properties

As we discussed in the main text, the practical usage of Eq. (S22) requires computing the expectation value of individual
sample eigenvalues. Eq.S40, treating ith biggest sample eigenvalue as deterministic and plugging η = 1/

√
P

For sufficient conditions, we can show that the sample resolvent g(z) self-averages. In this case, sample eigenvalue density
ρ(λ) converges in law. Here, we show that for practical use of Eq.S21, Eq.S40, we can treat ith biggest eigenvalue as
effectively deterministic in its most probable position.
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Specifically, we demonstrate that for a large number of eigenvalues P , the most probable i-th largest eigenvalue λi satisfies∫ ∞

λi

ρ(λ) dλ =
i

P
, (S41)

and that the fluctuations around this most probable is O(1/
√
P ).

Consider a set of P eigenvalues {λ1, λ2, . . . , λP } drawn independently from the probability density ρ(λ). We order these
eigenvalues in descending order:

λ(1) ≥ λ(2) ≥ . . . ≥ λ(P ),

where λ(i) denotes the ith largest eigenvalue. To find the most probable value λi for the ith largest eigenvalue, we focus on
the probability that exactly #i eigenvalues exceed a threshold λ̄. If we define

F (λ̄) =

∫ ∞

λ̄

ρ(λ′) dλ′,

then the probability that exactly i out of P samples exceed λ̄ is given by the binomial expression

F (λ̄, P, i) =

(
P

i

)[
F (λ̄)

]i [
1− F (λ̄)

]P−i
.

We determine the threshold λ̄i that maximizes F (λ̄, P, i) by setting its derivative (with respect to λ̄) to zero. From this
calculation, one obtains the simple condition

F (λ̄i) =
i

P
.

Equivalently, since F (λ) =
∫∞
λ
ρ(λ′) dλ′, the most probable ith largest eigenvalue λi satisfies∫ ∞

λi

ρ(λ) dλ =
i

P
.

Now we calculate approximations for fluctuation around this most probable position. Let’s analyze F (λ̄, P, i) near λ̄i. Write
λ̄ = λi + δλ and expand F (λ̄) in a Taylor series about λi:

F (λ̄) = F (λi + δλ) ≈ F (λi) +
dF

dλ

∣∣∣∣
λi

δλ +
1

2

d2F

dλ2

∣∣∣∣∣
λi

(δλ)2 + . . .

Since F (λi) = i
P and λi is determined by maximizing F (λ̄, P, i), the first derivative of F at λi vanishes:

dF

dλ

∣∣∣∣
λi

= 0,

thus
F (λ̄) ≈ i

P
+

1

2
F ′′(λi) (δλ)

2.

(We expect F ′′(λi) < 0 since F (λ) decreases with λ.)

Substituting this expansion back into
(
P
i

) [
F (λ̄)

]i[
1− F (λ̄)

]P−i
, we find that the dominant dependence on δλ appears in a

Gaussian-like factor
exp

(
− 1

2 |F
′′(λi)|P (δλ)2

)
.

This indicates that λ̄ (the threshold that yields exactly i exceedances) is peaked sharply around λi with a variance

σ2
i =

1

−F ′′(λi)P
.

In summary, most probable i-th largest eigenvalue λ(i) is determined by∫ ∞

λi

ρ(λ) dλ =
i

P
,

with fluctuation O(1/
√
P ).
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A.6. Statistics of sample eigenvalues and its concentration properties

Note that unlike eigenvalue density converges in law, eigenvector statistics Eq. (S21) is noisy even when P →∞ (Potters &
Bouchaud, 2020). In this case, we define Q matrix as expectation over different trials as in Eq.S39. Equivalently, this could
be obtained by averaging over small eigenvalue interval, which could be done by plugging small η = 1/

√
P to extract pole.

Note that this 1/
√
P is also obtained by analyzing fluctuation around most probable i-th biggest eigenvalue as in above.

This is essentially averaging over cauchy distribution centered in λ with width η. Thus for practial usage of Eq.S40, we
simply plug this most likely i-th eigenvalue (Bun et al., 2017), with η = 1/

√
P .

B. Relation to regression based similarity measures
Regression Score is not an representational similarity measure but commonly used for scoring model closeness to brain
(Schrimpf et al., 2018; Canatar et al., 2024). Here, we discuss how our theoretical analysis for the overlap matrix M also can
be applied to the regression setting. Regression score measures how well a model’s activations X predict neural responses
Y via a linear probe. Concretely, one performs ridge regression on a training subset (X1:p,Y1:p) of size p < P , obtaining:

X̂(p) = Y β̂(p). (S42)

β̂(p) = argmin
β

∥∥Y1:pβ − X1:p

∥∥2
F

+ αreg∥β∥2F , (S43)

Then regression score gives the neural prediction error,

Eg(p) =
∥X̂(p)−X∥2F
∥X∥2F

, (S44)

Note that this error can be decomposed to each error mode, where Eg(p) =
∑

i W̃i(p) where W̃i(p) :=
κ2

1−γ
Wi

(pλi+κ)2 .

The quantity Wi denotes the projection of target labels on the ith-model eigenvalue end hence can be expressed in terms
of eigencomponents, Wi =

∑
j

λj∑
k λk

Mij . However, calculating Wi assumes that there is access to population level
eigenvalues and poses a problem with limited data. In future work, we would like to test if our analyses help improve the
reliability of regression based similarity methods.

C. Theory of Power Law Spectrum
Here, we consider the case where population spectrum obeys a power law:

λ̃k =

(
k

P

)−s

, k = 1, . . . , P, s > 1 (S45)

where we normalized eigenvalue indices explicitly by P . For large P , the population density becomes:

ρ̃(λ̃) =
1

P

P∑
k=1

δ(λ̃− λ̃k) ∼
1

P

∫ P

1

δ(λ̃− λ̃k)dk, (S46)

We change the variables to µ := λ̃k for which we get:

dµ = −sP sk−s−1dk = − s
P
µ1+1/s dk. (S47)

In the limit P →∞, the density becomes

ρ̃(λ̃) =
1

s

∫ ∞

1

µ−1−1/s δ(λ̃− µ) dµ = γ λ̃−1−γ , λ̃ ∈ [1,∞], γ = s−1, (S48)

where we defined γ ∈ [0, 1] for notational convenience. Note that, in this definition, the expectation value of λ̃ diverges.
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Next, we solve the self-consistent equation for the Stieltjes transform Eq. (S11) which reads:

g(z) =

∫
ρ̃(λ̃)

z − λ̃(1− q + qzg(z))
dλ̃ =

κ

z

∫ ∞

1

γλ̃−1−γ

κ− λ̃
dλ̃, κ :=

z

z − λ̃(1− q + qzg(z))
(S49)

where we defined κ to simplify notation. This integral has an analytical solution expressed in terms of hypergeometric
functions (Bahri et al., 2024): ∫ ∞

1

λ̃−1−γ

κ− λ̃
dλ̃ = − 1

1 + γ
2F1(1, 1 + γ, 2 + γ, κ). (S50)

In order to solve the self-consistent equation analytically, we need to expand the 2F1 :∫ ∞

1

λ̃−1−γ

κ− λ̃
dλ̃ = −πκ−γ−1(cot(πγ)− i)− κ−1

∞∑
n=0

1

n− γ
κ−n (S51)

which can be truncated. Here, we keep all terms and arrange the self-consistent equation in the form

g′(z)

γ
= −πκ−γ(cot(πγ)− i)−

∞∑
n=0

1

n− γ
κ−n, g′(z) := zg(z) (S52)

where we defined g′(z) in terms of which κ becomes

κ =
z

z − λ̃(1 + q(g′(z)− 1))
. (S53)

We expand the r.h.s. of Eq. (S52) in terms of g′(z):

g′(z)

γ
=
1

γ
− π(cot(πγ)− i)

(
z

1− q

)−γ

−
∞∑

n=1

1

(n− γ)

(
z

1− q

)−n

− g′(z)
q

1− q

π(cot(πγ)− i)γ ( z

1− q

)−γ

+

∞∑
n=1

n

(n− γ)

(
z

1− q

)−n
+O(g′(z)2). (S54)

In order to obtain an analytical solution, we must assume g′(z)≫ 1 and keep only the linear term above. Then, the solution
to self-consistent equation becomes:

g(z) =z−1

1
γ − π(cot(πγ)− i)

(
z

1−q

)−γ

−
∑∞

n=1
1

(n−γ)

(
z

1−q

)−n

1
γ + q

1−q

(
π(cot(πγ)− i)γ

(
z

1−q

)−γ

+
∑∞

n=1
n

(n−γ)

(
z

1−q

)−n
) . (S55)

Next, we compute the sample eigenvalue density ρ(λ) and its Hilbert transform h(λ) by computing

lim
η→0+

g(λ− iη) = h(λ) + iπρ(λ). (S56)

This is an extremely tedious calculation which we perform using Mathematica1. Furthermore, we expand the results in q
and, assuming q ≪ 1, keep only the linear term. In this regime, the leading order behavior of ρ(λ) and h(λ) looks like:

ρ(λ) = γλ−1−γ

1− qγ

2πγ cot(πγ)λ−γ +

∞∑
n=1

n+ γ

n− γ
λ−n


+O(q2)

h(λ) = λ−1

(
1− λ−γπγ cot(πγ)− λ−1 γ

1− γ

)
+ πγ2q

(
πγλ−2γ−1

(
cot2(πγ)− 1

)
+ λ−γ−2 (γ + 1) cot(πγ)

1− γ

)
+O(q2, λ3). (S57)

1We will provide the Mathematica file.
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Here, we did not include higher order terms for h(λ) to avoid clutter.

Finally, we use the formula for estimating sample eigenvalues Eq. (S41) for which we obtain an explicit formula:

F(λ, q; γ) :=

∫ ∞

λ

ρ(λ)dλ = λ−γ

1− qγ2
λ−γπ cotπγ +

∞∑
n=1

1

n− γ
λ−n


 . (S58)

Here, semi-column separates sample related arguments that we have access empirically (λi, q) and the only population
related quantity γ. Hence, using the following relation (Ledoit & Wolf, 2016; Bun et al., 2017)

F(λi, q; γ) =
i

P
(S59)

we can either predict the shape of empirical eigenvalues given the decay rate of population spectrum (forward), or infer the
population decay rate given the empirical observations of eigenvalues (backward). Finally, we numerically test our theory
and obtain perfect agreement with empirical data in Fig.S1.
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Figure S1: For a population spectrum with λ̃k = k−1.1 (Left) and λ̃k = k−2.4 (Right), we show the spectra of the empirical
eigenvalues for different N . Black solid line indicates the true eigenvalue decay. The numbers in parentheses in the legend
indicate the inferred true decay rate from a population of N . In the regime s < 2 (γ > 0.5), the empirical eigenvalues are
always overestimated (Left), and in the regime s ≥ 2 (γ < 0.5) they are always underestimated (Right).

D. Experimental Details
Code for all experiments are provided with supplemental material.

D.1. Synthetic Data

For the synthetic experiments, we generate a population activation matrix in RP×Ñ whose Gram matrix follows a chosen
spectral distribution (e.g., a power-law). We then form the sample activation matrix by projecting onto a random subset (or
random linear subspace) of size N , yielding RP×N . This procedure enables us to directly control the underlying population
eigenvalues and eigenvectors, facilitating clean comparisons between sample-level and population-level similarity measures.

D.2. Brain Data

We employ a set of publicly available neural recordings from primate visual cortex (e.g., V2) and compare these against the
representations of various vision models, similarly to the methodology in (Canatar et al., 2024). In total, we evaluate 32
models spanning supervised, self-supervised, and adversarially trained architectures, including well-known families such as
ResNet, DenseNet, MobileNet, EfficientNet, and Vision Transformers. We extract intermediate-layer activations for each
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model on the same set of visual stimuli used in the neural recordings, applying the standard preprocessing routines (e.g.,
image resizing, ImageNet normalization).

Within each model, we select one or more representative layers (e.g., post-ReLU or transformer blocks). We then compute
Gram matrices from those activations, matching the dimensionality of the neural dataset. In scenarios where the dataset
contains more neurons than we wish to analyze, we project the data into a lower-dimensional subspace of size N . Finally,
we compute representational similarity (e.g., CKA or (SV)CCA) between these model-derived Gram matrices and the neural
Gram matrices, both in their raw (sample) forms and using our denoising procedure for backward inference.

E. Another denoising method: truncated inverse
We utilize a truncated Singular Value Decomposition (SVD) to obtain a regularized estimate of M̃:

M̃ = VΣ−1
truncU

⊤M, (S60)

where Q(x) = UΣV⊤ is the SVD of Q(x), and Σ−1
trunc is the truncated inverse of the singular values, defined as:

(
Σ−1

trunc

)
ii
=

{
1
σi

if i ≤ τ,
0 otherwise,

(S61)
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