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Abstract 

Chronotypes allow for the comparison of one individual’s daily rhythms to that of others, as well 
as to their environment. Mismatch between an individual’s chronotype and the timing constraints 
of their social environment create social jet lag, which is correlated to mental and physical 
health risks. Tracking chronotypes by assessing relative daily phase of pre-existing data from 
diverse sources is one way researchers have attempted to capture the extent and impacts of 
social jet lag in the real world. The concept of chronotype implicitly supposes that a single phase 
applies to an individual, whereas the circadian rhythms of different internal systems entrain to or 
have their outputs masked by different environmental inputs, at least somewhat independently. 
Therefore, it is worth testing the extent to which the timing of data associated with the output of 
one such internal system predicts the timing of the others within the same individual in a modern 
context. If it is true that the modern environment interferes with internal synchrony and/or 
generates different masking for different internal systems’ outputs, then real world data 
reflecting these outputs through different behaviors ought to reveal relatively low correlations, 
reflecting environmental interference. At the other extreme, if there is no behavior or tissue 
specific interference, then different internal system outputs should all be equally predicted from 
data modalities capturing their different outputs. 

Here we explore multimodal behavioral rhythm data from the Owaves calendaring app, focusing 
on behavioral outputs logged as: Sleep, Exercise, Eat, Work, Love, Play, Relax, Misc. We find 
that individuals show daily rhythms within each behavior type from which chronotypes can be 
assigned, but that chronotypes derived from different behaviors (or combinations of behaviors) 
lead to nearly independent sorting of individuals by phase. This suggests that if real world data 
are used to assign an individual’s chronotype, then that chronotype may be specific to the 
internal system the output of which is related to each specific data modality assessed. Our 
findings suggest that researchers cannot confidently assume to account for outputs from other 
internal systems in real world settings without additional observations or controls. 

Introduction 

Historically people have been classified into chronotypes to identify the phase of their circadian 
rhythms relative to others. Chronotype assessments have been used to categorize individuals 
using a range of data types, from digital school logs[1], [2] to social media activity[3], [4] to one 
time retrospective questionnaires[5], [6]. These in turn are abstractions from clinical assessment 
tools such as Dim Light Melatonin Onset (DLMO) [7], [8]. Chronotype is often discussed as a 
unitary trait belonging to an individual, with stereotyped changes occurring across life, as well as 
with demographic factors[9], [10]. However, many studies have also sought to compare the 
estimates of various approaches, which tend to correlate, but not with extreme precision (e.g. 
[11], [12]; the full review or even meta-analysis of that literature would be quite interesting, but is 
beyond the intended scope of this manuscript). 
 



Circadian regulation is not relegated to one body part [13], [14], but seems to have evolved 
within individual cells from which multicellular organization arose later [15], [16]. It seems more 
appropriate to think of individuals as coupled oscillator networks[17], [18] composed of cells and 
tissues each with their own intrinsic and entrainable rhythms. The resulting hypothesis that 
humans are coupled oscillator systems makes two important predictions for the work presented 
here: 1) individuals do not have “a phase” but represent many phases that, under healthy 
conditions, share stable alignments; 2) the outputs of different internal systems may react 
differently to different environmental and social pressures. This framework suggests that 
different body system-related outputs might entrain to different zeitgebers (e.g. [19], [20]) or be 
masked differently by specific environmental cues (e.g. [1]), leading to less reliable phase 
alignment within an individual’s various outputs when in modern social contexts. From the point 
of view of using diverse data sources to infer chronotype for an individual, this framework 
suggests the need for testing as to how consolidated / stably aligned different output phases 
really are within an individual, and what that means in terms of whether an individual should be 
thought of as having “a chronotype” as opposed to “a chronotype for sleep,” “for exercise,” “for 
eating,” etc. 
 
In this study we examine the hypothesis that data generated in the real world by the timing of 
different human outputs stably align within an individual, consistently reflecting that individual’s 
chronotype. We leverage daily rhythm data from Owaves, a day planner app, capturing self-
reported timing records of many different outputs (Sleep, Exercise, Eat, Work, Love, Play, 
Relax, and Miscellaneous activity labels) from 1M+ activities across 229 individuals 
longitudinally. We employ multiple clustering and classification approaches to test the null 
hypothesis that chronotype classification is not meaningfully affected by the choice of activity 
used to generate the classification. 

Results 

Data filtering (see Methods) resulting in a pool of 229 individuals with sufficient data for inclusion 
in these analyses. The composition of this populations was 13 males, 96 females, 13 others, 
107 unknowns; mean age 26.5 +/- 9.5 years standard deviation. We did not have associated 
ethnicity data for these individuals, but it is presumed to be majority white gathered from the 
United States. 
 
Here we compared eight different kinds of output from the same people who logged the time of 
different outputs in the Owaves calendar app. We sorted all individuals within each output by the 
median time of each output’s daily midpoint (e.g., an individual’s median midsleep phase) to 
create chronotype proxies for each individual within each output. For example, Fig. 1A shows 
three chronotypic sortings across all individuals (we show only a few examples of the 8x8 
possible comparisons for the sake of brevity in the illustration, but report all pairwise 
comparisons in the tables). All within-output sortings showed a similar capacity for enabling 
assignment of chronotypes to individuals, visible as a diagonal line of individual phases 
progressing from the top left to the bottom right in Fig. 1A). When visually assessing the ranking 
across outputs – the rank order of one output visualized using the individuals’ phases from any 



other output – that capacity for assigning chronotypes disappears. Fig. 1B illustrates that the 
rank order across different outputs appears random, suggesting that the timing of one activity 
(e.g., sleep) does not predict the timing of another (e.g., exercise) within the same individual. 
This lack of correlation across output-related data modalities indicates that different behavioral 
chronotypes are largely independent. The loss of a clear line progressing from one row to the 
next reflects a lack of relationship between rows of individual’s phase rank from one output (Y 
axis) versus the timing of events in a different output (X axis).  

 
 
Figure 1. Comparison of rankings as chronotypes by one modality are not preserved into other modalities. A: comparison 
of sleep timing (the most common chronotype proxy) to exercise timing (a common proxy) and love (a novel proxy). Within each 
there are a range of timings consistent with the concept of chronotype (A). When sorted by each other (B) the range is lost, 
suggesting that the information from one output has a relatively random predictive value of the same people's timing in other 
outputs; colors are arbitrary within each graph and not suggest relationships across panels.  

 
We then sought to quantify the similarity of chronotypes from each output to each other output; 
to test the hypothesis that each individual should have a similar chronotype regardless of the 
specific output used as a proxy for their internal circadian rhythms. We directly measured 
resultant chronotype similarities by Adjusted Rand Index (ARI) to test for related vs. random 
sorting across outputs, using two forms of clustering to ensure the results were not dependent 
on our choice of clustering algorithm. In both hierarchical clustering on raw data (Fig. 2A) and 
K-means on principal component projections of the data (Fig. 2B), ARIs were low for all cross-
output comparisons (Fig. 2C,D). By contrast, when we introduced random but systematically 
increasing disorder into a given hierarchy, the ARI started high and drifted lower with increasing 
disorder, as expected. This confirms that the ARI metric is operating as expected, but that 
clusters generated within each output show little relationship to each other across outputs (Fig. 
2E, inset in C). The randomized ARI after 100 trials (100 randomizations from the original 229 



individuals) varied between 0.25 and 0.45. The mean and median ARI for hierarchical clustering 
were 0.07 and 0.03; for K-means these were 0.09 and 0.07. This reflects the ARI of lists by 
assessing the matching of exact ordering user by user. This low rate of agreement remained the 
trend when using composite modalities of either the 4 most commonly used modalities (sleep, 
eat, exercise, work) or of all modalities. 
ARI compares the relative positions of the ends of each branch (individual users). We therefore 
additionally compared the proportion of users within each cluster that remained in the same 
cluster when compared across modalities (clusters are grouped by color in Fig 2A,B – colors do 
not correspond across plots, as color is assigned per cluster, the order and composition of 
which changes with each different analysis). This lowered the propensity of the above ARI 
metric to overvalue small changes in rank that might not reflect change in real-world chronotype 
categorization (e.g. owls rank 1 and 3 out of 100 could switch places and lower ARI in our first 
analysis, but that small of a change would not likely change both of their classifications from owl 
to something else). We calculated the proportion of IDs preserved across activity type pairs by 
aligning clusters to maximize shared individuals. Then for each cluster in one activity type, we 
aligned it with the cluster in each other activity type that shared the maximum user overlap, and 
calculated the proportion of users preserved (Fig 2F). We used randomized cluster assignments 
to establish a baseline comparison Fig 2G). Using these broader groupings, we found generally 
higher agreements with a mean 48% and a median 45% preserved per cluster across activity 
types. By comparison, the randomized baseline showed mean 45% and median 43% preserved 
at chance, which is slightly lower than the percent we found in the actual cluster comparisons, 
but not substantially different. 



 
Figure 2. Numerical comparisons confirm a lack of chronotype transfer from one modality to another. Both Hierarchical 
(A) and K-means (B) clustering (here showing the same example modalities as in Fig. 1) confirm a substantial differences in 
sorting by different outputs. Across all eight modalities in this data set, ARIs confirm the relatively random relationship between 
chronotypes assigned by any modality to that assigned by any other (C, D). As a positive control (E), ARI values decrease from 1 
toward 0 proportionate to the number of pairwise random swapping of user ranks from a given hierarchy. Proportion of preserved 
within a shared cluster (F: hierarchical) was still near that of chance (G). Note, the higher proportion of alignment with Misc in 
both Actual and Randomized suggests a lack of independence of Misc from other modalities, rather than a meaningful use case 
for chronotype assignment. 



Discussion 

In this manuscript we found that all 8 different behavioral data modalities assessed could be 
sorted to allow for individual assignment of chronotype. When comparing the rankings by phase 
across modalities, in almost all cases the relationships were nearly random. Assessing rank 
only as likelihood of individuals still being located within the same large clusters (simulating 
chronotypic “types” like lark or owl) across data modalities improved our findings from about 5% 
agreement to about 50% agreement, which was similar to but slightly higher than chance. This 
low level of agreement across data modalities within individuals was consistent by multiple 
analytic approaches. 
 
This is consistent with 1) either desynchrony of phase across physiological system’s outputs 
and/or 2) differential masking of different outputs within an individual living in the real world. It 
appears that while each data modality reveals a range of daily timing across people, the relative 
position or phase of this timing is not stable across data modalities associated with different 
outputs within individuals. Concretely, we found that in this dataset, saying someone is the 
earliest sleeper carried little to no information about whether they were the earliest eater or 
exerciser or anything else. Examining a large set of data from many different real world activity 
logs, we find that the choice of activity upon which to base assessments of chronotype is highly 
influential on the outcome of the classification. That is, depending on the activity used as a 
proxy for circadian rhythms classification into chronotypes, the same individual will have a 
relative phase that in most cases has a close to random relationship to the same individual’s 
phase assessed by a different data modality. 
 
We cannot say from these analyses whether any one of these eight modalities assessed here is 
closer to an internal circadian rhythm than another; we do not know what is the output of an 
endogenous oscillator, and what is just a behavioral output, nor are we able to confirm the level 
at which planned outputs reported in the app correspond to actual actions taken. As a result, we 
have attempted to couch our findings as being consistent with either internal desynchrony or 
differential masking or some combination. We furthermore do not know how common such a 
low level of agreement would be in different data types or different data sets. A key limitation 
that must be emphasized is our reliance on self-reported data from Owaves, which likely results 
in biases, such as over-reporting or under-reporting certain activities. Future studies could 
incorporate objective measures such as wearables to validate self-reported timing. Additionally, 
our cohort is not broadly representative, but majority women in their 20s, reflecting the user 
base of this particular multimodal data source. We are strong proponents of diverse inclusion in 
data collection, and Sex as a Biological Variable analysis, and so it is frustrating to not be able 
to more deeply compare effects of different groups on our findings this far; though this data 
source does provide substantial volumes of longitudinal and multimodal data, allowing for the 
comparisons we carry out, it does not provide the demographic breadth of coverage that would 
let us assess the generalizability of our results. Stability of cross-activity phase relationships is 
likely to change with age and life stage. Behavioral choices are also under social constraint, and 
so are influenced by socioeconomics, diet, and all manner of other conditions and choices, all of 
which likely also changes by population, age, and other demographic factors. Future work 



assessing the stability or relatedness of different longitudinal “digital wakes” left by individuals 
from diverse circumstances would help to clarify the causal roles of different influences on the 
rate of activity alignments within individuals. More invasive studies may be needed to 
disentangle which data modalities are more driven by physiological oscillator outputs, and which 
more driven by masking. 
 
Even with these limitations, our findings of low across-modality agreement are not entirely 
surprising. Human activities are not generated by internal circadian rhythms in isolation, but are 
instead heavily influenced by environment and society. Since those external influences may 
have differing impacts on different body systems (e.g. food may influence the liver more[21], 
caffeine or anxiety may influence sleep timing more[22], etc), we might expect to see more 
plasticity in output timing in humans living in a post-industrial context. Nevertheless we were 
surprised by the extent of the dissimilarity between activities. Our findings suggest that care is 
warranted when interpreting phases estimated from different data sources, and that more 
studies should be carried out to understand the connections between outputs (here, activities) 
and internal circadian mechanisms. If these outputs are good proxies for internal rhythms of 
related physiological systems (and we have no measurement of that within this analysis), then 
internal desynchrony maybe more common and of higher amplitude than is commonly 
assumed; if they are not good proxies, then interpreting findings from real world studies using 
digital outputs as proxies for circadian rhythms – including our own work[1] – may need to be 
reinterpreted.  What our analyses prove, if anything, is open to debate on many fronts, and we 
try to temper our claims accordingly. What these results do cause us to say is that we can reject 
the hypothesis that chronotype is definitely a stable construct across data modalities. How 
stable, for whom, and by which measures is important to work out as more work in circadian 
rhythms builds on emerging data sources[23]. 
 
In summary, our data suggest caution and consideration. Circadian biologists studying real 
world human data should be careful to assess and report from which output chronotype is being 
assessed; what presumed physiological systems are implicated, and which data modalities are 
used as proxies. Large, longitudinal, and multimodal data like those generated by Owaves are 
rare at present but likely to become more common. Here such a data set revealed that the 
construct of chronotype may be less stable or generalizable than is often assumed. The 
limitation of inferring endogenous functions from proxy data must be reiterated. At the same 
time, the potential of different data modalities serving as proxies from multiple different internal 
systems is tantalizing. Such data may support increased precision when using timing changes 
to infer health changes, as in longitudinal monitoring for changes in mental health or 
chronotherapeutics. 
 



Methods 

1. Data Collection 

The entire analysis was carried out using Python. We received a dataset comprising over a 
million activity records from the Owaves team, specifically from users who had consented to 
participate in the research. The total dataset consisted of 1,037,191 rows, detailing eight 
different types of user activities: sleep, eat, exercise, work, love, play, relax, and miscellaneous. 
Each row contained information on the start and end times of the activity, its title, type, location, 
and notes. For security purposes, the data was de-identified before we received it. 

2. Data Filtering Pipeline 

The dataset was filtered to ensure a sufficient variety of daily activities, allowing us to analyze 
individual circadian rhythms and the impact of different activities on each other. Days were 
included in the analysis if they met the following criteria: 

● Days should be filled at least 75% (>= 18 hours). 
● Days should have at least one activity for each of the following types: Sleep, Eat, 

Exercise, Work. 
● Users should have at least 30 days of data to ensure variability in day plans while 

maintaining a decent number of users. 

Post-filtering, the dataset was reduced to 433,732 rows from 229 individuals, accounting for 
56.6% of the original, non-duplicated database. 

 

 

Figure 3. Data filtering pipeline schema. 

3. Actigraphic inter-individual, inter-activity analysis 
a. Data Preparation 

We calculated the hour times for the start and end dates of each activity. Rows with null values 
for essential features such as duration, endUnit, startHourTime, and midHourTime were 
removed. Consecutive sleep activities spanning multiple days were combined into single 
activities to simplify the analysis. 



b. Heatmap Construction 

Median phases were used to define each individual’s chronotype and to determine their amount 
of social jet lag. We sorted users by median values of their startHourTime and midHourTime to 
generate the matrixes which we then colored by cell value to make Heatmaps for Figure 1. 
Activities were sorted based on median onset time for selected types, and heatmaps were 
plotted using Seaborn’s heatmap method. 

4. Clustering Analysis 
a. Data Preparation 

To analyze clustering patterns, the following metrics were calculated for each activity: duration, 
startHourtime, midHourtime. “Duration” captures the length of time spent on a specific activity, 
providing insights into a user’s allocation of time across daily tasks. This is particularly relevant 
in understanding the internal distribution of effort and energy throughout the circadian cycle. 
“startHourTime” represents the hour value of the start time of an activity within a day, whereas  
“midHourTime” represents the hour value of the midpoint of an activity within a day. This serves 
as a proxy for the temporal placement of the activity relative to natural circadian phases (e.g., 
sleep, exercise). It helps identify whether activities align with expected chronotype patterns or 
deviate from typical circadian rhythms. 

These features were added because they offer a quantifiable representation of circadian 
behaviors and provide a meaningful basis for evaluating individual chronotypes or alignment to 
circadian phases. 

b. K-Means Clustering 

The data was grouped by user and activity type before clustering. Each group was normalized 
using the StandardScaler().fit_transform method. Principal Component Analysis (PCA) was 
applied to reduce dimensionality and to aid in visualizing the data. To determine the optimal 
number of clusters, the elbow method was employed by plotting the inertia values for different 
cluster numbers. Based on this, K-means clustering was performed using the optimal number of 
clusters. This process was applied to different subsets of the data, allowing for comparisons 
across different activity types and time periods. 

c. Hierarchical Clustering 

Data was normalized using the StandardScaler().fit_transform method, similar to the K-means 
approach. Z-scores were computed for the normalized data, and entries with extreme Z-scores 
(absolute values greater than 5) were filtered out to reduce noise. Hierarchical clustering was 
then performed using the Ward’s method for linkage, available in the scipy library, which 
minimizes variance within clusters. The fcluster function was used to assign cluster labels based 
on the dendrogram and the predetermined number of clusters. 



5. Similarity Analysis of Clustering Techniques 

To determine the similarity between clusters obtained from different clustering techniques, we 
performed a similarity analysis using Adjusted Rand Index (ARI) values for both the hierarchical 
clustering and K-means clustering results for each activity type. 

6. ARI Values After Progressive Randomization: 

We also tried to create a positive control or baseline for ARI scores. If the ARI scores after 
randomization still remain relatively high, it suggests that the original clustering was not much 
better than random. On the other hand, if the ARI after randomization becomes close to 0, it 
suggests that the original clustering is meaningfully better than random assignment. 
 
Methodology: 
 

A. Choose one clustering result: Select one clustering result from the previous analyses 
(we selected the clustering for Sleep activities). 

B. Calculate ARI against itself: First calculate the Adjusted Rand Index (ARI) of the 
clustering result compared to itself. Since it's comparing a clustering to itself, the ARI 
should be 1 (perfect agreement). 

C. Progressively randomize the clustering: 
a. Implement a loop that randomly swaps the cluster labels of two users or points. 
b. After each swap, recalculate the ARI between the original clustering and the 

newly randomized clustering. 
D. The idea is to make the clustering increasingly more random with each iteration 

(cumulative randomization). 
E. Repeat the process: Run this randomization loop for a specified number of iterations (we 

are running it for 100 times). The ARI should decrease progressively as the clustering 
becomes more random. 

7. Contextual Day Analysis 

The timing of key behaviors like eating and sleeping plays a crucial role in how the body's 
internal clock aligns with the external environment. Diving time into fixed 24-hour periods split at 
midnight may fail to capture the temporal dynamics of real-world behavior, where transitions 
between activities significantly influence circadian alignment. 
 
We developed the concept of a contextual day, defined by the last eating activity of a day and 
the first sleep activity that follows it but ends in the next day. The end time of the contextual day 
is either the start of that sleep activity (if it begins on the next day) or 11:59:59 PM (if the sleep 
starts on the same day). The start time of the next contextual day begins immediately after the 
end of the previous contextual day, either at 12:00:00 AM or when the last contextual day ends 
if it's later than midnight. 
 



Author Contributions 

SG carried out data handling and analysis, and developed figures with BS. RK and BS assisted 
with experimental design, analytic design. All authors contributed to the writing and editing of 
the manuscript. 
 

Conflict of Interest 
BS and KS are advisors at Owaves, Inc., and RK is a founder; these three have a financial 
interest in Owaves, Inc. They have no other financial interests to report. SAI is an advisor at 
Owaves, Inc.; she has no financial interest in Owaves, Inc. SAI is a consultant for Wesper. All 
other authors are contracted by Owaves for their contributions to this study and have no other 
conflicts of interest. 

 
References 
[1] B. L. Smarr and A. E. Schirmer, “3.4 million real-world learning management system logins 

reveal the majority of students experience social jet lag correlated with decreased 
performance,” Scientific Reports, vol. 8, no. 1, p. 4793, Mar. 2018, doi: 10.1038/s41598-
018-23044-8. 

[2] B. L. Smarr, “Digital sleep logs reveal potential impacts of modern temporal structure on 
class performance in different chronotypes,” J Biol Rhythms, vol. 30, no. 1, pp. 61–67, Feb. 
2015, doi: 10.1177/0748730414565665. 

[3] T. Roenneberg, “Twitter as a means to study temporal behaviour,” Curr Biol, vol. 27, no. 
17, pp. R830–R832, Sep. 2017, doi: 10.1016/j.cub.2017.08.005. 

[4] K. Zhou, M. Constantinides, D. Quercia, and S. Šćepanović, “How Circadian Rhythms 
Extracted from Social Media Relate to Physical Activity and Sleep,” Proceedings of the 
International AAAI Conference on Web and Social Media, vol. 17, pp. 948–959, Jun. 2023, 
doi: 10.1609/icwsm.v17i1.22202. 

[5] J. A. Horne and O. Ostberg, “A self-assessment questionnaire to determine morningness-
eveningness in human circadian rhythms,” Int J Chronobiol, vol. 4, no. 2, pp. 97–110, 
1976. 

[6] T. Roenneberg, A. Wirz-Justice, and M. Merrow, “Life between Clocks: Daily Temporal 
Patterns of Human Chronotypes,” J Biol Rhythms, vol. 18, no. 1, pp. 80–90, Feb. 2003, 
doi: 10.1177/0748730402239679. 

[7] A. J. Lewy, R. A. Sack, and C. L. Singer, “Assessment and treatment of chronobiologic 
disorders using plasma melatonin levels and bright light exposure: the clock-gate model 
and the phase response curve,” Psychopharmacol Bull, vol. 20, no. 3, pp. 561–565, 1984. 

[8] A. J. Lewy and R. L. Sack, “The dim light melatonin onset as a marker for circadian phase 
position,” Chronobiol Int, vol. 6, no. 1, pp. 93–102, 1989, doi: 
10.3109/07420528909059144. 

[9] D. Fischer, D. A. Lombardi, H. Marucci-Wellman, and T. Roenneberg, “Chronotypes in the 
US - Influence of age and sex,” PLoS One, vol. 12, no. 6, p. e0178782, 2017, doi: 
10.1371/journal.pone.0178782. 

[10] C. Randler and J. Engelke, “Gender differences in chronotype diminish with age: a meta-
analysis based on morningness/chronotype questionnaires,” Chronobiol Int, vol. 36, no. 7, 
pp. 888–905, Jul. 2019, doi: 10.1080/07420528.2019.1585867. 



[11] E. B. Klerman, H. B. Gershengorn, J. F. Duffy, and R. E. Kronauer, “Comparisons of the 
variability of three markers of the human circadian pacemaker,” J Biol Rhythms, vol. 17, 
no. 2, pp. 181–193, Apr. 2002, doi: 10.1177/074873002129002474. 

[12] A. M. Reiter, C. Sargent, and G. D. Roach, “Finding DLMO: estimating dim light melatonin 
onset from sleep markers derived from questionnaires, diaries and actigraphy,” Chronobiol 
Int, vol. 37, no. 9–10, pp. 1412–1424, 2020, doi: 10.1080/07420528.2020.1809443. 

[13] J. A. Mohawk, C. B. Green, and J. S. Takahashi, “CENTRAL AND PERIPHERAL 
CIRCADIAN CLOCKS IN MAMMALS,” Annu Rev Neurosci, vol. 35, pp. 445–462, 2012, 
doi: 10.1146/annurev-neuro-060909-153128. 

[14] K. G. Baron and K. J. Reid, “Circadian Misalignment and Health,” Int Rev Psychiatry, vol. 
26, no. 2, pp. 139–154, Apr. 2014, doi: 10.3109/09540261.2014.911149. 

[15] U. Bhadra, N. Thakkar, P. Das, and M. Pal Bhadra, “Evolution of circadian rhythms: from 
bacteria to human,” Sleep Medicine, vol. 35, pp. 49–61, Jul. 2017, doi: 
10.1016/j.sleep.2017.04.008. 

[16] C. Ferrari et al., “Kingdom-wide comparison reveals the evolution of diurnal gene 
expression in Archaeplastida,” Nat Commun, vol. 10, no. 1, p. 737, Feb. 2019, doi: 
10.1038/s41467-019-08703-2. 

[17] A. D. Grant, K. Wilsterman, B. L. Smarr, and L. J. Kriegsfeld, “Evidence for a Coupled 
Oscillator Model of Endocrine Ultradian Rhythms,” J. Biol. Rhythms, vol. 33, no. 5, pp. 
475–496, 2018, doi: 10.1177/0748730418791423. 

[18] D. Gonze, S. Bernard, C. Waltermann, A. Kramer, and H. Herzel, “Spontaneous 
Synchronization of Coupled Circadian Oscillators,” Biophysical Journal, vol. 89, no. 1, pp. 
120–129, Jul. 2005, doi: 10.1529/biophysj.104.058388. 

[19] P. Lewis, H. W. Korf, L. Kuffer, J. V. Groß, and T. C. Erren, “Exercise time cues 
(zeitgebers) for human circadian systems can foster health and improve performance: a 
systematic review,” BMJ Open Sport Exerc Med, vol. 4, no. 1, Dec. 2018, doi: 
10.1136/bmjsem-2018-000443. 

[20] L. D. Grandin, L. B. Alloy, and L. Y. Abramson, “The social zeitgeber theory, circadian 
rhythms, and mood disorders: Review and evaluation,” Clinical Psychology Review, vol. 
26, no. 6, pp. 679–694, Oct. 2006, doi: 10.1016/j.cpr.2006.07.001. 

[21] L. N. Woodie et al., “Hepatic vagal afferents convey clock-dependent signals to regulate 
circadian food intake,” Science, vol. 386, no. 6722, pp. 673–677, Nov. 2024, doi: 
10.1126/science.adn2786. 

[22] S. L. Chellappa and D. Aeschbach, “Sleep and anxiety: From mechanisms to 
interventions,” Sleep Medicine Reviews, vol. 61, p. 101583, Feb. 2022, doi: 
10.1016/j.smrv.2021.101583. 

[23] “Augmenting Circadian Biology Research With Data Science - Severine Soltani, Jamison 
H. Burks, Benjamin L. Smarr, 2025.” Accessed: Feb. 20, 2025. [Online]. Available: 
https://journals.sagepub.com/doi/10.1177/07487304241310923 

 

Data Availability 

Owaves’ data use policy does not permit us to make the data available to third parties without 
approval.  
 


