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Abstract

Indirect reciprocity explains the evolution of cooperation by considering how our cooperative

behavior toward someone is reciprocated by someone else who has observed us. A cohesive society

has a shared norm that prescribes how to assess observed behavior as well as how to behave toward

others based on the assessments, and the eight social norms that are evolutionarily stable against

the invasion of mutants with different behavioral rules are referred to as the leading eight, whose

member norms are called L1 to L8, respectively. Among the leading eight, L8 (also known as

‘Judging’) has been deemed mostly irrelevant due to its poor performance in maintaining cooper-

ation when each person may have a different opinion about someone instead of forming a public

consensus. In this work, we propose that L8 can nevertheless be best protected from assessment

errors among the leading eight if we take into account the intrinsic heterogeneity of error proneness

among individuals because this norm heavily punishes those who are prone to errors in following

its assessment rule. This finding suggests that individual differences should be explicitly taken into

account as quenched randomness to obtain a thorough understanding of a social norm working in

a heterogeneous environment.
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I. INTRODUCTION

Indirect reciprocity is one of the main mechanisms for promoting the evolution of cooper-

ation through the interaction of assessment and behavior [1–3]. The conditions for a social

norm to maintain cooperation against external perturbations have been revealed since the

discovery of the ‘leading eight’ (Table I) [4, 5]. Each norm in the leading eight achieves

stable cooperation against the invasion of mutant norms with different behavioral rules, as

long as the society has a public consensus in assessing each individual. This line of research

has been extended to a more realistic situation in which assessments are made privately,

instead of forming a consensus, and it has turned out that privateness renders many of the

leading eight untenable [6, 7]. In particular, we have seen that strict norms such as Judging

and Stern Judging (also known as L8 and L6, respectively) fail to sustain cooperation when

disagreement arises [8, 9]. For example, Judging divides an all-to-all connected society into

a weakly balanced configuration [10] with many antagonistic groups [11], resulting in the

lowest level of cooperation among the leading eight [12]. However, weakly balanced struc-

tures are often found in empirical social networks [13, 14], suggesting a possible selective

advantage of Judging. In this work, we wish to explain why Judging is a special norm in

terms of robustness in a noisy environment.

From a methodological point of view, the assumption of private assessment can be viewed

as an attempt to go beyond a mean-field approach, which has usually been used by con-

sidering a well-mixed population (see, however, Ref. [7] demonstrating the importance of

population structure in indirect reciprocity). The mean-field approximation greatly reduces

the number of degrees of freedom to make the problem tractable, but the price is that it

loses every piece of information about individual differences. As a way of retaining individ-

ual differences, this work assumes that each individual has a different probability of error.

Some are hasty in assessing others, while some others are more prudent and seldom make

mistakes in recognizing someone’s goodness. The existence of such individual differences

is obvious, and it sounds plausible that erroneous defection will be harmful to one’s own

reputation in a cooperative society. However, to our knowledge, the correlation between an

individual’s error probability and his or her overall reputation in the long run has not yet

been investigated. In this work, we will present some analytic progresses on this issue.

Before proceeding, let us classify errors into three types. The first is an assessment
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TABLE I. The leading eight. Each of the eight norms has an assessment rule α and a behavioral rule

β. An observer is observing an interaction between a donor and a recipient, where the donor chooses

behavior between cooperation (C) and defection (D), and the observer regards the donor’s behavior

as either good (G) or bad (B). The assessment rule tells the observer to assign αXY Z ∈ {G,B}

to the donor when the observer regards the donor as X ∈ {G,B}, the donor does Y ∈ {C,D} to

the recipient, and the observer regards the recipient as Z ∈ {G,B}. The donor chooses behavior

βXY ∈ {C,D} to the recipient when the donor’s self-assessment is X ∈ {G,B} and the donor

regards the recipient as Y ∈ {G,B}.

αGCG αGDG αGCB αGDB αBCG αBDG αBCB αBDB βGG βGB βBG βBB

L1 G B G G G B G B C D C C

L2 (Consistent Standing) G B B G G B G B C D C C

L3 (Simple Standing) G B G G G B G G C D C D

L4 G B G G G B B G C D C D

L5 G B B G G B G G C D C D

L6 (Stern Judging) G B B G G B B G C D C D

L7 (Staying) G B G G G B B B C D C D

L8 (Judging) G B B G G B B B C D C D

error, which means that an observer remembers a donor as good, although the correct

assessment should be the opposite, or vice versa. This is the type of error that we will

focus on throughout this work. The second is a perception error, by which an observer

mistakes a donor’s cooperation as defection, or vice versa. Note the difference between the

assessment error and the perception error: If the observer is an unconditional cooperator,

the perception error does not change the observer’s assessment, whereas the assessment error

does. However, if we work with the leading eight in the vicinity of paradise where everyone

is good, the assessment is heavily based on the observed behavior, so the perception error

plays a similar role to that of the assessment error. The last is a behavioral error. A donor

cooperates by error, although the correct behavior is defection, or vice versa. Later, we will

examine the effects of behavioral errors through numerical calculations.
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II. ANALYSIS

We consider a population of size N ≫ 1. Let mt
ij denote how an individual i assesses an

individual j at time t. If i regards j as perfectly good (bad), we have mt
ij = 1(0), but it is

generally between zero and one [8, 15–17]. The conventional discrete model can be said to

use only the end points. The system becomes more analytically tractable when we work with

continuous variables. Even if we consider the discrete model, we expect that the continuous

description can capture the average behavior involved with probabilistic errors. To see the

correspondence between these two approaches, we will carry out analytic calculations within

the continuous model, while the discrete model is used in numerical simulations.

For each round, a pair of randomly chosen individuals i and j interact with each other

by playing the donation game, where i as a donor can choose to cooperate or defect. If

the donor cooperates, the donor’s payoff decreases by c as the cost of cooperation, and the

other individual j playing the role of the recipient earns b as the benefit of cooperation.

However, if the donor defects, it means that the donor refuses to cooperate and their payoffs

do not change. When b > c > 0, the donation game is a special type of prisoner’s dilemma.

What i does to j is determined by his or her behavior rule βi, which depends on i’s self-

assessment as well as on how i regards j. Mathematically speaking, this can be expressed by

βi = βi

(
mt

ii,m
t
ij

)
. In the continuous version, the donor i pays the cost of cooperation cβi,

which benefits the recipient by bβi, so that βi = 1 and 0 mean full cooperation and defection,

respectively. Every observer k observes the interaction between i and j with probability q

and assesses the donor i according to his or her own assessment rule αk. The assessment

depends on how k regards i, what i does to j, and how k regards j, which can be expressed

by αk = αk

[
mt

ki, βi

(
mt

ii,m
t
ij

)
,mt

kj

]
. However, with probability σki, the assessment can be

flipped to 1 − αk. An individual k’s social norm is the combination of the assessment rule

αk and the behavioral rule βk. Table II shows the continuous versions of the leading eight

obtained through bilinear and trilinear interpolations so that the original definitions are

recovered at the end points.

The above dynamical rule can be written as the following equation:

mt+1
ki = (1− q)mt

ki +
q

N

N∑
j=1

(1− σki)αk

[
mt

ki, βi(m
t
ii,m

t
ij),m

t
kj

]
+σki

{
1− αk

[
mt

ki, βi(m
t
ii,m

t
ij),m

t
kj

]}
, (1)
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TABLE II. Continuous expressions of the leading eight obtained through bi- and tri-linear inter-

polations. The last column shows the value of α when mki = 1/2 for every pair of k and i.

Norm α(x, y, z) β(x, y) α∗ ≡ α
[
1
2 , β

(
1
2 ,

1
2

)
, 12
]

L1 x+ y − xy − xz + xyz −x+ xy + 1 13/16

L2 (Consistent Standing) x+ y − 2xy − xz + 2xyz −x+ xy + 1 5/8

L3 (Simple Standing) yz − z + 1 y 3/4

L4 −y − z + xy + 2yz − xyz + 1 y 5/8

L5 −z − xy + yz + xyz + 1 y 5/8

L6 (Stern Judging) −y − z + 2yz + 1 y 1/2

L7 (Staying) x− xz + yz y 1/2

L8 (Judging) x− xy − xz + yz + xyz y 3/8

where σki is the probability of assessment error, which may depend on the observer k or

the donor i. In the second term on the right-hand side, we have taken the average over the

randomly chosen recipient j, which may also be equal to i for mathematical convenience.

Assuming that everyone uses the same norm, we can say αk = α and βi = β without the

subscripts. Rearranging the terms of Eq. (1) in the long-time limit, we have the following

N2-dimensional system of equations to solve:

0 = −mki + σki +
(1− 2σki)

N

N∑
j=1

α [mki, β(mii,mij),mkj] , (2)

where α and β are given in Table II and the superscripts can now be neglected. Note that

the observation probability q becomes irrelevant in this steady state. It is clearly seen that

mki = 1/2 if σki = 1/2, which means that the observer makes random assessments.

A. How an error-prone individual assesses others

As a specific example, consider L3. We will furthermore assume that the error probability

depends only on the observer so that σki = σk. Equation (2) is then rewritten as

0 = −mki + σk + (1− 2σk) (Cki − µk + 1) , (3)
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where Cki ≡ N−1
∑

j mkjmij and µk ≡ N−1
∑

j mkj. By assuming that (mkj − µk) and

(mij − µi) fluctuate independently, we replace Cki by µkµi to get

0 ≈ −mki + σk + (1− 2σk) (µkµi − µk + 1) . (4)

Summing both sides of Eq. (3) over i and dividing them by N , we obtain

0 ≈ −µk + σk + (1− 2σk) (µkµ̄− µk + 1) , (5)

where µ̄ ≡ N−1
∑

i µi. We postulate that how an observer k assesses others is determined by

the observer’s probability of error, so that we can write µk = µ (σk). The simplest functional

form would be a linear function such as µ (σk) = uσk + v with constants u and v. To satisfy

µ (σk = 1/2) = 1/2, we have v = (1− u)/2, which means that

µk = µ (σk) = uσk +
1

2
(1− u). (6)

If σk is uniformly distributed between 0 and 1/2, we should have

µ̄ =
1

4
(2− u) (7)

in the large-N limit because

lim
N→∞

1

N

N∑
k=1

σn
k =

∫ 1
2

0
xndx∫ 1
2

0
dx

=
1

(n+ 1)2n
. (8)

Substituting Eqs. (6) and (7) into Eq. (5) and averaging both the sides over k by using

Eq. (8), we get an algebraic equation for u, whose physical solution is u = −1/2. Thus,

Eq. (6) in this case predicts

µ (σk) =
1

4
(3− 2σk) . (9)

When k = i, Eq. (4) leads to

mkk ≈ σk + (1− 2σk)
(
µ2
k − µk + 1

)
, (10)

by assuming that Ckk − µ2
k, i.e., the variance of mkk, vanishes. Even if this assumption

cannot be justified in general, suppose that it is valid in the vicinity of σk = 1/2, where mki

is identically equal to 1/2. Regarding mkk as a proxy of µk, we can explicitly solve Eq. (10)

for µk and obtain

µk =
1− σk −

√
σk(1− σk)

1− 2σk

=
1

4
(3− 2σk) +O

(∣∣∣∣12 − σk

∣∣∣∣3
)
, (11)
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TABLE III. First-order derivatives of α and β when mki = 1/2 for every pair of k and i.

Norm A′
x A′

y A′
z B′

x B′
y

L1 1/8 3/4 -1/8 -1/2 1/2

L2 (Consistent Standing) -1/4 1/2 1/4 -1/2 1/2

L3 (Simple Standing) 0 1/2 -1/2 0 1

L4 1/4 1/4 -1/4 0 1

L5 -1/4 1/4 -1/4 0 1

L6 (Stern Judging) 0 0 0 0 1

L7 (Staying) 1/2 1/2 0 0 1

L8 (Judging) 1/4 1/4 1/4 0 1

reproducing Eq. (9) near σk = 1/2. We stress that replacing mkk by µk is only an approxi-

mation to obtain µk, which is actually dominated by mki with i ̸= k.

A convenient way to solve such a nonlinear equation is the Newton method [18]. To see a

one-dimensional example for solving f(x) = 0, let us denote a trial solution as x̂, while the

unknown true solution is denoted as x∗. We expand the equation around the trial solution

to the first order as follows:

0 = f (x∗) = f(x̂) + (x∗ − x̂)
df

dx

∣∣∣∣
x̂

+ . . . , (12)

and we observe that the true solution is approximated as

x∗ ≈ x̂− 1

(df/dx|x̂)
f(x̂). (13)

In our problem, the trial solution should be µ̂k = 1/2, which is an exact solution for σk = 1/2.

To apply the Newton method, we need first-order derivatives evaluated at this trial solution.

Let us rewrite mkk ≈ µk = 1/2 + δk and expand Eq. (10) to the first order of δk as follows:

0 = −
(
1

2
+ δk

)
+ σk + (1− 2σk)α

[
1

2
+ δk, β

(
1

2
+ δk,

1

2
+ δk

)
,
1

2
+ δk

]
(14)

≈ −
(
1

2
+ δk

)
+ σk + (1− 2σk)

[
α∗ + A′

xδk + A′
y

(
B′

xδk +B′
yδk
)
+ A′

zδk
]
, (15)

where α∗ ≡ α
[
1
2
, β
(
1
2
, 1
2

)
, 1
2

]
, A′

ξ ≡ (∂α/∂ξ)(x,y,z)=( 1
2
,β( 1

2
, 1
2),

1
2)
, and B′

ξ ≡ (∂β/∂ξ)(x,y)=( 1
2
, 1
2)

(see Table III). Equation (13) then yields

µ∗
k ≈

1

4
(3− 2σk) , (16)
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TABLE IV. Ranges of mki that an observer i receives from others under different social norms,

when the probability of error depends on the observer, i.e., σij = σi. The ranges are obtained by

applying the Newton method [20].

N = 2 N = 3

L1 1
2 ≤ mki ≤ 13

16
1
2 ≤ mki ≤ 13

16

L2 (Consistent Standing) 1
2 ≤ mki ≤ 5

8
1
2 ≤ mki ≤ 5

8

L3 (Simple Standing) 1
2 ≤ mki ≤ 27−15σi

36−12σi

1
2 ≤ mki ≤ 27−18σi

36−16σi

L4 1
2 ≤ mki ≤ 18+3σi

27+9σi

1
2 ≤ mki ≤ 18+σi

27+6σi

L5 1
2 ≤ mki ≤ 135−78σi

225−120σi

1
2 ≤ mki ≤ 135−84σi

225−130σi

L6 (Stern Judging) mki =
1
2 mki =

1
2

L7 (Staying) mki =
1
2 mki =

1
2

L8 (Judging) 1
2 ≤ mki ≤ 12σi

9+36σi

1
2 ≤ mki ≤ 10σi

9+30σi

in agreement with Eq. (9). As for the other norms, the general expression is given as follows:

µ∗
k ≈

1

2

{
1 +

(2α∗ − 1)(1− 2σk)

1− (1− 2σk)
[
A′

x + A′
y(B

′
x +B′

y) + A′
z

]} . (17)

This formula predicts that only L8 will exhibit positive correlation between σk and µk, and

the reason is that only L8 has α∗ < 1/2 (Table II). The correlation vanishes for L6 and

L7 because α∗ = 1/2. The behavior of L6 is totally driven by entropy, as has already been

analyzed in detail [9]. Concerning L7, as long as α∗ = 1/2, the steady-state equation [Eq. (2)]

actually admits a solution such that mki = 1/2 for every pair of k and i, regardless of the

distribution of {σk}. For the other five norms from L1 to L5, the correlation is negative,

which means that a careless individual tends to assign low assessments to others. Figure 1

shows that all these predictions are well corroborated by numerical simulations.

B. How an error-prone individual is assessed by others

As we have already seen, when assessment errors are caused by observers, that is, σki = σk,

the dominant factor determining mki should be the probability of error of the individual who

makes the assessment, i.e., σk, but the working hypothesis here is that σi of the one being

assessed can also affect the assessment in the long run. Our analysis given above effectively

8
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FIG. 1. Numerical results from the discrete model in which mki can take only 0 and 1. The size

of the population is N = 102, and the observation probability is q = 1. The horizontal axis is

the probability of assessment error of an individual k, and the vertical axis is the time average of

mki for T = 5× 104 rounds, after discarding transient data for the first T rounds. In every panel,

we have 102 data points, each of which has been obtained by picking up two specific individuals

k and i from a different sample. Each sample runs with an independent realization of {σk} as a

set of quenched random numbers between 0 and 1/2. As the initial condition, we fill the image

matrix {mki} with random numbers uniformly distributed in the unit interval. The shades show

the kernel-density estimates [19], and the solid lines are obtained from Eq. (17).
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FIG. 2. mki plotted against σi, instead of σk. We have used the same data as in Fig. 1. The

black dashed lines show the cases of N = 2, and the red dotted lines show the cases of N = 3 in

Table IV.

corresponds to a one-body problem [see, e.g., the derivation of Eq. (11)], which can be

obtained from Eq. (2) by taking N = 1. To estimate how others assess an individual with a

finite error probability, we need N = 2 at least, and we will apply the Newton method again

to find an approximate solution. In a d-dimensional problem given by f1(x1, x2, . . . , xd) =

10
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FIG. 3. Pearson correlation between an individual k’s payoff πk and the error probability σk, when

the benefit of cooperation is b = 1 whereas the cost is c = 1/2. The simulation details are the

same as in Fig. 1. We have recorded a specific individual’s payoff [Eq. (19)] at the end of each run

and calculated the correlation coefficient from 102 such data points. To estimate the mean and the

standard error, we have repeated this procedure 10 times. The error probabilities {σk} are drawn

from
[
0, 12
)
either uniformly or by following the truncated normal distribution whose center and

width are 0 and 1/4, respectively.

f2(x1, x2, . . . , xd) = . . . = fd(x1, x2, . . . , xd) = 0, Eq. (13) is rewritten as
x∗
1

x∗
2

...

x∗
d

 ≈


x̂1

x̂2

...

x̂d

−


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xd

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xd

...
...

. . .
...

∂fd
∂x1

∂fd
∂x2

. . . ∂fd
∂xd



−1
f1(x̂1, x̂2, . . . , x̂d)

f2(x̂1, x̂2, . . . , x̂d)
...

fd(x̂1, x̂2, . . . , x̂d)

 , (18)

where the terms on the right-hand side are all evaluated at the trial solution (x̂1, x̂2, . . . , x̂d).

The resulting solution {mki = m∗
ki} generally depends on both σk and σi, and we present the

range of mki for each norm as a function of σi to remove the dependency on σk in Table IV.

We have performed the analytic calculation only for N = 2 and 3, but the size dependence

appears to be weak, and the predicted ranges are qualitatively consistent with the numerical

data (Fig. 2).

III. DISCUSSION

The important point of the above analysis is that the correlation of mki with σi is found

to be weaker than the correlation with σk. For example, if we look at L8, the amount of

donation that an individual k gives to others increases with σk [Fig. 1(h)], while the amount

11



of cooperation that he or she receives is almost insensitive to σk [Fig. 2(h)]. If we define an

individual’s payoff in the following way,

πk ≡
1

N

N∑
i=1

[bβ (mii,mik)− cβ (mkk,mki)] , (19)

it is thus expected to decrease under the action of L8 as σk grows. This prediction is verified

by our numerical results (Fig. 3). Among the leading eight, L8 exhibits the clearest signal of

negative correlation between σk and πk. The more often one makes mistakes, the lower the

payoff. The correct assessment is that others are bad [Fig. 1(h)], so the level of cooperation

is low. In contrast, even if L3 shows a higher level of cooperation [8, 12], Fig. 3 shows

that it does not impose a heavy penalty for error-proneness. According to Eq. (17), the

decisive factor for determining the sign of the correlation is α∗ ≡ α
[
1
2
, β
(
1
2
, 1
2

)
, 1
2

]
, which

makes sense in the continuous model where everyone can have a half-good state, but is also

proved useful in the discrete model (Fig. 1), showing the power of the continuous model. If

the social norm cannot support the half-good state by itself, that is, if α∗ < 1/2, a careful

individual with low σk will regard others as bad, securing his or her own payoff, although

the average level of cooperation remains finite in the population. Although the derivation in

Eq. (8) uses the information on how the error probabilities are distributed in the population,

Fig. 3 shows that L8 still has the most negative correlation even if the distribution is not

uniform. We also observe the same trend for larger populations (not shown).

As for behavioral errors, by which one chooses defection although cooperation is intended

and vice versa, we may expect that all norms in the leading eight will punish error-prone

individuals because they have been designed to suppress behavioral mutants [3], which can

mimic behavioral errors. Our numerical calculations show that this is indeed the case, with

two trivial exceptions having negligible correlations. One is L6, totally driven by entropy

even with an arbitrarily small error probability [9], and the other is L8, under which everyone

is eventually considered bad.

IV. SUMMARY

In summary, we have investigated how a social norm shapes society in the presence

of heterogeneity in individual probabilities of assessment errors. So far, the stability of

a social norm has usually been analyzed in terms of error and mutation, but one of the
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theoretical challenges is to deal with these sources of randomness within a reasonable number

of degrees of freedom. Concerning error, the traditional approach assumes that everyone

is equally prone to it. When it comes to mutation, although it introduces heterogeneity in

the population, most studies restrict themselves to the low mutation limit to simplify the

problem (see, however, Ref. [21] as an exception).

This work has extended the concept of stability by considering individual heterogeneity

in assessment errors as a quenched disorder and has shown the possibility of analytic un-

derstanding. Among the leading eight, L8 (Judging) strongly punishes those who do not

carefully follow the norm, and it suggests the unique power of Judging when there exists het-

erogeneity among individuals. The important factor turns out to be how the norm assesses

the situation where everyone is half good, although it is a hypothetical point that makes full

sense when the norm is interpolated between good and bad. It confirms the necessity and

usefulness of the continuous model of indirect reciprocity.
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