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Abstract: This study investigates event-related desynchronization (ERD) phenomena during 

motor imagery and actual movement. Using sLORETA software, we analyzed the cortical 

current source density distributions in Mu and Beta frequency bands for 33 subjects during 

rest, motor imagery, and actual movement conditions. The results were normalized for 

analysis. Using sLORETA's statistical tools, paired t-tests were conducted to compare the 

normalized current source density results between rest and motor imagery, rest and actual 

movement, and motor imagery and actual movement conditions in both frequency bands. 

The findings revealed: In both Mu and Beta frequency bands, during motor imagery, 

significant ERD (P<0.01) was observed in the salience network, supplementary motor area, 

primary motor area, premotor cortex, primary somatosensory cortex, and parietofrontal 

mirror neuron system. During actual movement, significant ERD (P<0.05) was observed in the 

primary somatosensory cortex, primary motor area, and parietofrontal mirror neuron system 

in both frequency bands. Comparing motor imagery to actual movement, the current source 

density in the primary somatosensory cortex and parietofrontal mirror neuron system was 

higher during motor imagery, though this difference was not statistically significant (P>0.05). 

This paper analyzes the factors contributing to these statistical results and proposes 

preliminary solutions. 
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1 Introduction 

Motor imagery refers to the process where subjects imagine performing a specific action 
without generating any physical movement1.  Related studies have shown that the brain 
regions activated during motor imagery are similar to those activated during motor execution, 
both in terms of location and intensity. These regions include the primary somatosensory 
cortex, premotor cortex, supplementary motor area (SMA), primary motor area, callosal 
convolution, parietal cortex, thalamus, and cerebellum 2 . The main difference lies in the 
functional connectivity patterns between these regions during different tasks. 

When a specific region of the cerebral cortex receives movement commands or imagines 
movement, the area becomes activated, leading to increased metabolism and information 
processing. This results in a decrease in the amplitude of EEG signals in specific frequency 
bands, a physiological phenomenon known as event-related desynchronization (ERD). 
Conversely, when an activity does not significantly activate related cortical areas at a particular 
time, the EEG signals in specific frequency bands show increased amplitude, known as event-
related synchronization (ERS). Numerous studies have shown that during actual movement or 
motor imagery, the Mu (8-12Hz) and Beta (18-25Hz) rhythms in the sensorimotor cortex and 
parietal regions exhibit power attenuation (ERD)3. Typically, brain-computer interface (BCI) 
systems' research on motor imagery signals is based on the event-related desynchronization 

phenomenon of these rhythmic components. 
Current EEG technology can directly measure neural electrical signals from the scalp with 

high temporal resolution. However, due to the brain's volume conduction effect, scalp EEG 
signals have low spatial resolution, and signals from different electrodes are coupled, making 
it challenging to locate activated brain regions and determine their activation levels4. Source 
localization algorithms can reconstruct brain current density distribution by inversely 
estimating the location, direction, and intensity of neural signal sources based on scalp 
potential values, thereby analyzing the spatiotemporal characteristics of brain activity. 

To address the problems of low spatial resolution and strong coupling between adjacent 
channels in scalp EEG signals, this paper uses source analysis methods to study the differences 

in deep neural current source density distribution among thirty-three subjects during rest, 
motor imagery, and actual movement. This approach enables investigation of event-related 
desynchronization phenomena associated with motor imagery and actual movement. 

2 Experimental Data and Methods 

2.1 Experimental Data 

The experimental data was provided by the New York State Department of Health and 
State University of New York5. 



The experimental task involved 33 subjects (19 males, 14 females, mean age 39.6 years) 
completing "motor tasks" and "imagery tasks" according to visual cues. All subjects were 
seated in an adjustable armchair facing a computer display. Subjects were instructed to avoid 
blinking and large body movements during the experiment. 

The complete experimental process consisted of 6 rounds. In 3 rounds, subjects were 
required to imagine left- or right-hand movement according to visual cues. In the other 3 
rounds, subjects were required to open and close their left or right hand according to visual 
cues. Each round lasted two minutes, with a one-minute rest period between rounds. Each 
round included 15 tasks lasting 4 seconds each, during which a vertical line appeared on either 
the left or right edge of the computer display. Subjects were instructed to imagine movement 
of the corresponding hand or perform actual opening and closing of that hand. Between each 
task was a 4-second transition period where the display was blank, and subjects were required 
to relax their entire body without performing imagery or motor tasks. 

EEG signal acquisition used the international standard 10-10 system6, with the reference 
electrode placed on the right mastoid. The AD sampling rate was 128 Hz, with a bandpass 
filter of 1-60 Hz. 

2.2 Source Analysis Method 

Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) can utilize 
EEG data recorded from the scalp to infer the neural electrical activity sources within the 
cerebral cortex through inverse solution calculations. To obtain deep signal sources and 
analyze the changes in current density across relevant brain regions during rest, motor 
imagery, and actual movement, this paper employs the sLORETA source localization 
algorithm7 to inversely estimate the location, orientation, and intensity information of neural 
signal sources, thereby reconstructing the brain current density distribution. 

The three-dimensional linear decomposition current density calculated by the sLORETA 
algorithm is consistent with the Talairach probabilistic brain atlas model and displays three-
dimensional images through MNI152 coordinates at 5 mm resolution. This algorithm assumes 

that neural sources are distributed in the cortical layer, dividing it into 6239 dense cubic grid 
points, with each grid point containing a dipole fixed in position but with unknown dipole 
moment. The measured values at external field points are the superposition of the effects of 
equivalent dipoles at each grid point within the cortical neural source space. Since the 
positions of individual small dipoles are known, there exists a linear relationship between 
neural sources and scalp electrical field distribution. The lead field is used to relate the three 
dipole moments of any dipole at each time point to the electrical field values at each electrode: 

 Φ = KJ (1)	
Here, is a column vector composed of scalp potential values at E measurement 

electrodes; is a three-dimensional column vector composed of current densities at known grid 



points in the brain; at the i-th voxel, it contains three unknown dipole moments; K is the lead 
field matrix, which represents the relationship between scalp field values and internal neural 
sources. 

This equation is underdetermined and has no unique solution. A cost equation is 
introduced: 

Here，Φ = )Φ!, Φ"…Φ#!,
$is a 𝑁% column vector composed of scalp potential values 

at E measurement electrodes;	J = .𝐽!$ , 𝐽"$ , 𝐽&$ …𝐽#"
$ 0$ is 3𝑁'  column vector，composed of 

current densities at 𝑁' 	 known grid points in the brain ； At 	𝑙 − 𝑡ℎ	 voxel, 	J() =

.𝐽*+ , 𝐽*
, , 𝐽*-0		.𝐽* 	is	a	three − dimensional	column	vector	，l = 1,2… ,𝑁'0 ，  𝐽*$ contains 

three unknown dipole moments；K is the 𝑁% × 3𝑁' 	lead field matrix，which represents the 
relationship between scalp field values and internal neural sources.。 

This equation is underdetermined and has no unique solution. A cost equation is 
introduced: 

 F = ‖Φ − 𝐾𝐽‖" + 𝛼‖𝐽‖" (2) 
where 𝛼 ≥ 0 is the regularization parameter。When solving the EEG inverse problem, 

with K，Φ and 𝛼 known，minimizing the cost equation yields the solution for J: 

	 	 (3)	

Here，H ∈ R.#×.#, is a symmetric and idempotent matrix;；I ∈ R.#×.#  is an identity 
matrix；I ∈ R.#×!	is	an	N − dimensional	column	vector	composed	of	1s。For any matrix M，
M0denotes the Moore-Penrose generalized inverse。H is the average reference operator。
Φrepresents the result of average reference transformation of the measured scalp potential 
values, and K represents the lead field matrix after average reference transformation. 

J1  is the estimated value of current density。It still needs to be standardized using 
variance. The actual variance of brain current source density：S2 ∈ R&.$×&.$  equals the 

identity matrix, i.e.: 

 S2 = I，I ∈ R&.$×&.$  (4)	

Part of the variance in scalp potential comes from measurement noise: 

 S345678 = αH (5)	
Since measurement noise and neuronal activity are independent, the variance of scalp 

potential S3 ∈ R.#×.# 	is: 

 S3 = KS2K) + S345678 = KK) + S345678 = 	KK) + H (6)	
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The variance of the estimated current density J1 is derived as: 
 S21 = TS3T) = T(KK) + H)T) = K)[KK) + H]0K (7)	

Finally, the standardized current density is obtained: 

 J′() `aS21b((c
9!
J′( (8)	

J( ∈ R&×! is the estimated current density of the i-th voxel obtained from equation (3)；

aS21b(( ∈ R
&×& is the l − th diagonal block matrix in equation (7). For a time series of duration 

t = 1,…N)，equation (8) can be generalized as: 

 J′((∀<)) `aS21b((c
9!
J′((∀<) (9)	

To solve for the standardized current source density distribution of an EEG segment at a 
specific frequency ω, first construct the cross-spectral matrix as shown in equation (10) 8. 

Where [Φ>]6 ∈ C.#×!，i = 1,…N represents: the discrete Fourier transform at frequency 

ω of the i-th EEG Epoch. 

	 	 (10)	

For example, assuming each EEG Epoch contains 256 discrete time points with a sampling 
rate of 128Hz, this means each EEG Epoch is 2 seconds long. The superscript '*' represents the 

conjugate transpose matrix. Equation (10) is equivalent to: 

	 	 	 (11)	

A21%and A?%respectively represent the cross-spectral matrices of current density and 

scalp potential difference. They are both Hermitian matrices. At frequency ω , we are 

concerned with diag(A2&%) = diag(TA?%T
)). The 'diag' operator acts on a Hermitian matrix, 

extracting its diagonal elements to construct a real diagonal matrix. Then, using the same 
principles as equations (3)-(8), we can solve for the standardized current density value of the 
i-th voxel at frequency ω as shown in equation (12), where J′(>) ∈ C&.$×.'. 
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This study used sLORETA software to analyze the brain current source density distribution 
in the Mu (8-12Hz) and Beta (18-25Hz) frequency bands during rest, motor imagery, and 
motor execution in 33 subjects. All source localization results were normalized 9. 

2.3 Statistical Analysis 

Using the statistical tools in sLORETA software, paired t-tests were performed on the 
normalized current source density results between rest and motor imagery, rest and motor 
execution, and motor imagery and motor execution under two frequency bands, yielding 
statistical parameter values for brain current density distribution. The logarithm of the F-ratio 
mean was used to evaluate the degree of difference in current density. The null hypothesis 

was rejected when P<0.05, indicating significant differences between the two samples. 
Statistical P-values for multiple comparisons were corrected using the SnPM program10. This 
was used to determine: whether there were significant differences between brain regions 
activated during motor imagery versus rest; whether there were significant differences 
between brain regions activated during actual movement versus rest; and whether there were 
significant differences between brain regions activated during motor imagery versus actual 
movement. 

3 Statistical Results 

Subjects showed significant differences in brain current source density in both Mu and 
Beta frequency bands during rest versus motor imagery, and rest versus motor execution, as 
shown in Table 1. 

Figure 1 shows the statistical probability maps (including 3D and sectional views) 
reconstructed from corresponding log of F-ratios values with P<0.01, which more intuitively 
displays the differences in brain current source density distribution between rest and motor 
imagery in both Mu and Beta frequency bands. Figure 2 shows the statistical probability maps 
(including 3D and sectional views) reconstructed from corresponding log of F-ratios values 
with P<0.05, which more intuitively displays the differences in brain current source density 
distribution between rest and motor imagery in both Mu and Beta frequency bands. The red 
regions indicate positive log of F-ratios values, meaning that the current density values in 
these brain regions were significantly higher during rest compared to during motor imagery. 

Figure 3 shows the 3D and sectional views of brain regions with differences in current 
source density between motor imagery and actual movement in both Mu and Beta frequency 

bands. The red regions indicate positive log of F-ratios values, meaning that the current 
density values in these brain regions were higher during motor imagery compared to during 
actual movement; the blue regions indicate negative log of F-ratios values, meaning that the 



current density values in these brain regions were higher during actual movement compared 
to during motor imagery. 

Table 1 Statistical Comparison of Current Source Density in Mu and Beta Frequency Bands 
during Rest versus Motor Imagery, and Rest versus Actual Movement 

Statistical 
Comparison of 
Current Source 
Density in Mu 

Frequency Band 
between Rest and 
Motor Imagery 

(P<0.01) 

X-
MNI 

Y-
MNI 

Z-
MNI 

Brodmann 
Area 

Structure 
Log of F-

ratios 

-5 -35 0 32 
Anterior 

Cingulate 
Gyrus 

0.331088 

10 40 -5 10 
Medial 
Frontal 
Gyrus 

0.299845 

-35 -30 40 2 
Inferior 
Parietal 
Gyrus 

0.283085 

-35 -25 40 3 
Postcentral 

Gyrus 
0.281699 

-35 -35 40 40 
Inferior 
Parietal 
Lobule 

0.271396 

30 -20 45 4 
Precentral 

Gyrus 
0.247778 

-35 10 35 6 
Precentral 

Gyrus 0.234849 

-15 -50 40 7 Precuneus 0.22448 

Statistical 
Comparison of 
Current Source 
Density in Beta 
Frequency Band 
between Rest and 
Motor Imagery 

(P<0.01) 

-30 -20 45 4 
Precentral 

Gyrus 
0.246472 

-30 -25 45 3 
Postcentral 

gyrus 
0.246067 

-35 -40 45 2 
Postcentral 

gyrus 
0.222478 

-35 -15 45 6 
Precentral 

Gyrus 
0.21877 

-30 -10 45 6 
Middle 
frontal 
gyrus 

0.209485 

Statistical 
Comparison of 
Current Source 
Density in Mu 

Frequency Band 

-35 -30 40 2 Sub gyral 0.439453 

-35 -25 40 3 
Postcentral 

Gyrus 
0.423481 

-35 -35 40 40 
Inferior 
Parietal 

0.417926 



between Rest and 
Actual Movement 

(P<0.05) 

Lobule 

Statistical 
Comparison of 
Current Source 
Density in Beta 
Frequency Band 
between Rest and 
Actual Movement 

(P<0.05) 

-30 -25 45 3 
Postcentral 

Gyrus 
0.413471 

-30 -20 45 4 
Precentral 

Gyrus 
0.401275 

 
Figure 1 Three-dimensional and sectional views of brain regions showing statistically 

significant differences in current source density between rest and motor imagery in Mu and 
Beta frequency bands 

 
Figure 2 Three-dimensional and sectional views of brain regions showing statistically 



significant differences in current source density between rest and actual movement in Mu 
and Beta frequency bands 

 

Figure 3 Three-dimensional and sectional views of brain regions showing differences in 
current source density between motor imagery and actual movement in Mu and Beta 

frequency bands 

4 Discussion 

In the Mu frequency band, there were significant differences in brain current source 
density distribution between rest and motor imagery (P<0.01), as shown in Table 1. The brain 
current source density in Brodmann areas 2, 3, 4, 6, 7, 10, 32, and 40 was significantly lower 
during motor imagery compared to rest, indicating significant desynchronization in these 

regions. Brodmann area 32 is part of the salience network, which helps people detect salient 
external events and facilitates attention, working memory acquisition, and motor preparation 
11. The desynchronization in this region indicates that the salience network was activated 
during motor imagery. The precuneus is closely related to attention control, and the 
desynchronization in Brodmann area 7 indicates significant activation of the somatosensory 
cortex. The precentral and postcentral gyri are closely related to motor control, and the 
desynchronization in Brodmann areas 2, 3, 4, and 6 indicates significant activation of the 
primary and secondary sensorimotor cortex, primary motor area, premotor area, and 
supplementary motor area. Motor imagery involves less visual-motor transformation 

processing, so the desynchronization in Brodmann area 40 may reflect higher-level cognitive 
and motor functions12. Additionally, this region is part of the parietal-frontal neuron system13, 
indicating that the parietal-frontal neuron system was activated during motor imagery. 

In the Beta frequency band, there were significant differences in brain current source 
density distribution between rest and motor imagery (P<0.01), as shown in Table 1. The brain 



current source density in Brodmann areas 2, 3, 4, and 6 was significantly lower during motor 
imagery compared to rest, indicating significant desynchronization in these regions. This 
suggests that during motor imagery, the primary and secondary sensorimotor cortex, 
supplementary motor area, primary motor area, and premotor area were significantly 
activated. 

In the Mu frequency band, there were significant differences in brain current source 
density distribution between rest and motor execution (P<0.05), as shown in Table 1. The 
brain current source density in Brodmann areas 2, 3, and 40 was significantly lower during 
actual movement compared to rest, indicating significant desynchronization in these regions. 
This suggests that during actual movement, the primary and secondary sensorimotor cortex 
and the parietal-frontal mirror neuron system were significantly activated. 

In the Beta frequency band, there were significant differences in brain current source 
density distribution between rest and motor execution (P<0.05), as shown in Table 1. The 
brain current source density in Brodmann areas 3 and 4 was significantly lower during actual 
movement compared to rest, indicating significant desynchronization in these regions. This 
suggests that during actual movement, the primary and secondary sensorimotor cortex and 
primary motor area were significantly activated. 

In both Mu and Beta frequency bands, there were differences in brain current source 
density distribution between motor imagery and motor execution, but these differences were 
not significant, as shown in Figure 3 (P>0.05). However, in both Mu and Beta frequency bands, 
the current source density values were higher in Brodmann areas 2, 3, 7, and 40 during motor 
imagery. This indicates that event-related desynchronization of Mu rhythm and Beta rhythm 
in these brain regions was more pronounced during actual movement. Previous research has 
shown that the activation level during motor execution is significantly higher than during 
motor imagery14. 

The reasons for non-significant statistical results may be as follows: 
1.The solution space of sLORETA is based on a realistic head model derived from MRI 

images of 152 subjects at the Montreal Neurological Institute. In reality, each subject's actual 
head structure has subtle differences from this model, so the brain current source density 
distribution calculated by the sLORETA algorithm may contain errors. These errors could be 
reduced by using registration with each subject's individual MRI images. 

2.The sLORETA algorithm divides the cerebral cortex into 6239 voxels, assuming each 
voxel represents one neuron. In reality, the number of neurons in the brain is greater than 
6239, so the calculated brain current source density distribution has low resolution, which 
may affect the results of statistical tests. 

3.The significance testing in sLORETA software is based on voxel-by-voxel statistical 
testing. According to cognitive psychology, activated brain regions consist of multiple clusters 



of voxels with similar activity levels, and differences between individual voxels may cancel 
each other out. 

Preliminary improvement methods could include conducting statistical tests on a cluster-
by-cluster basis, a method commonly used in fMRI result statistical testing 15; or representing 
each Brodmann area with a central voxel and then conducting statistical tests between these 
central voxels. 
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