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Abstract

A prominent report [1] claimed substantial support for two introduc-
tions of SARS-CoV-2 into humans using a calculation that combined
phylodynamic inferences and epidemic models. Inspection of the calcu-
lation identifies an imbalance in the hypothesis testing framework that
confounds this result; the single-introduction model was tested against
more stringent conditions than the two-introduction model. Here, I show
that when the two-introduction model is tested against the same conditions,
the support disappears.

Understanding the number of SARS-CoV-2 introductions into humans is
useful for estimating the genetic diversity in the source, and is also relevant to
understanding possible links between the source and particular infection clusters.

A prominent report [1] reviewed genomic data from early in the epidemic
and concluded that sequences outside of two main clades were unreliable. The
authors then hypothesized that the two clades arose from separate introductions
into humans, and quantified support for this hypothesis with a Bayes factor (BF)
that compared the plausibility of their curated genomic data (Y) arising from
two successful introductions (I2) versus one (I1),

BF =
P (Y|I2)
P (Y|I1)

. (1)

The published Bayes factor was 60, with which the authors claimed strong
support for multiple introductions. Subsequent replication efforts identified
three errors in the calculation: a syntax error caused undercounting of one-
introduction likelihoods; an erroneous normalization disproportionately inflated
the two-introduction likelihoods; and non-exclusive marginalization caused
double-counting of two-introduction likelihoods. With a subsequent erratum [2],
the syntax error was corrected, the erroneous normalization removed and the
marginalization made exclusive. As a result, the Bayes factor dropped to 4.
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A Bayes factor of 4 should normally indicate substantial or moderate support.
However, there is an imbalance in the conditioning of the likelihoods used to
calculate equation 1.

The imbalance is the focus of this investigation. I do not attempt to address
issues with data, modeling or the conditions themselves. Instead, I identify the
imbalance in the conditioning of the likelihoods and explore its effect on the
Bayes factor. I then briefly discuss the significance and set out the methods I
used in detail.

Identifying the imbalance
The authors marginalized the Bayes factor 1 over ancestral haplotypes (SMRCA)
and virus tree topologies (τ), while assuming equal prior probabilities for ancestral
haplotypes to derive

BF =

∑
SMRCA

P
(
SMRCA|Y

) [∑
τ

P
(
SMRCA|τ

)
P
(
τ |I2

)]
∑

SMRCA

P
(
SMRCA|Y

) [∑
τ

P
(
SMRCA|τ

)
P
(
τ |I1

)] (2)

where

P (SMRCA|τ) ∝

{
1 if τ and SMRCA are compatible
0 otherwise

(3)

and ∑
SMRCA

P
(
SMRCA|τ

)
= 1 for all τ . (4)

That is, the Bayes factor mixed posterior probabilities (P (SMRCA|Y)) with
likelihoods (P (τ |I)) through compatibility equations (P (SMRCA|τ)), such that
each likelihood was weighted according to the average posterior probability of
the ancestral haplotypes compatible with that topology.

The authors inferred the posterior probabilities, P (SMRCA|Y), using Bayesian
phylodynamic inference, and identified four candidates for the ancestral haplo-
type: SA (the root of the clade closest to bat viruses), SB (the root of the other
main clade, differing from SA by two mutations), SC (differing from SA by one
of SB ’s mutations), and ST (differing from SA by the other of SB ’s mutations).
Under the most plausible inference scheme, which used a synthetic recombi-
nant ancestor (recCA) as root, the authors reported posterior probabilities of
P (SA|Y) = 77%, P (SB|Y) = 8%, P (SC|Y) = 10% and P (ST|Y) = 4%. Note
that SA was found significantly more credible.

The authors estimated the likelihoods, P (τ |I), by simulating 1,100 virus
trees, and counting the proportion with topologies deemed compatible with
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the phylodynamic inferences. Two one-introduction topologies were consid-
ered, τ1C and τ2C , while a single two-introduction topology was considered,
(τp, τp). The authors’ estimated likelihoods (with 95% Bayesian credible in-
tervals) were P ((τp, τp)|I2) = 22.6(19.9, 25.5)%, P (τ1C) = 3.1(2.2, 4.3)% and
P (τ2C) = 0.0(0.0, 0.3)%.

Based on the phylodynamic inferences, the authors deemed (τp, τp) compatible
with {SA, SB , SC , ST }, τ1C compatible with {SA, SB}, and τ2C compatible with
{SC , ST }. With these compatibility statements, equations 3 and 4 evaluate to
the compatibility equations

P
(
SMRCA|(τp, τp)

)
=


1
4 , if SMRCA ∈ {SA, SB SC , ST },

0, otherwise,
(5)

P
(
SMRCA|τ1C

)
=


1
2 , if SMRCA ∈ {SA, SB},

0, otherwise, and
(6)

P
(
SMRCA|τ2C

)
=


1
2 , if SMRCA ∈ {SC , ST },

0, otherwise.
(7)

The imbalance lies in the conditioning of the likelihoods, P (τ |I), through
the different requirements imposed on the different topologies, τ . All topologies
were required to have all taxa within only two clades, with a polytomy of at
least 100 lineages at the root of each, but the one-introduction topologies were
tested against three additional conditions:

• a relative size condition - neither clade could comprise less than 30% of all
taxa;

• an evolutionary separation condition - the roots of each clade had to be
separated from each other by at least two mutations; and

• a root shape condition - the one-introduction topologies were specified as
either τ1C (if one of the two clades was ancestral and the other derived),
or τ2C (if both clades were derived).

One-introduction virus trees that failed to satisfy the relative size and evolu-
tionary separation conditions were excluded from the Bayes factor calculation.
Equivalent two-introduction virus trees were not.

One-introduction virus trees were divided by the root shape condition into
specific topologies, each with the specific compatibility equations 6 and 7. Two-
introduction virus trees were not, but the marginalization gave them the com-
patibility equation 5, which is the average the one-introduction compatibility
equations 6 and 7. This is because of the equal prior probabilities that the
authors assigned to ancestral haplotypes. Thus, the compatibility of the one-
introduction likelihoods was distributed according by the root shape condition,
but that of the two-introduction likelihood was distributed solely by the prior.
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The Bayes factor cannot provide meaningful support for the two-introduction
hypothesis unless the effect of this imbalance was negligible.

Incidentally, the relative size and evolutionary separation conditions seem
unorthodox in that they test sidedness, rather than agreement. This is potentially
a significant source of bias, but outside the scope of this investigation.

Exploring the effect
The effect of the imbalance cannot be evaluated directly because the authors’
two-introduction model lacks details that would allow the additional conditions
to be applied. Nonetheless, the model does contain sufficient information to
establish the minimum effect of the imbalance.

The authors assume a strict molecular clock and that each introduction is
independent. This means the evolution between the two clades arising from a pair
of successful introductions (Ex, Ey) is affected solely by the times (tx, ty) between
the most recent common ancestor (MRCA) and each introduction. Similarly,
the independence of each introduction means that the relative sizes are affected
solely through a difference |tx − ty| in the introduction times. Therefore, the
ability of any pair of introductions (Ex, Ey) to satisfy the relative size condition,
evolutionary separation condition and root-shape condition is affected solely by
the times (tx, ty) between the MRCA and each introduction.

Ideally, a model would be developed for (tx, ty). That is beyond the scope of
this report. Instead, the range of possible times (tx, ty) are explored to find an
upper-bound for the Bayes factor, and thus establish the minimum effect of the
imbalance.

In order to accurately estimate the one-introduction likelihoods, I reproduced
the authors’ epidemic simulations with a hundredfold increase in sample size, to
generate 110,000 simulated successful epidemics. Then, following the authors’
protocols, I simulated sequencing, coalescence and evolution to generate a virus
tree from each successful epidemic, and counted the proportion with topologies
τ1C and τ2C . The resulting one-introduction likelihoods were P (τ1C |I1) = 3.1%
and P (τ2C |I1) = 0.1%, matching those reported by the authors.

In order to explore the two-introduction likelihoods, I drew from the 110,000
successful epidemics, with replacement, to obtain 110,000 of pairs (Ex, Ey) of
successful epidemics. I combined each pair (Ex, Ey) for all timings (tx, ty) ∈
{0, 5, 10, 15, 20, 25, 30}2 days, to obtain 110,000 arrays of 49 combined epidemics.
Then, following the authors’ protocols, I simulated sequencing, coalescence and
evolution to generate a virus tree from each successful epidemic, and counted
the proportion with topologies τ1C and τ2C , where the two clades arose from
the separate introductions. The resulting two-introduction likelihoods are shown
in figure 1.

Notably, figure 1 shows how the conditions combine to place conflicting
demands on P (τ1C |I2). The relative size condition rewards simultaneous in-
troductions, i.e. tx = ty. The evolutionary separation condition rewards a
large total time between the MRCA and introductions, i.e. (tx + ty) → ∞. In
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Figure 1: Two-introduction likelihoods for introduction timings (tx, ty)

combination, they reward increasing timings along the diagonal tx = ty. This
coincidentally reduces the frequency of clades being ancestral and therefore
increases the proportion of topologies deemed τ2C by the root-shape condition.
Accordingly, figure 1 shows the likelihood P (τ2C |I2) increasing along the diagonal
tx = ty. However, for a topology to be deemed τ1C by the root shape condition,
one of the clades must be ancestral. figure 1 shows that this pulls P (τ1C |I2) back
to a lower region near the origin, where the evolutionary separation condition
is less likely to be satisfied. This reflects a straightforward reality; to produce
two clades of similar sizes, separated by two or more mutations, with one of the
clades being ancestral, requires a relatively unusual accident of growth or evolu-
tion. Where the authors omitted the relative size and evolutionary separation
conditions, and replaced the root shape condition with the marginalization, they
bypassed this conflict.

I then calculated Bayes factors using equation 2, the new likelihoods, the
authors’ posterior probabilities and the compatibility equations 6 and 7. The
resulting Bayes factors are shown in figure 2.

Notably, figure 2 shows a maximum Bayes factor at tx = ty = 15 days, close
to the timings for the maximum likelihood P (τ1C |I2) shown in figure 1. This
reflects the fact that the topology τ1C is compatible with the more credible
ancestral haplotype SA, so the likelihood P (τ1C |I2) is given greater weight in
the Bayes factor. The maximum Bayes factor was 2.47. The surface is also fairly
flat, suggesting that a model or marginalization of (tx, ty) should produce a
Bayes factor around 0.2.

Additionally, the likelihood P (τ2C |I2) does not have a maximum inside the
observed range. In order to check for a higher Bayes factor elsewhere, I calculated
Bayes factors with the likelihood P (τ2C |I2) maximized at (tx, ty) = (∞,∞) and
the likelihood P (τ1C |I2) taken from (tx, ty) = (30, 30), as an upper bound. The
result (BF = 0.205) indicates that P (τ2C |I2) cannot cause a higher Bayes factor
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Figure 2: Bayes factors for introduction timings (tx, ty)

elsewhere. This reflects the lower weight the Bayes factor gives to P (τ2C |I2) for
being compatible with the less credible ancestral haplotypes SC , ST .

Incidentally, if the two clades are not required to arise from the two introduc-
tions, the Bayes factor is trivially maximized at (tx, ty) = (0, 0), i.e. simultaneous
introduction of identical viruses, so that the combined behavior is similar to a
single introduction. However, this is not relevant to the hypothesis that the two
clades arose from separate introduction.

The replication results are compared to the authors’ reported results in
Table 1. The one-introduction likelihoods are reproduced accurately. The two-
introduction likelihoods are reduced by an order of magnitude. The Bayes factor
is reduced to below 0.3, reversing direction to indicate at least moderate support
against the report’s conclusions.

Pekar et al. [1] Replication

Failure rate 77.8% 78.4%
P (τ1C |I1) 3.1% 3.1%
P (τ2C |I1) 0.0% 0.1%
P (τ1C |I2) 11.3%* 0.5%**
P (τ2C |I2) 11.3%* 1.6%**
BF 4.3 <0.3

* equivalent portion of P ((τp, τp)|I2)
** at (tx, ty) = (15, 15) days, for max. BF

Table 1: Comparison of results.
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Summary
The authors imposed three additional conditions on the one-introduction model.
Two were simple constraints. The other determined weighting.

Notably, the conditions are not necessarily significant individually, but in
combination they place conflicting demands on the likelihood that is given most
weight in the Bayes factor. Thus, the effect of the imbalance is not necessarily
apparent from considering the conditions alone.

When the conditions applied to the two-introduction model are made con-
sistent with those that the authors applied to the one-introduction model, the
Bayes factor is reduced by at least an order of magnitude, and the conclusion
is reversed. The credibility of the multiple introduction hypothesis should be
reevaluated in light of this reversal.

Methods
Simulation of epidemics followed the authors’ protocol. For each attempted
introduction, a contact network of 5 million nodes was generated with the
Barabási–Albert algorithm [3], starting from 8 unconnected nodes, adding 8
edges with each new node, using preferential attachment and retrying self- and
duplicate-edges. Disease progression was modelled using seven states: sus-
ceptible (S); exposed (E); pre-symptomatic and infectious (P ); symptomatic,
infectious and unascertained (U); symptomatic, infectious and ascertained (A1);
symptomatic, infectious, ascertained and proceeding to hospitalization (A2);
hospitalized (H); and recovered (R). The standard disease progression was

S → E → P → U → R.

However, a fraction of cases became ascertained, progressing as

S → E → P → A1 → R.

A fraction of ascertained cases also became hospitalised, progressing as

S → E → P → A1 → A2 → H → R.

Nodes in the infectious states P , U , A1 and A2 transmitted to neighboring
nodes in the susceptible S state. The transmission rate for the pre-symptomatic
and unascertained states P and U was a fraction of that for the ascertained
states A1 and A2. All processes were modeled as Poisson. Parameters for the
epidemic simulations, and their sources, are in Table 2.

When a susceptible node became exposed with more than one infectious
neighbour, a single source was randomly selected from among the infectious
neghbours, with odds weighted according to transmission rates.

Each attempted introduction was started by initializing a single randomly
selected node in the exposed E state, with the rest susceptible S, and run for
100 days. An introduction was deemed successful if, at the end of the simulation,
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at least 400 infections had occurred and at least one infection was not recovered.
Additionally, I always deemed an introduction successful if it reached 50,000
infections (I considered the likelihood of the epidemic dying out within the 100
days after reaching 50,000 infections to be negligible). I repeatedly attempted
introductions to generate epidemics for 110,000 successful introductions.

Parameter Value Source

Mean number of contacts 16 [4]
Mean duration in E 2.9 days [5], [6]
Mean duration in P 2.3 days [5], [6]
Mean duration in U 2.9 days [7]
Mean duration in A1 2.9 days [7]
Mean duration in A2 8.1 days [8]
Mean duration in H 30 days [7]
Fraction ascertained 0.15 [7]
Fraction of ascertained hospitalized 0.5 [1]
Transmission rate of ascertained 0.0175 /contact/day [1]
Ratio of transmission rate for 0.55 [9]
unascertained over ascertained

Table 2: Parameters for the epidemic simulations.

Each successful simulated epidemic produced a transmission network, de-
tailing the progression of the epidemic across the network, and a list of disease
events, detailing the progression of the disease in each infected host.

Notably, although the simulations followed the protocol described by the
authors, they differed from what was actually implemented by the authors. The
authors hard coded their script to ignore commands to initialize the primary
case in the exposed state (E) and instead initialized the primary case in the
pre-symptomatic and infectious state (P ). I assumed the protocol and command
indicated the intended behaviour and therefore initialized the primary case in
the exposed state (E).

Combining epidemics did not follow the authors’ protocol. The authors merely
assumed that each introduction was independent, and calculated P ((τp, τp)|I2)
as P (τp|I1)2. Instead, I drew from the 110,000 successful epidemics, with
replacement, to obtain 110,000 pairs of successful epidemics (Ex, Ey). For
each pair of introductions, I made 49 unique combinations with timings from
(tx, ty) ∈ {0, 5, 10, 15, 20, 25, 30}2.

For each combined transmission network, I added an MRCA that immediately
divided into two lineages, and made the two lineages transmit to the primary
cases of the epidemics Ex and Ey at tx and ty, respectively. I also offset the
timings of the transmissions in Ex and Ey by tx and ty, respectively, and merged
them into the combined transmission network. I stopped the merge once 50,000
transmissions had been included, or once one of the two simulations had reached
its end time - whichever came first.
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For each combined list of disease events, I offset the timings of the disease
events in Ex and Ey by tx and ty, respectively, and merged them into a combined
disease events list. I only included disease events for cases included in the
combined transmission network, and I stopped the merge once one of the two
simulations had reached its end time.

Simulation of sequencing followed the authors’ protocol. For each ascertained
case among the first 50,000 infections of an epidemic or combined epidemic, a
notional sequence was sampled at a time randomly selected from a period starting
from symptom onset (i.e. P → A1) and ending at recovery (i.e. A1 → R or
H → R). Sequences with sampling times preceding the first hospitalization (i.e.
the first A2 → H) were discarded. If the start of the period for a hospitalized case
preceded the first hospitalization, it was set to the time of the first hospitalization,
in order to ensure that all hospitalized cases were sequenced. If an ascertained
case had not recovered by the end of the simulation, the end of the period was
set to the end of the simulation.

Simulation of coalescence followed the authors’ protocol. For each epidemic
and combined epidemic, the ancestry of the simulated virus samples was traced
back through the tranmission network to produce a virus phylogeny. Within
hosts, lineages were merged with Kingman’s coalescent under a fixed effective
population of one year. For events between a host’s earliest transmission and
infection, the exponential distribution used to sample waiting times was truncated,
in order to ensure a single lineage at the time of infection.

Simulation of evolution followed the authors’ protocol. Mutations were
approximated as unique and irreversible, and simulated along the virus phylogeny
as a Poisson process, at a rate of one mutation every 13.27 days.

Clade analysis followed the authors’ protocol. Lineage numbers included all
leaves and mutated internal nodes descending directly from a clade root (i.e.
without intermediate mutated nodes). Clade sizes counted all leaves descending
directly or indirectly from clade roots.

Checking if two clades arose from two introductions was performed by running
the clade analysis for two-introduction trees with the clade roots manually set
to the first internal nodes following each introduction.

Stable coalescence was not used. The stable coalescence effectively prunes
short-lived basal lineages. Therefore, it might increase the one-introduction
likelihoods, but should have no effect on the two-introduction likelihoods, because
the basal lineages of the two introductions always succeed, as a condition of
equation 1. However, the authors did not explain the reason for using the stable
coalescence. Therefore, I concluded that using the stable coalescent could only
benefit the one-introduction case, without reason, and decided to omit it. The
one-introduction likelihoods nonetheless almost perfectly matched those of the
authors, suggesting that the effect of the stable coalescence is less than the
sampling error, and that the effect of the omission was negligible.
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Data and reproducibility
Results and code are available at https://github.com/nizzaneela/re-multi-
introductions.

The results include the clade analysis result for each simulated virus tree
along with a hash of the corresponding tree.

The code includes a script for reproducing all simulations and a notebook
for collating the results. A separate notebook provides verification of the clade
analysis results and hashes from arbitrary simulations.

The scripts simulate the epidemics using a modified version of
Futing Fan’s implementation [10] of GEMF [11] [12], available at
https://github.com/nizzaneela/GEMF. The modified version of GEMF includes
Niema Moshiri’s modifications to read a seed for the pseudo-random number
generator from the input file.

The scripts use CoaTran [13] for coalescence and TreeSwift [14] for the clade
analysis.
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