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Abstract

Understanding the principles of protein folding is a cornerstone of computational
biology, with implications for drug design, bioengineering, and the understanding
of fundamental biological processes. Lattice protein folding models offer a sim-
plified yet powerful framework for studying the complexities of protein folding,
enabling the exploration of energetically optimal folds under constrained con-
ditions. However, finding these optimal folds is a computationally challenging
combinatorial optimization problem. In this work, we introduce a novel upper-
bound training scheme that employs masking to identify the lowest-energy folds in
two-dimensional Hydrophobic-Polar (HP) lattice protein folding. By leveraging
Dilated Recurrent Neural Networks (RNNs) integrated with an annealing process
driven by temperature-like fluctuations, our method accurately predicts optimal
folds for benchmark systems of up to 60 beads. Our approach also effectively
masks invalid folds from being sampled without compromising the autoregres-
sive sampling properties of RNNs. This scheme is generalizable to three spatial
dimensions and can be extended to lattice protein models with larger alphabets.
Our findings emphasize the potential of advanced machine learning techniques
in tackling complex protein folding problems and a broader class of constrained
combinatorial optimization challenges.

1 Introduction & Previous Work

Protein folding is a biological process in which a linear sequence of amino acids adopts a three-
dimensional structure. A correct fold or a misfold can significantly affect the biological health of a
living organism [1]. As a result, an accurate understanding of how proteins fold is critical in biology
and drug discovery [2]. The curse of dimensionality of the protein folding space makes it challenging
to address using standard computer simulations [3]. Lattice protein folding provides a simplified
yet insightful framework for studying protein folding dynamics by reducing the complexity of the
search space. In the regular lattice, each cell may house an amino acid. It is also common to further
simplify this folding process by reducing all 20 types of amino acids to only two types: hydrophobic
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and polar amino acids, also called beads. These simplifications correspond to the Hydrophobic-polar
(HP) lattice protein folding model [4]. Despite these simplifications, finding the fold with the lowest
energy (global minima) is NP-complete for both 2D and 3D HP lattice models [5].

Machine learning tools have already addressed the question of protein folding in different settings. In
the continuous folding space, AlphaFold, a machine learning-based approach has achieved remarkable
performance on the prediction of protein structures compared to state-of-the-art methods [6]. In
the discrete folding space, machine learning approaches have also addressed the HP protein folding
model in 2D as a combinatorial optimization problem. In recent years, there has been increasing
interest in using machine learning techniques to solve combinatorial optimization problems [7, 8, 9,
10, 11, 12, 13, 14, 15, 16]. In particular, for the 2D lattice protein folding problem, this study [17]
developed a model called FoldingZero, which combines deep reinforcement learning (RL) with a
two-head deep convolutional neural network (HPNet) and a modified tree search algorithm. This
work investigated chain sizes up to 85 with successful runs matching the optimal energy for sizes up
to 20. Another RL study [18] also investigated HP chains up to 36 beads using various RL methods
such as policy and value iteration, Monte Carlo Tree Search, and AlphaGo Zero with pretraining.
According to their results, the adoption of the AlphaGo Zero algorithm exhibits superior performance
in comparison to the other methods. Finally, by far the strongest RL work [19] obtains optimal folds
for HP chains up to 50 beads. They largely attribute the success of their method to the incorporation
of Long Short Term Memory (LSTM) architectures in their procedure, which capture long-range
interactions in the folding process.

Our work demonstrates the ability of dilated recurrent neural networks (RNNs) [20] supplemented
with temperature annealing [12, 13, 14, 15] to solve instances of the 2D HP lattice folding model.
In all the previous studies, sampling invalid folds has been discouraged by introducing an energy
penalty. In our work, we use masking to sample valid folds from RNNs autoregressively to enhance
convergence and training stability. We also introduce a novel scheme by introducing a free energy
upper bound that stabilizes and enhances RNNs training on the 2D HP model, while preserving their
ability to generate folds in the valid folding space autoregressively.

The plan of this paper is as follows: In the methods section, we describe the mathematical details
of the HP model and the variational annealing framework that we use in conjunction with dilated
RNNs. Additionally, we present our scheme for projecting dilated RNNs autoregressive sampling
to valid folds and show our derived upper bound training which enhances the trainability of RNNs.
Finally, in the Results and Discussion section, we highlight empirical evidence in favor of annealing
and upper-bound training. We also highlight that our method can find ground state folds up to 60
beads, showing competitive results compared to other machine learning approaches in the literature.

2 Methods

2.1 The HP Model

A fully folded protein chain can be conveniently represented on the 2D Cartesian plane. Let
Γ = (γ0, . . . , γN ) ∈ {0, 1}N+1 represent an HP chain or sequence having N + 1 beads. Here, 0 and
1 denote the ‘H’ and ‘P’ beads respectively. For a complete fold of Γ, let the Cartesian coordinates of
each bead in Γ be (x0, y0), . . . , (xN , yN ) respectively where ∀i;xi, yi ∈ Z. A fold requires every
pair of consecutive beads to be a unit distance away from each other, either on the x-axis or on the
y−axis, but not both. In other words, the following condition

∀i; |xi − xi+1|+ |yi − yi+1| = 1 (1)

is enforced. A hard constraint on this problem is that a fold must be a self-avoiding walk (SAW),
meaning no two beads can have overlapping coordinates. Thus, the constraint

∀i ̸= j; (xi, yi) ̸= (xj , yj) (2)

must also hold true for a valid fold. To map a protein sequence Γ to some (valid or invalid) fold,
we define a sequence of moves to be the solution d ∈ {0, 1, 2, 3}N . A move di ∈ d dictates
the coordinates of bead γi in a fold given the coordinates of the previous bead γi−1 which are
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Figure 1: For the protein sequence ‘PHHPHHPH’, encoded as Γ = (1, 0, 0, 1, 0, 0, 1, 0), we may
have three folds as shown above. The arrow indicates the start of the fold from the first bead and
the dotted green line shows the ‘H-H’ pairs that contribute to energy. (a) d = (2, 1, 2, 0, 0, 3, 3) and
E(d) = −1. (b) d = (0, 0, 2, 1, 1, 2, 0) and E(d) = −2. (c) d = (0, 0, 2, 1, 3, 3, 1) and since d
breaks the self-avoiding walk constraint by overlapping the second and sixth beads, E(d) = 0.

(xi−1, yi−1). Specifically, for 1 ≤ i ≤ N , the next bead position is given as follows:

(xi, yi) =


(xi−1 − 1, yi−1), di = 0

(xi−1 + 1, yi−1), di = 1

(xi−1, yi−1 + 1), di = 2

(xi−1, yi−1 − 1), di = 3.

The initial position (x0, y0) can be set to any reference coordinates, such as (0, 0), which we use
in this work. Semantically, our chosen convention is such that moves 0, 1, 2, and 3 corresponds to
placing the current bead γi to the ‘left of’, ‘right of’, ‘above’, and ‘below’ the previous bead γi−1

respectively on the Cartesian plane.

The energy of a fold d given by E(d) is defined as the negative of the number of neighboring or
adjacent ‘H-H’ pairs in the folding space that are not consecutive in the protein sequence itself, as
illustrated in Fig. 1. We can denote this number as NHH. To formulate E(d) mathematically, we first
define the function M : Z× Z→ {0, 1} as

M(x, y) =

{
1, if (x, y) is occupied by an H bead
0, otherwise.

(3)

Using the function M , we define the energy of a valid protein sequence fold d as

E(d) ≡ −NHH =
1

2

N∑
i=0

(
(1− γi)(Ai − M̂i)

)
, (4)

where
M̂i = M(xi−1, yi) +M(xi+1, yi) +M(xi, yi−1) +M(xi, yi+1)

and
Ai = (1− γi−1) + (1− γi+1).

Here, the energy function checks all four neighboring coordinates of γi in the fold. An energy
contribution of −1 is added in proportion to the number of neighboring ‘H’ beads through the term
proportional to M̂i. However, for all beads, — except for the first and the last — two of the four
neighboring beads γi−1 and γi+1 cannot contribute to the energy as they are consecutive to γi in the
protein sequence. Therefore, we subtract these contributions by adding the term proportional to Ai.
For the boundary cases of the first and the last bead, we use γ−1 = γN+1 = 1. Note that the double
counting of ‘H-H’ adjacent pairs is taken into account by dividing by a factor of 2. Lastly, if a fold d
is invalid, its energy is set to 0 by default.

2.2 Variational Annealing

Given the NP-completeness of the folding process [21, 22], it is natural to treat the problem of finding
the optimal solution as a combinatorial problem. This setting motivates our variational learning
approach which consists of sampling solutions from a distribution Pθ characterized by a probabilistic
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model with parameters θ. In particular, we want Pθ to approximate the Boltzmann distribution at a
given temperature T [23]. To train the model parameters θ, we use the variational free energy [24, 12]

Fθ(T ) = ⟨E⟩ − TSθ, (5)

where ⟨.⟩ denotes the expectation of a random variable over the RNN probability distributions Pθ,
and Sθ = ⟨− log(Pθ)⟩ =

∑
d Pθ(d)[− log(Pθ(d))] is the Shannon entropy. Here, Fθ(T ) computes

the free energy over the entire state space d ∈ {0, 1, 2, 3}N which is intractable to compute exactly.
To go around this challenge, we estimate Fθ(T ) by drawing M independent samples {d(i)}Mi=1 from
the RNN distribution Pθ and we compute an estimate of the free energy as follows:

Fθ(T ) ≈
1

M

M∑
i=1

(
E(d(i)) + T log(Pθ(d

(i)))
)
. (6)

Lastly, we note that by virtue of autoregressive sampling, the probability of sampling a fold d ∼ Pθ

is given by the probability chain rule

Pθ(d) =

N∏
i=1

Pθ(di|d1, . . . , di−1), (7)

where Pθ(d) is the joint probability obtained by the product of all the conditional probabilities. Note
that P (di|dj<i) is the conditional probability of sampling the ith move di given the realizations of all
previous displacements {dj}i−1

j=1.

In Eq. (6), the term T log(Pθ(d
(i))) can be seen as an entropy regularization term weighted by

temperature T [12, 24, 13, 15, 16]. We use this entropy regularization to mitigate the effects of local
minima in the optimization landscape [12] and also to avoid mode collapse [24]. T is annealed
or cooled from a starting temperature T0 to a final temperature 0 with the possibility of varying
curvatures in its descent depending on the annealing schedule – ranging from a steady, linear decay
to a faster, nonlinear decay that follows the curvature of the inverse function for example. Selecting
an annealing schedule is a design choice that dictates how fast T decays during the different stages of
the annealing process. With these schedules, entropy regularization can be seen as a mechanism that
encourages exploration in the folds landscape at high temperatures before exploitation by targeting
the low energy folds near zero temperature.

2.3 Probabilistic Model

To model the probability distribution from which folds are sampled from Pθ(d), we use a Dilated
RNN architecture [20]. The motivation behind using an RNN architecture is to enable autoregressive
sampling, which is a form of perfect sampling that mitigates the challenges of Markov Chain sampling
schemes of other neural network architectures [25, 26, 27]. Furthermore, unlike the vanilla RNN
model, Dilated RNNs have long recurrent skip connections that allow for the direct propagation of
hidden state information from earlier inputs xi to be utilized in later stages of the folding process.
This property is particularly useful in the context of folding as we may want to put an ‘H’ bead γi
adjacent to an ‘H’ bead γj where i − j is large. These long-term dependencies benefit from the
introduced dilated recurrent connections [20].

The Dilated RNN architecture is composed of multiple layers of RNN cells stacked on top of each
other as illustrated in Fig. 2. As a design choice, we use L = ⌈log2(N)⌉ layers, and each layer has
N RNN cells [12, 13]. Each RNN cell is indexed by layer l where 1 ≤ l ≤ L and column n where
1 ≤ n ≤ N . Additionally, we choose each of the L ×N RNN cells to have its own unique set of
dedicated parameters as opposed to the traditional practice of using multiple RNN cells sharing the
same set of parameters. We use non-weight sharing to take account of the randomness of the chain
sequences Γ in a similar spirit to previous work [13, 12]. Parameter notations are as follows: an RNN
cell at layer l and column n has the set of weight parameters W (l)

n and U
(l)
n , bias vector parameter

b(l)n , and an associated hidden state vector h(l)
n . The hidden state is computed as

h(l)
n = tanh(W (l)

n h
(l)

max(0,n−2l−1)
+ U (l)

n h(l−1)
n + b(l)n ). (8)

Here, xn−1 is the input (to the first layer of the Dilated RNN stack) that is a concatenation of the
one-hot encoding of the protein bead for which we want to sample a fold for qn and the one-hot
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encoding of the previously sampled output fold dn−1. More concretely, qn is a one-hot encoding
vector of {0, 1} where 0 represents ‘H’ and 1 represents ‘P’, and dn is the one-hot encoding vector of
integer dn ∈ {0, 1, 2, 3}. Using these two vectors, we can construct the input xn−1 = [qn ⌢ dn−1]
where ⌢ is the concatenation operation. Note that the initializations of the hidden state are defined
as h0

n = xn−1 and hl
0 = [q0 ⌢ 0].

To get the output after the last layer of RNN cells, the nth hidden state of the last layer h(L)
n is fed

into the respective dense layer having weight Vn and bias cn. As a result, we get the probability
distribution for all the four folding directions of the nth displacement. This probability distribution
vector P u

n ∈ [0, 1]4 is computed as

P u
n = Softmax(Vnhn + cn). (9)

Finally, the nth move is sampled from this distribution with the unmasked conditional probability

Pu(dn|di<n) = P u
n · dn, (10)

where · is the dot product. All N conditional probabilities are computed sequentially to compute the
joint probability of the list of displacements d in Eq. (7).

Finally, we would like to highlight that the computational complexity of our model for sampling a
configuration or for a forward pass is O(N log(N)), which makes our RNN model more scalable
compared to traditional Transformers [28].

Figure 2: An illustration of a Dilated RNN architecture with ⌈log2(N)⌉ layers, where N represents
the system size. The architecture incorporates longer recurrent connections to address long-range
interactions in the HP lattice protein folding model. The use of distinct colors indicates the absence
of weight sharing across different RNN units in the layers. h0 is an initial hidden state initialized as a
zero vector and xn are the inputs which include information about the previous move dn−1 and the
nature of the bead qn to be added to the chain at step n.

2.4 Masking and Upper Bound Optimization

Sampling from the valid space of folds is crucial to stabilizing training the RNN architecture and
getting low-energy folds. To ensure sampling of the RNN is within the valid space, we mask the
invalid moves in each RNN conditional probability Pu

θ (di|dj<i) as follows:

• If a direction di is invalid, then log (Pu
θ (di|dj<i)) is set to −∞.

• We renormalize the four-dimensional log conditional probability by applying the log-softmax
activation and we denote it as log (Pθ(.|dj<i)).

Note that there are dead-end folds, where at a certain step all the local moves are invalid. In this case,
the masking procedure is forced to choose a random invalid direction which results in an invalid fold.
In this scenario, we discourage the RNN from generating such folds by forcing an energy penalty
E = 0. Note that the masking step is similar in spirit to other projection schemes explored in the
literature [29, 30].
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Figure 3: A diagram depicting a dilated recurrent neural network (RNN) training process applied to
the HP lattice model. The RNN samples folds from its parameterized probability distribution with a
mask to generate valid folds. These folds are key to estimating the gradients, which are later used to
update the parameters of the Dilated RNN. Note that T → T − δT denotes temperature annealing i.e.
decreasing temperature T after every Ntrain = 5 training steps.

Although we sample a fold d from the valid fold space, we use the unmasked RNN probability Pu
θ (d)

for training, which amounts to training an upper bound of the free energy. This choice allows us to
stabilize training and obtain lower energy folds as demonstrated in the Results section. To show the
upper bound claim, let us focus on the fake loss function used to estimate the gradients of the true
free energy:

L(T ) =
∑
d

P⊥
θ (d) log(Pθ(d))

(
E(d) + T log(P⊥

θ (d))
)
, (11)

such that P⊥
θ is the masked RNN probability with a stop gradient assignment ⊥ [12, 31]. Minimizing

L(T ) corresponds to the REINFORCE method [32] with a vanilla policy gradient rule [33, 34]
supplemented with an entropy term [12, 13, 14, 15, 24, 35]. To train our Dilated RNNs, we use the
following cost function:

L̃(T ) =
∑
d

P⊥
θ (d) log(Pu

θ (d))
(
E(d) + T log(Pu⊥

θ (d))
)

(12)

where Pu
θ is the unmasked RNN probability. The following inequality

L(T ) ≤ L̃(T )
follows from the observation

Pθ(d) ≥ Pu
θ (d)

for all possible valid folds d, which implies that:

E(d) logPθ(d) ≤ E(d) logPu
θ (d)

log2 Pθ(d) ≤ log2 Pu
θ (d).

The first inequality follows from the fact that E(d) ≤ 0 for all possible folds d ∈ {0, 1, 2, 3}N .
Training using the upper bound loss function L̃(T ) follows a similar spirit to training variational
autoencoders [36] and diffusion models [37, 38, 39] with upper bound loss functions. The gradient
of the free energy upper bound is given as:

∂θL̃(T ) =
∑
d

P⊥
θ (d)∂θ log(P

u
θ (d))

(
E(d) + T log(Pu⊥

θ (d))
)
,

which can be estimated by sampling M folds autoregressively from the RNN as follows:

∂θL̃(T ) ≈
1

M

∑
d∼Pθ

(∂θ logP
u
θ (d))

(
E(d) + T log(Pu

θ (d))
)
. (13)
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Figure 4: Figures of the training process of the variational annealing approach with a total number of
annealing steps Nanneal = 10000. (a) Demonstrates the effect of annealing in training for the sequence
20merA of the expectation value of the energy ⟨E⟩ as a function of the number of temperature
annealing steps Nstep where each step corresponds to Ntrain = 5 training steps at the same temperature.
Note that the user-defined value Nanneal is the maximum value that Nstep can reach. (b) Demonstrates
the training process using masking with the upper bound loss L̃(T ), masking with the fake free
energy loss L(T ), and no masking with the unmasked loss Lu(T ) for the sequence 25mer.

Note that we used the notation O(d) ≡ O(d)− ⟨O⟩, where subtracting the average of the energies
and log probabilities was shown to reduce the variance in the gradients as a control variate method [33,
30, 40].

3 Experiments & Results

An overview of the training scheme of our RNN is presented in Algorithm 1 and also illustrated in
Fig. 3. In our method, we use a linear schedule for the annealing process which is characterized by
Line 3 in the pseudocode. Further hyperparameter details are provided in Appendix A.

Algorithm 1 Variational Annealing Training

1: Required: T0, Nanneal, Ntrain,M
2: for Nstep ∈ {0, . . . , Nanneal} do
3: T ← T0(1−Nstep/Nanneal)
4: for i ∈ {1, . . . , Ntrain} do
5: Sample M independent folds from the Dilated RNN
6: Compute the gradients ∂θL̃(T ) (Eq. 13).
7: Update the RNN parameters using the Adam optimizer [41].
8: end for
9: end for

HP Sequence Length E(d∗)

20merA HPHPPHHPHPPHPHHPPHPH 20 −9
20merB HHHPPHPHPHPPHPHPHPPH 20 −10
24mer HHPPHPPHPPHPPHPPHPPHPPHH 24 −9
25mer PPHPPHHPPPPHHPPPPHHPPPPHH 25 −8
36mer PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP 36 −14
48mer PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPP- 48 −23

HHPPHPPHHHHH
50mer HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPH- 50 −21

PHHHHPHPHPHPHH
60mer PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHH- 60 −36

HHHHHHHHPPPPHHHHHHPHHPHP

Table 1: HP sequences from the Istrail Benchmark with their best known energies E(d∗).
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HP
Sequence

E(d∗) Folding-
Zero

AlphaGo-
Zero

DRL DQN-
LSTM

Variational
Annealing

(ours)

20merA -9 -9 -8 -6 -9 -9
20merB -10 - -9 -8 -10 -10
24mer -9 -8 -8 -6 -9 -9
25mer -8 -7 -7 - -8 -8
36mer -14 -13 -13 - -14 -14
48mer -23 -18 - - -23 -23
50mer -21 -18 - - -21 -21
60mer -36 - - - - -36

Table 2: Lowest energy found by the following methods in order: Folding-Zero [17], AlphaGo Zero
with pretraining [18], (best results among various methods of) Deep Reinforcement Learning [18],
Deep Q-Network using Long Short Term Memory (DQN-LSTM) [19], and our Variational Annealing
method. Bold font represents the lowest energy of the corresponding sequence. ‘-’ means energy was
not reported by the respective authors.

3.1 Annealing Ablation

To demonstrate the empirical value of annealing, we show in Fig. 4(a) a comparison between the
expectation values of the energy ⟨E⟩ =

∑
d Pθ(d)E(d) between variational learning with annealing

(by setting T0 = 1) and without annealing (by setting T0 = 0). Recall that this expectation is
estimated by taking the average of M independent samples to get ⟨E⟩ ≈ (1/M)

∑M
i=1 E(di). Our

findings show that starting at a non-zero temperature during annealing allows our dilated RNN to
find lower energy folds compared to a plain optimization scheme that does not include entropy
regularization.

3.2 Masking Ablation

Additionally, we empirically support the use of masking in tandem with our derived upper bound loss
based on the ablation study in the training process as shown in Fig. 4(b). We compare the results
of masking with the upper bound loss L̃(T ), masking with the fake free energy loss L(T ), and no
masking with the unmasked loss

Lu(T ) =
∑
d

Pu⊥
θ (d) log(Pu

θ (d))
(
E(d) + T log(Pu⊥

θ (d))
)
.

From the results of Fig. 4(b), it is clear that enforcing the self-avoiding walk constraint Eq. (2) by
masking is a crucial step for enhancing the training of our RNN model. More specifically, both L̃(T )
and L(T ) have lower values compared to Lu(T ) throughout annealing. Furthermore, we also observe
that optimizing the free energy upper bound loss L̃(T ) can result in significantly lower energies
compared to the free energy fake loss function L(T ) as illustrated in Fig. 4(b). We believe that
masking the RNN probability Pu

θ to obtain Pθ is constraining the optimization of L(T ) when we
apply the gradient on the logPθ terms in Eq. (11). In contrast, the loss upper bound L̃(T ) in Eq. (12)
circumvents this limitation where the gradients are applied on logPu

θ terms (Eq. (12)) that are not
constrained by projection steps.

3.3 Benchmarks

To compare our results with the machine learning literature, we report in Tab. 1 a list of HP sequences
with lengths from 20 to 60 and their optimal energies that are often used to benchmark HP folding
algorithms [19]. We use these HP sequences to benchmark our algorithm and compare with recent
machine learning methods on the criteria of the lowest energy fold found. The results are presented in
Tab. 2. Our findings demonstrate that our variational annealing method with dilated RNNs can find the
optimal fold for all the sequences up to 60 beads. We also highlight that our method performs better
than previous studies that take inspiration from the AlphaGo Zero algorithm [17, 18]. Our method is
also competitive with the results reported by Ref. [19], where we only use a simple policy gradient
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rule compared to the advanced policy gradient rules used in Ref. [19]. Additionally, we note that we
only use dh = 50 as the size of the hidden state in our dilated RNN compared to the LSTM used
in Ref. [19] with dh ∈ {256, 512}. This observation highlights the computational efficiency of our
method. Most importantly, we identify the optimal fold for the 60-bead configurations, representing a
notable improvement over the machine learning optimization techniques reported in this paper (see
Tab. 2).

Finally, we highlight that our RNN model finds diverse solutions at the end of annealing. In particular,
Fig. 5 shows the evolution of the Shannon entropy of the RNN as a function of the number of annealing
steps Nstep. By the end of annealing, we find non-zero final entropy values of 2.68, 2.38, 2.57 for
the 20merA, 25mer, and 50mer protein chains respectively. This observation highlights the ability
of our RNN model to find a diverse set of solutions. We also note the entropy maxima around
T = 0.096, 0.121, 0.394 for the three protein chains respectively. These peaks could be related to
the onset of a phase transition from a disordered phase at high temperatures (with large entropy) to
another phase at low temperatures (with low entropy), which contains the low-energy solutions of the
HP lattice model. We envision that slowing down the annealing schedule near the entropy peak could
improve the adiabaticity of our annealing protocol, and could lead to a better heuristic solver based
on our annealing framework.

Figure 5: Figures of the Shannon entropies Sθ during training at every annealing stage spanning
Nannealing = 10000 steps on the sequences (a) 20merA, (b) 25mer, and (c) 50mer.

4 Conclusion

In this paper, we introduce a novel upper-bound training scheme with masking to find the lowest
energy fold of the 2D HP lattice protein folding. Using this scheme and by supplementing Dilated
RNNs with annealing through temperature-like fluctuations, we find that our method can find the
optimal folds of prototypical lattice folding benchmarks with system sizes up to 60 beads. We
demonstrate that it is possible to mask moves that lead to invalid folds without compromising the
autoregressive sampling feature of RNNs. We also devise a free energy upper bound loss function
that enhances the trainability of RNNs that are prone to get compromised by masking the RNN
probabilities.

Our scheme is generalizable to three spatial dimensions and also other lattice protein folding models
with more than two alphabets such as the 20-letter Miyazawa-Jernigan model [42] by enlarging the
sizes of the one-hot inputs xi without compromising inference speed. We also expect inference time
to be reduced by introducing an encoder network to enable just-in-time inference of low-energy
folds [15]. For a broader scope, we also believe that our scheme could lead to a promising machine
learning-based solution to a wide class of constrained combinatorial optimization problems.
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A Hyperparameters

HP Sequence T0 Nwarmup Nannealing Ntrain M

20merA 1 1000 10,000 5 200
20merB 1 1000 10,000 5 200
24mer 1 1000 10,000 5 200
25mer 1 1000 10,000 5 200
36mer 1 1000 10,000 5 200
48mer 5 1000 10,000 5 200
50mer 5 1000 30,000 5 200
60mer 0.5 1000 40,000 5 200

(a) A summary of the hyperparameters using our annealing training protocol.

RNN Layers L Hidden Unit h size Activation Function Learning Rate

⌈log2(N + 1)⌉ 50 tanh 10−4

(b) A summary of the hyperparameters used for training the Dilated RNN architecture for all the protein
sequences in Sec. 2.3.

Table 3: In (a), we introduce an additional hyperparameter, Nwarmup, which is used to perform an
optional ‘warm start’ before the annealed training process. In this warm start, we perform exactly
Nwarmup gradient descent steps at fixed temperature T0. Additionally, note that T0 is the initial
temperature, M is the number of samples used for each training step, Ntrain is the number of training
steps during each annealing step, and Nannealing is the total number of annealing steps. In (b), we
highlight that we use the same hidden unit size for each RNN layer.
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