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Abstract A simple kinematic growth model for muscular arteries is presented which
allows the incorporation of residual stresses such that a homeostatic in-vivo stress state
under physiological loading is obtained. To this end, new evolution equations for growth
are proposed, which avoid issues with instability of final growth states known from other
kinematric growth models. These evolution equations are connected to a new set of growth
driving forces. By introducing a formulation using the principle Cauchy stresses, reason-
able in vivo stress distributions can be obtained while ensuring realistic geometries of
arteries after growth. To incorporate realistic Cauchy stresses for muscular arteries under
varying loading conditions, which appear in vivo, e.g., due to physical activity, the growth
model is combined with a newly proposed stretch-dependent model for smooth muscle
activation. To account for the changes of geometry and mechanical behavior during the
growth process, an optimization procedure is described which leads to a more accurate
representation of an arterial ring and its mechanical behavior after the growth-related
homogenization of the stresses is reached. Based thereon, parameters are adjusted to ex-
perimental data of a healthy middle cerebral artery of a rat showing that the proposed
model accurately describes real material behavior. The successful combination of growth
and active response indicates that the new growth model can be used without problems
for modeling active tissues under various conditions.

Keywords: muscular arteries, multiplicative stress-driven growth, residual stresses, smooth
muscle, active response

1. Introduction

Over the last few decades, computational techniques and models to simulate the mechanical
behavior of arterial walls have been improved. However, further developments are needed
to put accurate mechanical simulations of diseased arteries on the clinical map. Since me-
chanical stresses are believed to significantly contribute to the nucleation and progression of
cardiovascular diseases, their accurate description throughout the arterial wall is essential.
This does not only require a reliable model for the passive and active material response,
but also for the fibrous microstructure and growth-related processes dominating the residual
stress state. Growth processes are important for the preservation of a healthy mechanical
state of the tissue which is understood as mechanical homeostasis [15]. As a consequence, the
tissue of the arterial wall maintains a stress distribution which is to a large extent homoge-
neous and can only be realized by residual stress states, i.e. stresses which are still present in
the tissue even after unloading. Without such residual stresses, the circumferential stresses,
especially close to the lumen, would reach values which are by far not bearable by the cells
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in the tissue. There, however, the stress state is particularly important as it strongly in-
fluences the progression of atherosclerosis. Especially in case of degenerative alterations of
the endothelium, the stresses in the tissue may influence relevant time-averaged wall shear
stresses (TAWSS) [21, 55], which are assumed to severly influence atherosclerosis. Increased
values of TAWSS resulting from damage-induced stress-softening [2, 44] were also found to
potentially contribute to a self-amplification of aneurysms [54]. Therefore, not including re-
alistic residual stresses in numerical simulations implies completely unphysical results, which
emphasizes the great importance of residual stresses. Also changes of the microstructure
in terms of directions of collagen and muscle fibers are considered as remodeling processes,
furthermore allowing for almost homogeneous stress states in healthy arteries under varying
loading conditions. For the simulations in this publication, focus is set on the simultaneous
application of the growth process and the active contraction of smooth muscle cells (SMCs)
in muscular arteries to describe a reliable mechanical state of the arterial wall. The contrac-
tion mechanism of SMCs was described as stretch-dependent in a previous publication [52]
which is based on the activation of membrane receptors during mechanical loading of the
cells. Although remodeling processes of the microstructure in terms of fiber reorientation
will not be taken into account, realistic fiber directions of collagen and SMCs will be consid-
ered based on experimental measurements from the literature. The influence of variations of
the microstructure on the growth process will be discussed in Section 3.4.

Growth and remodeling processes of SMCs and the extracellular matrix (ECM), including
elastin and collagen, are mainly governed by long-term changes in the mechanical loading
as e.g. happening in humans when growing up. But they can also be triggered by various
circumstances such as damage or inflammation of the tissue caused by infectious pathogens,
hypertension or intake of antihypertensive medication. Depending on the cause of the growth
and remodeling process, the proliferation of the tissue cells and protein synthesis are acti-
vated differently. In a healthy state of the artery, vascular SMCs actively synthesize, secrete,
modulate and maintain the ECM to provide elasticity to the blood vessel. The maintenance
of the tissue is supported by fibroblasts which mainly exist in the adventitia. When dam-
age occurs to the tissue, various cell types can transition into myofibroblasts which generate
collagen-rich scar tissue to repair the wound [3]. Under the influence of hypertension, con-
tractile SMCs can change their phenotype into fibroblast-like and mesenchymal-like SMCs
in which these cells lose their ability to actively contract [56]. Instead, fibroblast-like SMCs
synthesize more proteins for the ECM, while mesenchymal-like SMCs are characterized by
the ability to proliferate and self-renew which increases the amount of SMCs in the tissue.
In a state of inflammation of the tissue, contractile SMCs can change their phenotype to
macrophage-like SMCs which play a central role in healing and recruiting other immune cells
to initiate an appropriate immune response. Especially in muscular arteries where the con-
centration of nitric oxide is lower than in large, elastic arteries, macrophage-like SMCs can
lead to the formation of foam cells in atherosclerotic plaques [9]. The process of growth and
remodeling of the tissue of the arterial wall is complex and also strongly dependent on the
size and type of artery. Large arteries, such as the aorta, contain more elastin and stiffen with
age due to the production of collagen [31]. In contrast, the ratio of elastin to collagen might
possibly even increase in aging muscular arteries which could be connected to the higher den-
sity of SMCs and their ability to synthesize elastin [20]. The complexity of these processes is
obviously high and should be premeditated when making simplifying assumptions to obtain
a reasonable tradeoff between model accuracy, simulation efficiency, and model complexity
with regard to the availability of data for the parameters. Especially if the main interest is
only in obtaining a reasonably grown state of the artery as it is important for incorporating
a reasonable residual stress state, rather than an accurate description of the time-evolution
of biological processes, complicated processes as described above may not be included in the
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model and focus should be put on mechanical and/or chemo-mechanical, phenomenological
descriptions.
A general overview of growth and remodeling models was given in several papers over the
last decade [1, 12, 14, 43, 32, 39]. In principle, two different growth theories have been estab-
lished as widely accepted: the constrained mixture model and the kinematic growth theory.
The constrained mixture model was proposed by Humphrey and Rayagopal in 2002 [26]
which assumes that each volume element contains a mixture of several structurally signifi-
cant constituents where each constituent was deposited within the body at a different time
and possesses an individual stress-free configuration. Many authors focused on this growth
theory recently, since this approach is suitable to capture the details of the biological growth
processes [36, 16, 40, 53]. However, complex models in general require comprehensive and
complex data for a meaningful calibration. In addition to that, tracking the configurations of
all constituents increases the computational cost and the effort considerably even if massive
parallel solution strategies as e.g. proposed in [5] are considered, which may limit practical
applications.

To reduce computational cost, different concepts have been proposed [16, 13, 10]. Specifically,
homogenized constrained mixtured models [10, 13] form a bridge to the second major branch
of growth and remodeling models, the so-called kinematic growth models suggested by Ro-
driguez et al. [42] in 1994. In the kinematic growth approach, the multiplicative split of the
deformation gradient into an elastic and a growth and remodeling part is not applied to dif-
ferent constituents but to the entire tissue at a material point at once. This theory has been
applied and extended by many authors, see e.g. [27, 38, 22, 34, 19, 19, 49, 37, 58, 35]. The
research on kinematic growth has especially focused on the correct definition of the driving
forces and the growth directions. It is still not guaranteed whether stretches or stresses of the
tissue have to be considered as the mechanical quantity which triggers tissue growth. While
stretch has been observed to play an important role for the activation of growth factors such
as TGF-β [23], using stress-related quantities as driving forces [33, 50, 11] is motivated by the
fact that it remains unclear how and to which extent cells can sense stretch on the microscale.
In concern of the growth direction, an anisotropic growth process can be assumed where the
intensity depends on the type of artery and the corresponding homeostatic stress state. In
this context, based on the general formulation given in [58], Anna Zahn focused her disserta-
tion [57] on the identification of the mathematically optimal kinematic growth mechanism by
investigating various combinations of growth directions which depended on the eigenvectors
of the principal stresses of the elastic part of the Mandel stress. The objective function in
this optimization process was defined to ensure minimal volumetric change of the tissue and
a homogeneous stress distribution. As a result, growth into the direction of the second and
third principal stress was identified as advantageous, however, growth only in the direction
of the third principle eigenstress was found insufficient. When considering a hollow cylinder,
which is often considered as basic geometry of a healthy artery in numerical simulations, the
directions of the first, second, and third principle stress coincide with the circumferential,
axial, and radial direction, respectively. In contrast to [58], the growth model proposed here
relies on the Cauchy stress as foundation for the driving forces to more appropriately allow
for a model in line with the homeostasis hypothesis. Initially, we adopt the results presented
in [57] to apply growth in the directions of the second and third principal stress of a material
point which is explained in section 2. By applying a novel optimization procedure, we are
able to automatically address three major aspects of the mechanical simulation to describe
the structural problem of an artery: (i) an accurate identification of material parameters to fit
experimental data for a middle cerebral artery of a rat [30], (ii) an accurate identification of
growth parameters to achieve homeostatic stress distributions, and (iii) a resulting geometry
of the artery after growth which matches experimental measurements [18, 7]. The objective
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function is designed to find the minimal volumetric change by the growth process while a
homogeneous stress distribution is applied during the loading of an artery at a static pressure
level. In addition, the reference geometry of the arterial ring is not pre-defined but part of the
optimization. After finishing the growth process, the loaded geometry of the arterial ring is
evaluated by the objective function to match the inner and outer radii measured by [18]. The
optimization procedure is explained in detail in section 3 where results for a first example,
which includes only the passive material response, are discussed. In Section 3.4, we show that
the combination of the proposed growth model with the optimization procedure is applicable
to varying directions of collagen fibers and loading scenarios in axial direction. To limit the
computational time of the optimization processes, the model for SMCs is not included in the
analysis of the growth model in Section 3.4 yet. Based on these simulation results, small
changes to the growth model are discussed and applied in Section 4 to enable more appro-
priate simulations where growth and active SMC response are activated simultaneously. The
optimization procedure for this simulation protocol includes a fitting of the axial prestretch
of the arterial wall. In consequence, the final simulation results show a reasonable mechanical
description of a healthy middle cerebral of a rat.

2. Mechanical Model of the Arterial Wall

In this Section, the new kinematic growth model is introduced which bases on the simple
idea that there exists a specific value of homeostatic stress level in axial and circumferential
direction. Accordingly, these values constitute the limit scenarios in the driving forces of
the growth evolution. Based on the concept of kinematic growth theory, the deformation
gradient F = FeFg is multiplicatively split into an elastic part Fe and a growth part Fg.
Hence, growth described by Fg increases the reference volume at the material point by a factor
of Jg = det (Fg). By mapping vector elements from the reference configuration using Fg, an
intermediate configuration is obtained, which represents the fictitious state that would be
obtained if growth could evolve without any resistance. Due to mechanical loading and
kinematic constraints resulting from e.g. Neumann and Dirichlet boundary conditions in a
boundary value problem, growth is restricted and elastic strains occur inducing mechanical
stresses. Therefore, the strain-energy density function Ψ(Ce) = Ψ(C,Fg) is defined to depend
on the elastic part of the right Cauchy-Green tensor Ce = FT

e Fe. Note that in this section we
focus on describing the details of the model for growth and the passive response, although the
combination with the smooth muscle model from [52] is analyzed in Section 4. Recapitulating
the smooth muscle model here would make the paper unnecessarily long and thus, for details
we refer the reader to the original paper.

2.1. Anisotropic, Kinematic Growth Model based on Cauchy Stresses

Similar to [58], we consider growth to happen mainly in directions defined by the eigenvectors
of the stress tensor. However, here we focus on the eigenvectors of the Cauchy stress tensor σ
instead of the Mandel stresses as they are given in the real physical loading state and may
thus more appropriately define suitable comparative measures for homeostatic stresses. In
principle, following [58], we could thus formulate an anisotropic growth model which considers
a different growth intensity for different directions and/or planes described by the three stress
eigenvectors. Therefore, the growth tensor itself is already defined as multiplicative split into
three parts

Fg = F (3)
g F (2)

g F (1)
g , (1)

where F
(1)
g , F

(2)
g and F

(3)
g define growth in the direction of the first, second, and third prin-

cipal direction of the Cauchy stress tensor, which are as usual ordered by their values from
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the maximum to the minimum. Note that, based on the formulation of growth in principal

directions of the Cauchy stress, all parts F
(a)
g with a = 1, 2, 3 are symmetric and equally diag-

onalizable, and hence, the tensor multiplication in Eq. (1) is commutative. In the dissertation
of Zahn [57], various combinations of growth directions and driving forces were investigated
including isotropic growth and growth in the directions of and perpendicular to the eigenvec-
tors. It was found that growth in the directions of the second and third principal stress is a
numerically and biologically advantageous combination as stresses could be homogenized best
with a minimum effort of growth and minimum sensitivity to axial loading. The advantages
of this growth mechanism can conceptually be explained by considering the dominant load
scenario of an arterial wall. In an idealized arterial geometry as a hollow cylinder, which
is also used in the simulations shown later, the directions of the second and third principal
stresses are equal to the axial and radial directions, respectively. The arterial wall is loaded
with an intravascular pressure mainly leading to the highest principle stress to appear in
circumferential direction. In addition, it is known that arteries can shorten substantially in
axial direction after being cut out of the body, cf. [25]. This implies that arteries stand under
a prestretch in axial direction which influences the axial stress value. In addition to that
and depending on the kind of artery, arteries can be stretched in axial direction resulting
from kinematic constraints of the surrounding, e.g. carotid arteries when moving the head
sideways. This mainly corresponds to a displacement-driven process leading to stresses in
axial direction whereas the intravascular pressure represents a force-driven process resulting
in circumferential stresses. From a mechanical point of view, a displacement-controlled stress
value can be reduced by growth into the stretched direction which can be identified as the
axial direction. In contrast, a force-controlled stress value in circumferential direction can
be reduced by growth in perpendicular direction, i.e. in axial and radial direction. This also
explains that growth purely in radial direction or isotropic growth, as often considered in the
literature, are not sufficient to suitably reduce stress peaks and homogenize the stress distri-
bution. Therefore, here we focus on growth in the directions of principle stresses described
by

F (a)
g = I +

(
ϑ(a) − 1

)
n(a) ⊗ n(a) , (2)

where ϑ(a) is the growth factor and n(a) is the eigenvector of the Cauchy stress tensor σ
with a = 1, 2, 3. By definition, n(a) are perpendicular to each other which ensures the
commutativity of the parts of the growth tensor and its symmetry. The growth factors ϑ(a)

are defined by a set of evolution equations which depend on the Cauchy stress due to the
driving force ϕ(a)(σ). Based on the results from [57] and the reasoning described above,
growth in the direction of the first principal stress is not considered for the investigation of
the growth model and hence, the evolution equation for ϑ(1) is assumed to be ϑ̇(1) = 0. The
evolution equations for the second and third principal direction are defined as

ϑ̇(a) = κ
(a)
ϑ

(
ϕ(a) − ϕ(a)

con

)
with a = 2, 3 . (3)

Here, ϕ
(a)
con defines the specific value which the driving force ϕ(a) converges to during the

growth process, and κ
(a)
ϑ defines a growth velocity factor. Since the driving force will be

formulated in terms of the Cauchy stresses, these evolution equations will already try to
accomodate a certain homeostatic stress state given by ϕ(2)con and ϕ(3)con. However, the
first principal stress is not yet directly controlled and thus, a suitable definition of the driving

forces is key. As explained above, the growth induced by F
(2)
g aims to adjust the displacement-

influenced part of the stresses in axial direction. Therefore, we define the axial Cauchy stresses
as the driving force for the growth process in this direction. Since growth in circumferential
direction is not considered for the reasons mentioned above, only the growth process described

by F
(3)
g is left to reduce the first principal stress value (i.e. circumferential stresses in the
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idealized geometry). However, to allow an adaption of the circumferential stress state, the
circumferential stresses should be included in the driving force. Therefore, the driving force

for the growth tensor F
(3)
g is defined as the isotropic value of the Cauchy stress as suggested

in [57]. Consequently, this leads to defining the driving forces ϕ(2)(σ) and ϕ(3)(σ) as

ϕ(2)(σ) = σ :
(
n(2) ⊗ n(2)

)
and ϕ(3)(σ) = tr(σ) , (4)

where n(2) is the second eigenvector and tr(Σ) the trace of the Cauchy stress tensor. The
driving force for growth in the direction of the third principal stress is chosen this way in this
section because it is rather established in the literature to consider growth in radial direction
depending on the first invariant of the stress tensor.

Remark: Note that although the reasoning behind this set of evolution equations and driving
forces appears well suited for a homeostatic kinematic growth model, it may be questioned
from a biological perspective. Already the media of an artery is made of many concentric
layers with helically arranged fibers crosswise changing their fiber angle from layer to layer.
Therefore, the microstructural composition in radial direction differs from the circumferential
and axial direction. Furthermore, in contrast to the circumferential-axial plane, the principal
stress value in radial direction will always be negative for equlibrium reasons in arteries
under intravascular pressure. It is thus only natural to assume a specific growth mechanism
in this radial direction. For the axial and circumferential directions, however, the microscopic
composition is actually quite similar in these two directions and so is the character of the
principal stress values. Hence, it is not clear why the growth mechanism in each of these two
directions should be different. In addition to that, growth in radial direction should probably
not depend on the stress in radial direction as it has a negative value and is dominated
by equilibrium, not by the potentially artery-specific composition and properties. As the
particular growth model introduced here did also not perform optimally when combining
growth with the active response from SMCs, an alternative formulation will be introduced
and analyzed in Section 4.

2.2. Passive Material Response

For the description of the material behavior we consider the model proposed in [52]. Therein,
an additive decomposition of the strain energy density function Ψ into an isotropic part Ψisot

for the elastin-rich matrix, two anisotropic parts Ψ
(1)
ti and Ψ

(2)
ti for the embedded collagen

fibers and two additional anisotropic parts for the active SMC response. For now, we exclude
the active material response to reduce the computing time when first analyzing the growth
model itself in Sections 3 and 3.4. The inclusion of the active model and its implications on
the growth model are described and investigated in Section 4. The two fiber directions are
described with the concept of structural tensors, cf. e.g. [8], where the inner structure of the
fiber-reinforced material is described by so-called structural tensors M (f) = a(f) ⊗ a(f) with
the fiber direction a(f) arranged helically around the vessel wall. In addition, a gradient of the
fiber angle along the radial direction will be considered in the structural problems to obtain
a qualitatively more realistic distribution of fiber orientation. The additive decomposition
of Ψ is written as

Ψ = Ψp,isot +

2∑
f=1

Ψ
(f)
p, ti . (5)

For a more specific definition of the strain-energy density, a coordinate-invariant representa-
tion in terms of the principal and mixed invariants

I1 = tr(Ce) , I3 = det(Ce) , I
(f)
4 = CeM

(f) , I
(f)
5 = C2

e : M
(f) (6)
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is considered. To a priori ensure material stability in the sense that only real wave speeds
occur in the material and no artificial, uncontrolled singular surface nucleate, we consider a
polyconvex strain energy density. Thereby, we also guarantee weak sequential lower semincon-
tinuity, a mathematical property essentially needed for appropriate solutions of discretized
forms of the equilibrium equations. For the definition of polyconvexity and its implications see
[4]. Since the fivth invariant is not polyconvex, the alternative invariant for the transversely
isotropic part introduced in [46] given as

K
(f)
3 = I1I

(f)
4 − I

(f)
5 (7)

is considered. For the isotropic part of the energy, we use the isochoric Neo-Hooke model
where an additional volumetric penalty function is applied to ensure a nearly incompressible
behavior of the arterial tissue. Deviations from the incompressible state are punished by the
term α2(I

α3
3 + I−α3

3 − 2). The isotropic and the transversely isotropic parts of the passive
material model are then given by

Ψp, isot = α1

(
I1I

−1/3
3 − 3

)
+ α2

(
Iα3
3 + I−α3

3 − 2
)

and Ψ
(f)
p, ti = α4

〈
K

(f)
3 − 2

〉α5

, (8)

where ⟨•⟩ = 1
2 (•+ | • |) denotes the Macaulay brackets. The corresponding material param-

eters are restricted to α1 > 0, α2 > 0, α3 > 1, α4 > 0 and α5 > 2.
Based on the strain-energy density function, we can derive the elastic part of the second
Piola-Kirchhoff stress Se from the dissipation inequality which arises from the elastic part of
the deformation gradient. In this context, the second Piola-Kirchhoff stress can be computed
from the pull back operation by

S = F−1
g SeF

−T
g with Se = 2

∂Ψ

∂Ce
. (9)

2.3. Implementation

For the analysis of structural boundary value problems, we consider the Finite-Element
Method, the Newton-Raphson scheme together with discrete time stepping to solve the non-
linear equations of the balance of linear momentum. For the linearized system of equations
to be solved in each time step, the total derivative of S with respect to C is required for the
determination of the tangent modulus C = 2∂CS which we obtain from

C = 2
∂S

∂C︸ ︷︷ ︸
Ce

+2
3∑

a=2

∂S

∂ϑ(a)
⊗ ∂ϑ(a)

∂C︸ ︷︷ ︸
Cg

, (10)

where Ce constitutes the elastic part and Cg is the growth part. The elastic part of the
tangent modulus can be build in the intermediate configuration as Ce

i and pulled back into
the reference configuration by

Ce =
(
F−1
g ⊠ F−1

g

)
: Ce

i :
(
F−T
g ⊠ F−T

g

)
with Ce

i := 2
∂Se

Ce
. (11)

The growth part of the tangent modulus Cg has to be considered for C only if the solution
scheme for the evolution equations of the growth factors in Eq. (3) depends on the current
values of ϑ̇(a) as it is the case when using implicit integration schemes. However, in this
paper we are not interested in the realistic description of the time-process of growth, but
rather on the resulting, converged grown state to obtain a suitable automatized procedure to
include residual stresses which allow for a realistic in vivo stress distribution in line with the
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homeostasis hypothesis. Therefore, a high accuracy in integrating the evolution equations
is not required and thus, an explicit forward Euler is used here. Furthermore, preliminary
studies have shown that the time step size required for a converging Newton-Raphson scheme
in structural finite element problems is anyhow smaller than the time step size needed for
an accurate time integration using the forward Euler. Since the forward Euler requires
significantly less computational effort compared to implicit schemes, potential benefits of the
latter vanish. Therefore, we have the derivative ∂ϑ(a)/∂C = 0 and thus, the tangent moduli
reduce to C = Ce. Therefore, the analytic representation of the elastic moduli has been
implemented in our code. However, connecting the growth model with the active SMC model
requires a more sophisticated treatment as the muscle activation happens at higher rates and
requires more accurate time integration of the associated evolution equations. Therefore,
a backward Euler is used therein to not be forced to unnecessarily reduce the time step
size, requiring the full tangent moduli from the muscle model. They have been implemented
making use of complex-step derivative approximations [6], however, further reductions in
implementation effort could be realized by taking into account second-order derivatives using
hyper-dual numbers [51].

3. Optimization of Parameters

To analyze the performance of the proposed model in characteristic simulations of idealized
arteries, suitable parameter values have to be identified. To this end, the parameters can
be adjusted to experiments, e.g. performed on whole artery segments. Then, finite element
simulations of the arteries with known undeformed (reference) geometries can be performed
repeatedly while updating the parameter values by an automated optimization procedure
until the difference of computed quantities of interest and the experimental counterparts be-
come as small as possible. However, in case of growth, the reference geometry may change
significantly during the growth process, which is in turn needed to include realistic (home-
ostatic) stress distributions. Therefore, in this section we propose an adopted optimization
procedure to also account for minimizing the mismatch between given reference geometry and
the one resulting from growth. In Subsection 3.1, the optimization procedure is described in
detail. Afterwards, results for a first application of the optimization are shown and discussed
in Subsection 3.2. Due to the optimized identification of parameters related to geometry
and material models, only two additional assumptions are required to describe the structural
problem adequately because data on these aspects is not available in the experiments: firstly,
the directions of the main fiber families, and secondly, the loading in axial direction when
fixating the artery in the experimental device. In the simulations of this Section and the

following Section, the converging value ϕ
(2)
con in axial direction is predefined which results

in different corresponding values for the axial prestretch. Based on a variation of the fiber

directions as well as the convergence value ϕ
(2)
con in different scenarios, the efficiency of the

optimization can be investigated (see Section 3.4). For a precise estimation of the axial pre-
stretch, an additional part of the optimization procedure is defined in the application shown
in Section 4 where also the active material response is considered. In Subsection 3.3, it is
shown that the new kinematic growth model does not depend on a specific run-time or values
for the growth velocity factors to produce an almost homogeneous stress distribution. A
comparison to a simulation using a more classical version of the growth model (cf. [58]),
which depends on the elastic part of the Mandel stress Σe as driving force for the growth
process, shows the advantages of the proposed approach.
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a(2) a(1)

β β
ro, ref

ri, ref

(a) (b) (c)

Figure 1: Visualization of the mesh of the arterial ring: (a) the mesh in the reference
configuration with the inner and outer radii ri, ref and ro, ref. (b) A close-up of the wall
with marks at the positions of the Gauss points which are used to illustrate results in
Fig. 3, 6, 7, 8, 5, 11 and 12. (c) The fiber vectors a(1) and a(2) and the corresponding
fiber angle β illustrated in the plane of longitudinal and circumferential direction.

3.1. Description of the Optimization Procedure

For the simulations, which are used to test different data sets during the optimization proce-
dure, the idealized geometry of a hollow cylinder is considered which is illustrated in Fig. 1a.
Note that only the media is taken into account for simulations in this paper since results
of various previously published simulations have illustrated that the mechanical contribu-
tion of the media dominates the wall response. To minimize the volumetric change of the

artery during growth, the convergence value ϕ
(3)
con of the growth method has to be selected

appropriately. First test simulations showed already promising results when the convergence

value ϕ
(3)
con was set to the mean value of the driving force ϕ(3) at the loaded state of the artery

before the growth process is started. As described in Eq. (4), the driving force ϕ(3) is the
trace of the Cauchy stress tensor σtr = σ : I. Based thereon, we define the convergence

value ϕ
(3)
con as a multiple of the mean value σ̄tr modified by a factor wmin. This factor wmin is

the first variable of the optimization process which is mainly responsible for the minimization
of the volumetric change based on the growth dependent on ϑ(3) and, hence, is called the

volumetric minimizer. Accordingly, ϕ
(3)
con can be written as

ϕ(3)
con = wminσ̄tr with σ̄tr =

1

ngp

ngp∑
g=1

tr(σ)g , (12)

where tr(σ)g is the trace of the Cauchy stresses at the Gauss point g. To obtain a reliable
mean value σ̄tr, eight Gauss points were selected as reference points. The eight chosen Gauss
points have the same position in axial direction and build an exact line from the inside to
the outside of the arterial wall (see Fig. 1b).
As second objective of the optimization, the resulting geometry of the arterial ring after
growth has to match realistic measurements. Since material data from a middle cerebral
artery of a rat are used in the fitting of the material parameters, measurements for a com-
parable artery have to be considered. Accordingly, we adopt the data from [18] (see Table 1
in the original publication) who measured a ratio of 0.21 between wall thickness and outer
radius for a middle cerebral artery of a mouse which is expected to be comparable to the
ratio of the same artery type in a rat. During this measurement, an intravascular pressure
of 15mmHg was applied and the surrounding solution contained no calcium ions which led
to a deactivation of the contraction mechanism of SMCs inside of the tissue. Since the vol-
umetric change of the wall thickness during the growth process is unknown, the inner and
outer radius of the reference configuration of the arterial ring, ri, ref and ro, ref, are chosen as
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optimization parameters to accomplish this part of the procedure (see Fig.1a). To replicate
the experiment in [18], the wall thickness of the resulting geometry is tested with a simulation
in which the arterial wall is loaded with an intravascular pressure of 15mmHg.
As the third step of the optimization, the parameters of the material model are adjusted to
the experimental data from [30] (see Fig. 4a in the original publication) where the segment
of a middle cerebral rat artery is set in Krebs solution and investigated by applying a se-
quence of intravascular pressure with increasing pressure values. The temporal change of the
outer diameter of the middle cerebral artery was measured during this process for the passive
material response (no calcium ions in the surrounding Krebs solution), the fully active mate-
rial response and a partially suppressed response of SMCs by including the ROCK inhibitor
Y27632 into the solution. To replicate the data of the experiments of the passive material
with finite element simulations, we include the optimization of the parameters α1, α4 and α5

which describe the mechanical behavior of elastin and collagen fibers. The parameters α2

and α3 are not considered as input parameters of the optimization, but are set prior the
optimization to 100 kPa and 2, respectively, to represent suitable penalty parameters for near
incompressibility. A more detailed description for the replication of the data for the active
material response can be found in Section 4.
Consequently, while only the passive material response is considered, the optimization is en-
abled to adjust six different parameters, namely, the volumetric minimizer wmin, the inner
and outer radii of the reference configuration ri, ref and ro, ref, and the material parameters α1,
α4 and α5 (see left side of Fig. 2). The optimization was implemented in Python by utilizing
the library mystic. Mystic offers a mixture of evolution strategy and gradient methods. Due
to the parallelization features of mystic, we analyzed up to 40 children parameter sets at the
same time. For every set of input parameters generated by mystic, the finite element program
with the model implementations in FEAP is called by a Python script to run three boundary
value problems with the new parameter set. These simulations are listed in the middle box
of Fig. 2 and contain: 2(a) the growth process of the artery, 2(b) the measurement of the
inner and outer radius at an intravascular pressure of 15mmHg and 2(c) the replication of the
mechanical experiments from [30]. Since in simulation 2(b) and 2(c) the resulting geometry
after growth has to be used, the growth factors ϑ(a) of every Gauss point are saved at the
end of simulation 2(a). Subsequently, these growth factors are applied as boundary condition

Optimization Procedure Improve Optimization Parameters
by Minimizing Objective Function

1. Optimization Parameters

(a) Convergence Value ϕ
(3)
con

wmin

(b) Reference Geometry

ri, ref, ro, ref

(c) Material Parameters

α1, α4, α5

2. Simulations

(a) Growth

p = 120mmHg

(b) Thickness

p = 15mmHg

(c) Experiment

pk

3. Objective Function

(a) Change of ϑ(3)

z1

(b) Geometry

z2

(c) Material

z3

Figure 2: Illustration of the optimization procedure based on a combined evolution-
strategy and gradient method. Three steps are executed to evaluate a new set of
parameters: 1. Creation of new sample of parameters based on data from earlier gen-
erations; 2.(a) Execution of growth process; (b) Checking the wall thickness of the
grown geometry; (c) Reproducing mechanical experiments with simulation; 3. Evalu-
ate the objective function for this sample.
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during the first second of the simulations 2(b) and 2(c), in which the values of ϑ(a) are linearly
increased over time and reach their final value at one second. Further details considering the
boundary value problems are explained in Subsection 3.2. According to the objectives of the
optimization, the objective function z is split into three corresponding parts z = z1 + z2 + z3
with

z = ωϑ

√√√√ 1

ngp

ngp∑
g=1

(
ϑ
(3)
g − 1

)2

︸ ︷︷ ︸
z1

+

√(
ro, 15 − ri, 15

ro, 15
− 0.21

)2

︸ ︷︷ ︸
z2

+

√√√√ 1

ndata

ndata∑
k=1

(
dexp, k − dsim, k

dexp, k

)2

︸ ︷︷ ︸
z3

.

(13)
In the first part z1, the change of the growth factors ϑ(3) at the Gauss points g are evaluated
which correspond to the main contributor to volumetric change due to growth. In the second
term z2, the inner and outer radii of the resulting geometry at an intravascular pressure
of 15mmHg are described by ro, 15 and ri, 15 and compared to the desired ratio of the wall
thickness of 0.21. For the third term z3, the parameter dexp, k is the measured outer diameter
from the experiments at the intravascular pressure pk, and dsim, k is the outer diameter of
the resulting geometry from the simulation at the same load. In our analysis, the weight
for the objective function related to growth-induced changes in volume is set to ωϑ = 0.035,
which has been chosen from experience when running first series of optimizations. The
additive split of the objective function is advantageous because it enables the evaluation of
the fitting of the mechanical experiments without significant influence on the other two parts.
This design is especially important when the optimization procedure is tested with varying

conditions related to e.g. a change of the fiber directions or the convergence value ϕ
(2)
con.

These variations influence the magnitude of the growth factors notably which results in large
differences between the final values of the objective function z1. Due to the additive split,
the quality of each optimization can still be estimated based on the accuracy of the fitted
mechanical experiments via z3.

3.2. Analysis of Growth Model using Optimization Procedure

In this section, a first analysis of the general behavior of the growth model and the opti-
mization procedure is given. To enable a good simulation of residual stresses, a realistic load
scenario has to be chosen in the simulation while the growth model is active. The artery in
the simulation is supposed to describe the mechanical behavior of a middle cerebral artery of
a rat. The blood pressure of a healthy rat at rest is approximately 100/60mmHg, cf. e.g. [41].
Considering the activity of the rat over the day, an intravascular pressure of 120mmHg may
be estimated as plausible mean value, which is why we apply the static value of 120mmHg
as internal pressure in the simulations. Note that this value will obviously not be precise
and may differ from artery to artery, but it can be considered reasonable for the analysis of
characteristic scenarios. The axial prestretch is primarily influenced by the selected value for

the convergence value ϕ
(2)
con for growth in axial direction. Investigations of large arteries such

as the aorta, carotid artery, iliac artery or superficial femoral artery showed in vivo axial
prestretches of 1.0 and lower for elderly donors, see e.g. [29, 25, 47, 48]. Arteries in young
donors illustrate values larger than 1.4, cf. [29]. A change of the axial prestretch from 1.4
to 1.0 requires considerable growth in axial direction for large arteries which possess a pri-
marily passive material behavior. To enable the possibility to obtain any type of artery by
the application of the new kinematic growth model and the optimization procedure, the most
expensive growth scenario should be investigated as the most challenging scenario. Therefore,

a convergence value ϕ
(2)
con = 0kPa is chosen as standard value in the simulations considered

in this Section and the following one. Reducing the axial stresses to 0 kPa in elastic arteries
through growth will of course require large values for the growth factor ϑ(2).
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Here, the investigation will first only include the passive material response of the arterial
wall. Accordingly, only the experimental data for the passive material from [30] will be fit-
ted in the objective function z3. An example of the reference geometry using tri-quadratic
hexahedral elements is shown in Fig. 1a. This mesh has been created with one element in
longitudinal direction, four elements in radial direction and 96 elements in circumferential
direction. Accordingly, the mesh consists of 384 quadratic 20-node brick elements. The axial
displacements at the beginning and the end of the arterial ring is set to zero as boundary
condition for all simulations here. In all three simulations, the nodes of the arterial ring are
able to freely move in radial direction. Movement in circumferential direction is not expected
due to the rotational symmetry of the problem. Experimental investigations of the collagen
fibers in arteries of the human brain in [17] show that the fiber direction of collagen is nearly
circumferential in the media; the angle β between circumferential and fiber direction (cf.
Fig. 1c for an illustration) may reach values up to 13◦. In our simulations, β is prescribed to
be distributed from 10◦ at the inner side to 20◦ at the outer side of the arterial wall. A higher
fiber angle may be considered for arteries in a different position of the body, especially, when
larger arteries such as the aorta are taken into account. Due to the fact that different fiber
angles may apparently occur, the impact of variations of β on the optimization procedure
and the new kinematic growth model will be investigated in Section 3.4. The growth velocity

factors are chosen to be κ
(2)
ϑ = 10−4(s · kPa)−1 and κ

(3)
ϑ = 10−4(s · kPa)−1. Note that the

growth velocity parameters mainly modify the time process, but hardly the resulting grown
state and thus, for the purposes of this paper they may be chosen rather arbitrarily. However,
for an improved of computational efficiency, they may be chosen as high as possible to have a
reasonable tradeoff between large time steps and decent convergence of the Newton-Raphson
scheme.
Based on this setup, the optimization procedure is performed and leads to the results shown
in Fig. 3 and 4, see the standard case in Table 1. Fig. 3a and b illustrate the distributions
of the Cauchy stresses σ(ax) and σ(cir) in axial and circumferential direction, respectively,
and the driving forces ϕ(2) and ϕ(3) before (dashed lines) and after (solid lines) the growth
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Figure 3: Distribution of (a) Cauchy stresses σ(ax) and σ(cir), (b) driving forces ϕ(2)

and ϕ(3), and (c) growth factors ϑ(2) and ϑ(3) in circumferential (green) and axial
(red) direction over the wall thickness. Artery is loaded with an intravascular pressure
of 120mmHg. Dashed lines show results before growth, solid lines show results after
growth. The gradients of the stresses over the wall thickness are significantly reduced
by growth.
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process. For growth in the direction of the second eigenvector of the Cauchy stress, which is
tagged here with (ax), the stress and the driving force reach the predefined value of 0 kPa.
Due to the aim to reduce the volumetric change of the reference geometry (see z2), the driv-
ing force for the growth in direction of the third eigenvector of the Cauchy stress (tagged
with (rad)) was optimized to 139.71 kPa which was reached over the entire wall thickness
(see Fig. 3b). Consequently, the growth model achieves its purpose to equalize the driving
force of the model over the entire wall and minimizes the absolute value of the gradient of
the stresses. Nonetheless, it should be noted that the gradient of the stresses over the wall
in circumferential direction is not zero (see Fig. 3b). This circumstance is related to the

driving force ϕ(3) for F
(3)
g which is defined as the trace of the Cauchy stresses and involves

the stresses in radial direction, which may be considered with caution. The radial stresses
are compelled to show a gradient over the wall thickness based on the boundary value prob-
lem which defines an intravascular pressure of 120mmHg at the inner side of the wall and a
pressure of 0mmHg at the outer side. Accordingly, the circumferential stresses have to show
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Figure 4: (a) Comparison of simulation results for the passive response of the arterial
wall (solid line) with experimental data from [30] (dots) showing an excellent agreement
of the model response with the experimental data. (b) Comparison of circumferential
Cauchy stresses of the passive material response at different times of the pressure
profile showing almost homogeneous stress distributions in line with the homeostasis
hypothesis. However, the quantitative values of the stresses reach unrealistically high
values, which should not be expected for physiological conditions. This is caused by the
application of a high intravascular pressure on a muscular artery while not including
a realistic model for the active response.
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a gradient with opposed sign as soon as all driving forces ϕ(a) of the growth model reached
a homogenization over the entire wall. From a quantitative point of view, the results for the
circumferential stresses could be further improved by excluding the radial stresses from the
driving force ϕ(3). This adjustment will be considered in the simulations with active response
in Section 4.
As additional overview, Fig. 3c shows the final state of the growth factors ϑ(2) and ϑ(3). Since
the growth in axial direction is not restricted by the optimization procedure, the growth fac-
tor ϑ(2) reaches values between 1.35 at the inner side and 1.3 at the outer side of the arterial
wall. For the growth in radial direction, the volumetric change is minimized by the objective
function z2. Correspondingly, the growth factor is ranging from 1.3 at the inner side of the
wall to 0.7 at the outer side of the wall and is, consequently, close to 1.0 in the middle of the
arterial wall. The inner and outer radii ri, ref, and ro, ref of the arterial ring in the reference
configuration are optimized to 82.91µm and 103.11µm. The ratio between wall thickness and
outer radius in the resulting geometry at an intravascular pressure of 15mmHg (simulation
2(b)) is 0.209997 which is close to the set target value of 0.21. One further result is shown
in Fig. 4a which illustrates the outer diameter of the arterial wall for an increasing intravas-
cular pressure for simulation 2(c) and the experimental data. Equal to the values in the
experiment, the intravascular pressure pk was set to values from 0mmHg to 120mmHg. The
diagram shows that the optimization indeed accurately identified material parameters for the
resulting geometry to have the model match the experimental data. In Fig. 4b, the circum-
ferential Cauchy stress is illustrated as contour plots of the 3D arterial ring. The illustration
indicates that the stresses are nearly homogeneously distributed in all load scenarios. Note
that the stress values in the simulations of this section are unrealistically high, which can be
explained by the fact that a muscular artery has been investigated without incorporating the
active response of SMCs. It can be expected that muscular arteries receive noticeable tissue
damage during experiments where only the passive response is investigated. Damage is not
recorded during the experiments and would be expensive to consider in the material model.
However, from a simulation perspective, the combination of the optimization procedure and
the growth model leads to convincing qualitative results.

3.3. Convergence of Growth Over Time

In Section 3.2, it was shown that the new growth model can be applied to generate homog-
enized stress distributions in the arterial wall. However, other models were already able to
show similar results. One example are growth models that depend on the elastic part of the
Mandel stress Σe = CeSe as driving force and that take into account evolution equations
which aim to converge to growth intensities, not stress intensities (see e.g. the previous
version of our growth model [58] and [57]). A comparison of the proposed growth model
with the one from [58] will show that the previously established evolution equations can only
generate suitably homogenized stress distributions when the growth process is stopped at
a specific growth state, which differs from the state at infinite time. Actually, an unstable
growth may even be observed which not saturates in a specific grown state. Since it is of
course difficult to estimate this kind of optimal time instance, especially for varying load sce-
narios or when linking the formulation with an active SMC model, this non-time-converging
response is problematic for practical application. This will be shown to not be the case for
the new growth model. Note that from now on we denote the new proposed growth model
as “model A” and the previous model [58] as “model B” to avoid misunderstandings. The
major difference between model A and model B is the definition of the evolution equations
for the growth factor, see Eq. (3). A brief explanation of these equations for model B are
shown in the Appendix A.
To enable an objective display of the differences between both models, we executed a similar
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optimization as described in Section 3.1 for model B. However, based on the definition of the
evolution equations in model B, the growth factors are only able to increase (not descrease).
The volumetric change has thus to be positive after the application of model B. In conse-
quence, a restriction of the volumetric change from reference configuration to the resulting
geometry after growth is not possible in the same manner. Therefore, the optimization for
objective function z1 is not applied for model B. In addition, there is no specific target value
set for the stresses σ(ax) and σ(cir), but only a minimization of the absolute value of the
gradient for the stresses over the wall thickness. To reach this objective, the parameters ϑ+

(2),

ϑ+
(3), κ

+
ϑ, (2) and κ+ϑ, (3) were added as optimization parameters to the optimization procedure.

The results for the stress distribution of the optimized simulation are shown in Fig. 5a. The
corresponding growth factors are displayed in Fig. 5b. It can be seen that the stresses σ(ax)

and σ(cir) are nearly equal over the entire wall after an optimal growth time (solid lines). At
this state of the growth process, the material parameters α1, α4 and α5 are optimized to fit
the experimental data (see Fig. 10 in the Appendix A) and the ratio between the wall thick-
ness and the outer radius is 0.20995 (compare objective function z2). However, the growth
process is stopped manually at this optimal run-time. This manual stop was accomplished
by checking the evolution of the stress distribution over the wall thickness during the simu-
lation. If the growth model is not manually stopped, the growth process continues until the
evolution equations of the growth factors are zero. Based on the definition of the evolution
equations in model B, this circumstance is not reached when the growth factors are equal to
their maximal values ϑ+

(2) and ϑ+
(3) which occurs after a longer run-time. The corresponding

results are illustrated by the dashed-dotted lines in Fig. 5. As can be seen, the circumferen-
tial Cauchy stresses on the inner side of the artery are approximately 40 kPa larger than the
circumferential Cauchy stresses at the outer side of the artery which yields noticeably worse
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Figure 5: Distribution of (a) Cauchy stresses σ(ax) and σ(cir), and (b) growth val-
ues ϑ(2) and ϑ(3) in circumferential (green) and axial (red) direction over the wall
thickness for the passive material response with application of growth model B which
is based on the elastic part of the Mandel stress Σe (see [58]). As for model A, the
artery is loaded with an intravascular pressure of 120mmHg. Dashed lines show the
results before growth, solid lines show the results after the optimal time for growth,
dashed-dotted lines show results after almost infinite time of growth (representing the
saturated state). As can be seen, the gradients and the values of the stresses are sig-
nificantly decreased for the optimal growth time. However, the growth increases again
after this specifically chosen time instance and quite larger stress values are found in
the saturated state.
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results for the stress distribution.
As an additional comparison between model A and model B, Fig. 6 illustrates the evolution
of the axial and circumferential stresses (σ(ax) and σ(cir)) for the Gauss point at the inner side
of the arterial wall (compare Fig. 1b). In Fig. 6a, the evolution is shown for different values

of the growth velocity factors κ
(2)
ϑ and κ

(3)
ϑ for model A. The values κ

(2)
ϑ = 10−4(s · kPa)−1

and κ
(3)
ϑ = 10−4(s · kPa)−1 (solid lines) were used in the optimization in Section 3.2. A

reduction of κ
(2)
ϑ (dashed lines) or κ

(3)
ϑ (dashed-dotted lines) by a factor of 20 results in a

considerable change of the evolution of the stresses. However, the final results for the stresses
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Figure 6: Comparison of the evolution of the stress in axial and circumferential di-
rection at the most inner Gauss point (marked in Figure 1). (a) Varying values of the

growth velocity factors κ
(2)
ϑ and κ

(3)
ϑ in the new growth model (model A). The graphs

show that variations of the growth velocity factors have no impact on the final value
of the stresses. (b) For the previous version of the growth model (model B) which is
dependent on the elastic part of the Mandel stress Σe as driving force and evolution
equations aiming to saturate in defined growth states. An almost homogeneous stress
distribution is reached at 360s run time of the growth process. But this growth state
is not stable, growth actually converges to a state of non-homogeneous stress distri-
butions. Accordingly, a combination with additional active processes such as smooth
muscle contraction is difficult if not impossible. The proposed formulation (model A)
does not show this instability.
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are independent from the ratios between the growth velocity factors. In comparison, the
evolution of the stresses for model B confirms in Fig. 6b what was already indicated by the
changes of the stress distributions in Fig. 5: the optimal homogenization of stresses is reached
after 360 s run-time of the growth process, but still changes as long as the growth process
is not manually stopped. In consequence, a qualitatively accurate coupling of model B with
another active material process such as the active SMC response is difficult to achieve.

3.4. Efficiency of the Optimization Procedure

There are mainly two aspects which have to be defined to obtain a characteristic structural
problem of an artery when the optimization procedure with the new growth model is applied.
In context of the optimization shown in Section 3.2, these aspects are: the fiber direction of
the collagen fibers (and SMCs) described by the angle β and the in vivo prestretch leading to

residual stresses in axial direction which are linked to the convergence value ϕ
(2)
con of the driving

force ϕ(2) in axial direction. To demonstrate the performance of the optimization procedure in
combination with the new growth model, further optimizations were performed which include

a variation of β or ϕ
(2)
con in the simulations. Furthermore, the boundary conditions of the artery

were varied in additional optimizations by applying different values for the axial stretch λax of
the artery at the start of the simulation. Note that this axial stretch value λax represents an
externally applied axial deformation induced by e.g. moving parts of the body which surround
the artery. It should not be confused with the in vivo axial prestretch of an artery which
contributes to the residual stress state induced by growth which prevents supra-physiological
stresses when externally stretching the artery. The results for the optimized parameters and
the final value of the objective functions z1, z2 and z3 are listed in Table 1. Note that the

Table 1: Results for the optimization parameters and the corresponding values of the
objective functions z1, z2 and z3 for variations of the angle of the collagen fibers β,

the axial stretch λax or the convergence value of the growth factor ϕ
(2)
con. The standard

case refers to the scenario discussed in Section 3.2 where the axial stretch is λax = 1.0.

Optimization Parameters Objective Function
Variation α1 α4 α5 ro, ref ri, ref wmin z1 z2 z3

Standard Case 2.79 kPa 9.90 kPa 2.99 103.11µm 82.91µm 0.77 0.00645 2.74e-06 0.00494
β = 10◦ − 30◦ 3.08 kPa 10.48 kPa 3.08 102.44µm 81.84µm 0.783 0.00868 8.51e-06 0.00658
β = 10◦ − 40◦ 2.83 kPa 19.87 kPa 2.54 108.44µm 87.54µm 0.857 0.01371 3.47e-05 0.00632

β = 30◦ 3.62 kPa 14.51 kPa 3.13 96.95µm 77.50µm 0.776 0.00535 8.75e-05 0.00460
β = 45◦ 3.76 kPa 39.86 kPa 2.76 88.64µm 69.99µm 0.915 0.00529 9.53e-06 0.00476

λax = 1.1 2.79 kPa 11.46 kPa 3.10 102.98µm 83.24µm 0.799 0.00552 9.31e-05 0.00652
λax = 1.2 2.38 kPa 14.89 kPa 3.00 105.17µm 85.19µm 0.895 0.00583 7.94e-05 0.00614
λax = 1.3 1.75 kPa 19.83 kPa 2.92 107.22µm 87.48µm 0.986 0.00607 7.18e-06 0.00584
λax = 1.4 1.56 kPa 25.077 kPa 2.85 108.39µm 89.36µm 1.079 0.00619 9.54e-05 0.00557

ϕ
(2)
con = 10 kPa 1.28 kPa 14.02 kPa 2.56 107.04µm 87.04µm 0.852 0.00634 8.84e-05 0.00540

ϕ
(2)
con = 20 kPa 1.52 kPa 10.71 kPa 2.52 105.82µm 84.50µm 0.937 0.00663 3.54e-05 0.00554

ϕ
(2)
con = 30 kPa 1.56 kPa 8.61 kPa 2.54 103.83µm 82.29µm 0.959 0.00639 2.59e-05 0.00581

ϕ
(2)
con = 40 kPa 3.11 kPa 5.47 kPa 2.66 101.01µm 78.53µm 0.984 0.00607 7.11e-05 0.00637

ϕ
(2)
con = 50 kPa 4.93 kPa 3.56 kPa 2.75 101.09µm 77.17µm 1.009 0.00572 0.000232 0.00656

notation β = 10◦ − 30◦ indicates a fiber angle which is linearly distributed from 10◦ at the
inner side of the wall to 30◦ at the outer side. As can be seen in Table 1, the optimization
is able to generate comparable values for the objective function, i.e. for almost all cases
the same order of magnitude, nearly independent from the variations of the simulations.

The case with ϕ
(2)
con = 50 kPa could be seen as an outlier for the fitting of the objective

function z2 with 0.000232. However, z2 is used for the fitting of the resulting geometry
in the grown state and the corresponding ratio between wall thickness and outer radius is
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still 0.2098 with 0.21 as target value. Additional outliers may be identified in the cases
with β = 10◦ − 30◦ and β = 10◦ − 40◦. Here, the objective function z1, which is responsible
for the reduction of the volumetric change during the growth process, is noticeably larger
than in the other optimizations. However, this can be explained by the necessary change of
the growth factor ϑ(3) to adjust the stresses appropriately.
To obtain a better interpretation of these results, the distribution of the resulting Cauchy
stresses σ(ax) and σ(cir), the driving forces ϕ(2) and ϕ(3), as well as the growth factors ϑ(2)

and ϑ(3) are illustrated in Fig. 7 for the variation of the fiber angle β. The same illustrations

can be found for the variations of the axial stretch λax and the convergence value ϕ
(2)
con in

Fig. 11 and Fig. 12 of Appendix B. Note that the optimized values for the radii ri, ref and ro, ref
are slightly different for every optimization and, hence, we depict the distributions over the
normalized radial positions through the wall thickness where 0.0 represents the inner and 1.0
the outer side of the wall. As can be seen in Fig. 7d, the growth values ϑ(3) for β = 10◦− 30◦

and β = 10◦ − 40◦ have a larger difference to the initial value of 1.0 than in other cases.
Accordingly, the optimizations with β = 10◦ − 30◦ and β = 10◦ − 40◦ have larger values
for z1 based on the higher gradient of ϑ(3). However, z2 and z3 were not influenced by this
circumstance. Therefore, it can be concluded that the optimization procedure is actually
quite effective independent from variations of input parameters.
Taking another look at the results for the optimization with different fiber angles β in Fig. 7,
it is visible that the stresses in the grown state of the artery are nearly identical in every

single case. While this had to be expected for the Cauchy stresses in axial direction σ
(ax)
gr

caused by the corresponding convergence value ϕ
(2)
con = 0kPa, it is surprising that the stresses

in circumferential direction σ
(cir)
gr adjusted nearly equally while the fiber angles are strongly

different. Note that the convergence value ϕ
(3)
con is not directly set prior to the optimization,

it is strongly influenced by the demand for matching the experimental data. Consequently,
this indicates that the generation of a reliable structural problem with the application of the
new growth model to obtain a homogeneous stress distribution is independent from a perfect
choice of the fiber angles. For large arteries, experiments can be performed to quantify the
microstructure distribution adequately, see e.g. [45]. This is, however, rather difficult for
muscular and thus smaller arteries. Therefore, a combination of growth models with fiber
reorientation algorithms can be applied to improve the description of the mechanical fields
of the arterial wall, cf [58].

4. Kinematic Growth and Active Contraction

To obtain a realistic simulation of muscular arteries, models describing the active contrac-
tile behavior of SMCs need to be incorporated. This can be directly achieved by adding an
associated energy in the strain energy density function (5). Here, we basically replace the
strain energy density by the complete expression introduced in [52] to directly also describe
the stretch-dependent chemo-mechanical processes in smooth muscle. However, the combi-
nation of this active material response with any kind of growth model is unfortunately not
straightforward, because they both depend on the current mechanical state and thus, affect
one another. Then, an unstable growth will cause problems as a final physiological state given
as a stable interplay of SMC activation and growth-induced residual stresses can hardly be
reached. Therefore, the growth model proposed in this paper, which clearly saturates in a
stable state (see Subsection 3.3) is actually convenient to allow an overall stable combined
process. However, a minor adjustment of the growth model with regard to growth directions
and driving forces is proposed in this Section which actually improves the results regarding
the circumferential Cauchy stress distribution when combining growth with active SMC con-
traction. Furthermore, it has a more convincing mechanism from a biological point of view
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Figure 7: Comparison of results from optimizations with different angles β for the
collagen fibers. Distribution of (a) circumferential Cauchy stress σ(cir), (b) axial
stress/ driving force σ(ax)/ ϕ(2), (c) radial driving force ϕ(3) which directly influences
the stresses in circumferential direction, and (d) growth factors ϑ(2) (axial) and ϑ(3)

(radial). Note that β = 10◦ − 20◦ describes fiber angles which are distributed over
the wall thickness with β = 10◦ at the inner side and β = 20◦ at the outer side of
the arterial wall. Since the optimized values for ri, ref and ro, ref are not equal for the
considered variation of the fiber angle, the radial positions are illustrated as normalized
values. Optimizations show convincing results with well homogenized stresses indepen-
dent from the choice of the fiber angle β, however some small gradient is still visible
in the distributions of circumferential stresses.
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which cures the critical aspects discussed in the remark in Section 2.1.

4.1. Improved Growth Model

As shown and discussed in Section 3.2, a certain gradient over the wall thickness remains
for the circumferential stresses after the growth process is applied. This gradient can be
linked to the dependency of the driving force ϕ(3) on the third principal stress which is equal
to the stress in radial direction when considering an artery idealized as a hollow cylinder.
The circumferential Cauchy stresses were found to be approximately 10% larger at the inner
side of the vessel wall than at the outer side as long as only the passive material response
is considered. Unfortunately, this difference increases significantly when the active material
response is included into the simulations, since the absolute values of the circumferential
stresses decrease considerably while the maximal and minimal values of the radial stresses
remain unchanged due to the boundary conditions of the simulation. Corresponding results
can be seen in Fig. 13 in Appendix C.
To improve the results of the growth model, the driving force ϕ(3) should not depend on
the third principal stress. In consequence, the definition of the driving force ϕ(3) is adjusted
to include only the first and second principal stresses (circumferential and axial direction)
for simulations with active material response. As the load-bearing mechanism in arteries is
dominated by transferring the internal pressure to tensile stresses in circumferential direc-
tion, adding up to the axial tensile stresses reacting to external axial displacements, these
stresses basically constitute the stress state in the layered structure of the circumferential-
axial plane. Furthermore, in previous simulations of this paper, growth in the direction of the
first principal stress (circumferential) was not considered. However, it can be expected that
proliferation of SMCs and protein synthesis extends the tissue in every direction inside the
plane of the layers. Hence, the growth process is three-dimensional as was already suggested
in [24] and is further supported by data from more recent publications, but not isotropic.
In [28], the differences of the geometry of the human popliteal and superficial femoral ar-
teries of donors between the age of 13 to 92 were investigated. The measurements show
that the wall thickness of the arteries increases significantly with age of the donors. This
progress corresponds to an increase of the outer radius of the artery which underlines the
significance of growth in radial direction. Additionally, there is also a smaller increase of the
inner radius identified which may indicate that a certain amount of growth in circumferential
direction occurs. Considering that the growth process of tissue in axial direction is proven
by the decrease of in vivo axial prestretch with age, consequently, a realistic model has to
include growth in all directions. Hence, the Eqs. (3) and (4) for the evolution of the growth
factors ϑ(a) of the kinematic growth model are changed in this Section to

ϑ̇(a) = κ
(a)
ϑ

(
ϕ(a) − ϕ(a)

con

)
with a = 1, 2, 3 , (14)

ϕ(1/2)(σ) = σ :
(
n(1/2) ⊗ n(1/2)

)
and ϕ(3)(σ) = ϕ(1) + ϕ(2) . (15)

Note that the form of the evolution equation is identical to Eq. (3), it is, however, also applied
to describe growth in the direction of the first principle Cauchy stress. The modified driving
force ϕ(3) does not contain components of the third (typically negative) principal Cauchy
stresses anymore. Instead, it is defined to let the evolution of growth adjust to the sum of
the first and second principal Cauchy stresses σI and σII . Accordingly, in the optimization

procedure for parameter identification, the convergence value ϕ
(3)
con is defined as

ϕ(3)
con = wminσ̄I/II with σ̄I/II =

1

ngp

ngp∑
g=1

(σI, g + σII, g) . (16)
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Furthermore, the optimization to receive a reliable structural problem for the arterial wall
is expanded here to fit the in vivo axial prestretch of 1.1 measured in [7]. For this purpose,

the convergence value ϕ
(2)
con is added as optimization parameter. An additional simulation is

executed in the optimization to determine the axial prestretch after growth of the artery. The
boundary conditions and material behavior of the artery are formulated to be comparable
to the mechanical conditions of an artery after dissection from the body. One end of the
artery is held in axial direction and the other end can freely move. During the simulation,
there is no active response considered and no load is applied equal to measurements of axial
prestretches in experiments. Over a time frame of one second, the growth factors at every
Gauss point of the artery are linearly increased from 1.0 to the final values of ϑ(a) at the

end of simulation 2(a). To evaluate the precision of the convergence value ϕ
(2)
con to receive the

correct axial prestretch λax,pre, the objective function z is extended by

z4 = 0.1

√(
1

λax
− 1.1

)2

, (17)

where λax is the axial stretch of the artery in the simulations after the growth factors ϑ(a) are

applied. Note that the axial prestretch is λax, pre = λ−1
ax and the convergence value ϕ

(1)
con can

be calculated from the optimization parameters for ϕ
(2)
con and ϕ

(3)
con as ϕ

(1)
con = ϕ

(3)
con − ϕ

(2)
con.

4.2. Optimization Results Incorporating the Active Material Response

The optimization, which was described in Section 3.1 and expanded in the previous Subsec-
tion, is now applied to an arterial ring in which the active material model is included. The
detailed description of this material model can be found in [52]. For the fiber directions of col-
lagen and SMCs, the fiber angle β = 10◦− 20◦ is used for both fiber types. Since the smooth
muscle model is time- and stretch-dependent, the simulations 2(a) and 2(c) (see Fig. 2) have
to be adjusted accordingly. For the fitting of the material parameters (simulation 2(c)) to
experimental data in [30], we apply the same procedure as described in [52]: An intravascular
pressure of 10mmHg is set on the resulting geometry over a time of 600 s to generate the
initial contractile state of the arterial wall which represents the state of the artery before the
experiment is performed. This part of the simulation is executed after the final values of the
growth factors ϑ(a) from the end of simulation 2(a) are reached. Afterwards, the intravascular
pressure is increased stepwise to 20, 40, 60, 80, 100 and 120mmHg where every pressure level
is applied for 300 s. Over a time frame of 1800 s, the evolution of the outer diameter of the
arterial ring is recorded. This simulation protocol is used for the fully active case and the
suppressed version which is influenced by the Rho kinase inhibitor Y27632. To enable a suit-
able fit of the material response, further optimization parameters are included for 1(c) of the
optimization (see Fig. 2). These optimization parameters are part of the active material re-
sponse. In accordance to the original paper of the SMC model, the same parameters are used
as chosen for the fitting of the material response there (see Table 3 in [52]). The remaining
parameters of the active material model (which are not included as optimization parameters)
are equal to the values of Table 2 in [52]. For the growth process in simulation 2(a), the same
simulation protocol is applied at the beginning of the simulation as described above for simu-
lation 2(c): An intravascular pressure of 10mmHg is applied over a time of 600 s to generate
the initial contractile state and, afterwards, the intravascular pressure is increased stepwise
to reach a value of 120mmHg after 1800 s. This procedure leads to a referential state of the
mechanical fields at an intravascular pressure of 120mmHg without growth. Subsequently,

the convergence values ϕ
(a)
con are calculated and the growth model is activated. To regulate

the interaction between active response and growth process, the growth velocity factors are

chosen to be κ
(1)
ϑ = 10−5(s · kPa)−1, κ

(2)
ϑ = 10−4(s · kPa)−1 and κ

(3)
ϑ = 10−4(s · kPa)−1. As a
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Figure 8: Distribution of (a) Cauchy stresses and driving forces σ(cir) = ϕ(1) and
σ(ax) = ϕ(2) (b) growth factors ϑ(1), ϑ(2) and ϑ(3) in circumferential (green), axial
(red) and radial (blue) direction over the wall thickness for the including the fully
active material model for SMCs. Artery is loaded with an intravascular pressure of
120mmHg. Dashed lines show results before growth, solid lines show results after
growth. The proposed, improved growth model results in a well-homogenized stress
distribution when smooth muscle contraction is activated.

consequence, the contraction of SMCs reacts significantly faster on growth-induced changes of
the stretch in fiber direction of the SMCs than the growth factors change over time. Accord-
ingly, the active response is considered to react rather quickly to changes of the mechanical
fields and the growth factors adjust comparably slow. Thereby, a small interaction between
both processes is realized and helps the overall convergence of the saturation process. Note
that the growth in the direction of the first and third principal stress (circumferential and
radial) are primarily responsible for the adaptation of the stresses in circumferential direc-

tion. Simulations with a large value for the growth velocity factor κ
(1)
ϑ have shown that the

convergence values cannot be reached, but infinite growth in circumferential direction occurs.

Consequently, the ratio between κ
(1)
ϑ and κ

(3)
ϑ has to be chosen adequately to avoid infinite

growth. When κ
(3)
ϑ is set to a value of 10−4(s ·kPa)−1, test simulations indicated that infinite

growth can be avoided for growth velocities of κ
(1)
ϑ = 210−5(s ·kPa)−1 and smaller. However,

a value of κ
(1)
ϑ = 10−5(s · kPa)−1 resulted in shortest run-times to reach almost homogeneous

stress distributions. The infinite growth process in these simulations can be explained by the
increase of the inner radius ri of the arterial wall caused by the growth in circumferential di-
rection. The increase of ri results in an increase of the inner surface area. Since a static value
of 120mmHg is applied for the intravascular pressure, the increasing surface area generates
a rise of the load on the arterial wall. In consequence, the circumferential stresses can reach

values larger than the convergence value ϕ
(1)
con over the entire wall which results in an infinite

growth in circumferential direction. This issue should not be expected in simulations with
realistic fluid-solid interactions, where the blood pressure will also depend on deformations
and processes of the artery. Since an increase of the inner radius ri results in an increase of
the lumen, the pressure from the blood on the arterial wall would decrease there.
The simulation results for the optimized structural problem are illustrated in Fig. 8 and 9. In
Fig. 8a, the distribution of the Cauchy stresses σ(ax) and σ(cir) in axial and circumferential di-
rection before (dashed) and after (solid) the growth process can be seen. Furthermore, Fig. 8b
shows the distribution of the growth factors ϑ(a). Note that the stresses σ(cir) and σ(ax) are
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Figure 9: Comparison of model response with experimental data from [30] for three
different setups: passive response, active response under influence of 1µM Rho kinase
inhibitor Y27632 and fully active response (see material model in [52]). The results for
the active model agree well with the experimental data.

equal to the driving forces ϕ(1) and ϕ(2), respectively. The convergence values for the driving

forces in circumferential and axial direction were optimized to values of ϕ
(1)
con = 27.46 kPa

and ϕ
(2)
con = 2.88 kPa. Note that the Cauchy stresses would only reach the values of ϕ

(1)
con

and ϕ
(2)
con after an infinite run time of the growth process. To regulate the computational

cost of the optimization procedure, the growth process was stopped automatically when the
standard deviation of the stresses over the wall thickness were lower than a predefined toler-
ance value. The corresponding circumferential stresses are 28.1 kPa at the inner side of the
wall and 26.8 kPa at the outer side of the wall. For the axial direction, the stresses reached
values between 1.45 kPa and 1.85 kPa over the entire wall thickness which lead to an axial
prestretch of λax, pre = 1.105. The ratio between the wall thickness and outer radius is 0.216.
Consequently, it can be stated that the combination of active response with the proposed
improved growth model lead to reasonably homogenized stresses which are in line with the
homeostasis hypothesis. It should be noted that the circumferential Cauchy stresses σ(cir)

have a higher value at the outer side of the artery than at the inner side of the artery before
growth which is in contrast to the simulations with a purely passive material response. This
difference is caused by the contraction of the active material model which can lead to a smaller
diameter of the arterial ring in the contracted state than in the reference configuration. This
influences also the stresses in axial direction σ(ax) which can reach negative values before
growth, which further motivates the necessity for residual tensile stresses in axial direction.
When regarding the growth factor ϑ(3) in Fig. 8b, it can be noticed that the gradient over
the wall thickness is positive when active response is included. In simulations with a purely
passive material response, this gradient was negative (see Fig. 3). These results underline
the importance of the combination of growth and active response to receive reliable residual
stresses for muscular arteries. For such arteries, an estimation of the residual stresses cannot
be achieved by executing simulations which calculate the growth process based on the purely
passive material response. This would actually make the mechanical fields even less realistic
in comparison to not considering residual stresses at all.
The results for the fitting of the material response for the optimization with active response
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can be seen in Fig. 9 and the corresponding values of the optimization parameters in Table 2.
The results for the two different active material graphs look comparable to the results without
growth (see Fig. 3 in [52]). However, the passive material response shows higher differences
between simulation and experiments than before. As can be seen in equation (8), the passive
material model for collagen fibers only contributes to the material response when the stretch
in fiber direction is larger than 1.0. For the artery in a contracted state, the stretch can
reach values lower than 1.0. In consequence, collagen fibers at these stretch values do not
contribute to the growth process. In addition, the gradient of the growth factors is not ben-
eficial for the stress distribution when only the passive response is considered. As a result,
the optimized value of the material parameter α4, which contributes to the description of the
stiffness of the collagen fibers, is considerably smaller than in the optimizations of the previ-
ous Sections. In contrast, the parameter α1 increased which describes the material stiffness of
elastin. However, the material model for elastin is not sufficient to describe the non-linearity
of the material. One attempt to fix this issue could be the consideration of separated growth
of SMCs and the passive material response. In this regard, separated growth tensors Fg and
growth factors ϑ are calculated for each part of the material model. This approach would
combine the simplicity of kinematic growth with the idea of constrained mixture models
where growth is regarded individually for every constituent of the arterial wall. However,
since the application of inhibitors anyhow leads to a somewhat artificial response, the fitting
quality just for the passive behavior should not be overrated.
Summarizing, an excellent agreement with experiments is achieved for the fully active, i.e.
realistic, response (red curve in Fig. 9) while still showing almost homogeneous stress distri-
butions through the vessel wall (Fig. 8) thanks to the proposed growth model.

Table 2: Optimization parameters for inclusion of active response.

α1 α4 α5 ro, ref ri, ref wmin

6.69 kPa 1.1 kPa 2.38 108.67µm 79.36µm 0.884

η γ1
˙̄λc,max

˙̄λc,min k̇2/5,max k̇2/5,min

0.1349 s−1 0.3095µM 0.0471 s−1 −0.0471 s−1 0.000569 s−2 −0.001004 s−2

˙̄λp,max
˙̄λp,min µa κ β1 k2/5, start

0.000094 s−1 −0.000108 s−1 29.04 kPa 104.09 kPa 0.00069 s−1 1.9088 s−1

5. Conclusion

A new kinematic growth model has been proposed which was motivated by the results of [57].
It extends rather classical kinematic growth models, but in particular the one of [58], by a
new set of evolution equations and driving forces which depend on the principal values of
Cauchy stresses. As main difference to previous formulations, the evolution equations were
formulated to let growth adjust to homeostatic stresses instead of growth intensities. As a
major advantage thereof, the model was shown to allow for stable growth states, i.e. growth
that converges over time to saturated states, which becomes important in the context of con-
necting growth to further active processes like SMC contraction. Furthermore, much more
homogenized stress distributions were obtained that are rather independent from changes of
fiber angle distribution, axial loading, and convergence values of principal stresses defining
the homeostatic stress state. In addition to the proposed model, a suitable optimization setup
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for the solution of inverse problems related to the identification of material parameters based
on experiments performed on whole arterial segments was described. The first variant of the
proposed model was formulated to partly coincide with ideas from the literature, i.e. that
growth in radial direction should be driven by an isotropic stress measure. In line with [57],
this was combined with growth in axial direction, which could be motivated by mechani-
cal considerations. When only considering a purely passive mechanical response resulting
from collagen and elastin, reasonable results were obtained. However, when considering the
layered structure of arterial walls possessing layers in the axial-circumferential plane, it was
rationalized that not considering growth in circumferential direction appears somewhat un-
reasonable. Therefore, an improved growth model was proposed which includes growth in the
directions of all principal Cauchy stresses and a modified definition of the driving force related
the third (negative) principal stress. By applying this improved growth model in connection
with the mechanical model from [52] including the active response of SMCs and by updating
the optimization scheme, convincing results were obtained. These were characterized by (i)
an accurate agreement with sophisticated experiments including the active response and (ii)
almost perfectly homogeneous stress distributions. Results showed that the proposed growth
model can be suitably used to obtain realistic stresses even if an advanced material model
for the SMC activation is used.

Acknowledgement

Daniel Balzani acknowledges the Deutsche Forschungsgemeinschaft (DFG) for financial sup-
port within the Priority Program 2311 “Robust Coupling of Continuum-biomechanical In
Silico Models to Establish Active Biological System Models for Later Use in Clinical Appli-
cations – Co-design of Modelling, Numerics and Usability”, project ID 465228106, reference
ID BA2823/18-1. Furthermore, both authors appreciate fruitful discussions with Christian
Cyron (University of Technology Hamburg) regarding the growth model.

References

[1] D. Ambrosi, M. Ben Amar, C. J. Cyron, A. DeSimone, A. Goriely, J. D. Humphrey,
and E. Kuhl. Growth and remodelling of living tissues: perspectives, challenges and
opportunities. J R Soc Interface, 16:20190233, 2019.

[2] E. Anttila, D. Balzani, A. Desyatova, P. Deegan, J. MacTaggart, and A. Kamenskiy.
Mechanical damage characterization in human femoropopliteal arteries of different ages.
Acta Biomaterialia, 90:225–240, 2019. doi: 10.1016/j.actbio.2019.03.053.

[3] B. S. Bagalad, K. P. Mohan Kumar, and H. K. Puneeth. Myofibroblasts: Master of
disguise. J Oral Maxillofac Pathol, 21:462–463, 2017.

[4] J. M. Ball. Convexity conditions and existence theorems in non-linear elasticity. Archive
for Rational Mechanics and Analysis, 63:337–403, 1977.

[5] D. Balzani, D. Brands, A. Klawonn, O. Rheinbach, and J. Schröder. On the mechanical
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[51] M. Tanaka, D. Balzani, and J. Schröder. Implementation of incremental variational
formulations based on the numerical calculation of derivatives using hyper dual numbers.
Computer Method in Applied Mechanics and Engineering, 301:216–240, 2016.



Homeostatic Kinematic Growth Model for Arteries - Residual Stresses and Active Response 29

[52] K. Uhlmann and D. Balzani. Chemo-mechanical modeling of smooth muscle cell activa-
tion for the simulation of arterial walls under changing blood pressure. Biomech Model
Mechanobiol, 22:1049–1065, 2023.

[53] A. Valent́ın and J. D. Humphrey. Evaluation of fundamental hypotheses underlying
constrained mixture models of arterial growth and remodelling. Phil Trans R Soc A,
367:3585—-3606, 2009.

[54] H. Wang, D. Balzani, V. Vedula, K. Uhlmann, and F. Varnik. On the potential self-
amplification of aneurysms due to tissue degradation and blood flow revealed from FSI
simulations. Frontiers in Physiology, 12:785780, 2021. doi: 10.3389/fphys.2021.785780.

[55] H. Wang, K. Uhlmann, V. Vedula, D. Balzani, and F. Varnik. Fluid-structure interaction
of tissue degradation and its effects on intra-aneurysm hemodynamics. Biomechanics and
Modeling in Mechanobiology, 21:671–683, 2022. doi: 10.1007/s10237-022-01556-7.

[56] C. Yap, A. Mieremet, C. J. M. de Vries, D. Micha, and V. de Waard. Six shades of
vascular smooth muscle cells illuminated by klf4. Arterioscler Thromb Vasc Biol, 41:
2693–2707, 2021.

[57] A. Zahn. Modeling of growth and fiber reorientation in soft biological tissues. PhD thesis,
Ruhr Universität Bochum, 2020.

[58] A. Zahn and D. Balzani. A combined growth and remodeling framework for the ap-
proximation of residual stresses in arterial walls. Z Angew Math Mech, 98:2072–2100,
2018.



Klemens Uhlmann, Daniel Balzani 30

A. Recapitulation of Competitive Growth Model (Model B)

The previous version of the growth model (model B) includes a different set of evolution
equations for the growth factors ϑ(a). These evolution equations for model B are defined as

ϑ̇(a) = κ+ϑ,(a)

[
ϑ+
(a) − ϑ(a)

ϑ+
(a) − 1

]m+
ϑ,(a)

ϕ(a) , (18)

where ϑ(a) is the growth factor, ϑ+
(a) constitutes the predefined maximal value for the growth

factor, κ+ϑ,(a) is the growth velocity factor and ϕ(a) is the driving force. The exponent m+
ϑ,(a)

determines the degree of nonlinearity of the growth process. However, this value is set
to a value of 1.0 in simulations presented in this paper. The elastic part of the Mandel
stress Σe = CeSe is used as foundation for the definition of driving forces ϕ(a). As described
in Section 2 for model A, only growth in the direction of the first and second eigenvectors
ofΣe is applied here. Since an idealized geometry (hollow cylinder) is used for the simulations,
these eigenvectors point into axial and radial direction and, consequently, are equal to the
eigenvectors of the Cauchy stress tensor σ. Comparable to model A, the driving forces in
model B are defined as

ϕ(2)(Σe) = Σe :
(
n(2) ⊗ n(2)

)
and ϕ(3)(Σe) = Σe : I . (19)

More details on investigations and variations of this growth model can be found in [58]
and [57]. The final values of the optimization parameters are listed in Table 3. Furthermore,
a comparison between the final simulation results with the experimental data from [30] is
illustrated in Fig. 10.

Table 3: Optimized values of parameters for model B

Parameter α1 α4 α5 ϑ+
(2) ϑ+

(3) κ+
ϑ,(2) κ+

ϑ,(3)

Value 2.97 kPa 4.77 kPa 2.55 kPa 1.27 2.78 4.95·10−7 s−1 4.35·10−4 s−1
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Figure 10: Comparison of simulation results for the passive response of the arterial
wall (solid line) with experimental data from [30] (dots) for the consideration of the
competitive growth model (model B) in the optimization. The simulation results agree
well with the experimental data.
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B. Efficiency of the Optimization Procedure for Varied Axial
Stretch and Convergence Values
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Figure 11: Comparison of results from optimizations with different axial stretches
λax as boundary condition. Distribution of (a) circumferential Cauchy stress σ(cir),
(b) axial stress/ driving force σ(ax)/ ϕ(2), (c) radial driving force ϕ(3) which directly
influences the stresses in circumferential direction, and (d) growth factors ϑ(2) (axial)
and ϑ(3) (radial). Optimizations show convincing results independent from the value
of the axial stretch λax, however some small gradient is still visible in the distributions
of circumferential stresses.



Klemens Uhlmann, Daniel Balzani 32

Variation of Growth Convergence Value ϕ
(2)
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Figure 12: Comparison of results from optimizations with different convergence val-

ues ϕ
(2)
con for the driving force ϕ(2). Distribution of (a) circumferential Cauchy stress

σ(cir), (b) axial stress/ driving force σ(ax)/ ϕ(2), (c) radial driving force ϕ(3) which
directly influences the stresses in circumferential direction, and (d) growth factors ϑ(2)

(axial) and ϑ(3) (radial). Optimizations show convincing results independent from the

convergence values ϕ
(2)
con, however some small gradient is still visible in the distributions

of circumferential stresses.
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C. Growth and Active Response with Trace of Cauchy Stress
as Driving Force
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Figure 13: Distribution of (a) Cauchy stresses σ(ax) and σ(cir), (b) driving forces ϕ(2)

and ϕ(3), and (c) growth values ϑ(2) and ϑ(3) in circumferential (green) and axial
(red) direction over the wall thickness for the fully active material model. Artery is
loaded with an intravascular pressure of 120mmHg. Dashed lines show results before
growth, solid lines show results after growth. The new growth model also generates a
homogenized stress distribution for σ(ax) when smooth muscle contraction is activated.
Contrarily, σ(cir) still shows a significant gradient over the wall thickness caused by
tr(σ) as driving force ϕ(3) which includes the stress in radial direction as contributor
to the driving force.
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