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ABSTRACT

The free energy principle (FEP), along with the associated constructs of Markov blankets and
ontological potentials, have recently been presented as the core components of a generalized modeling
method capable of mathematically describing arbitrary objects that persist in random dynamical
systems; that is, a mathematical theory of “every” “thing.” Here, we leverage the FEP to develop a
mathematical physics approach to the identification of objects, object types, and the macroscopic,
object-type-specific rules that govern their behavior. To do so, we draw out the deep connections
between Markov blankets, reinforcement learning, system identification theory, and macroscopic
physics discovery. More specifically, we use the statistics of Markov blankets to operationalize
two conditions for system equivalence in the literature, and to develop an approach to subsystem
discovery, i.e., how to best partition a system into subsystems, and how to best classify (sub)systems.
Using the statistics of Markov blankets, we demonstrate that two subsystems of a given system are
weakly equivalent if their blankets share the same steady state statistics or reward rate; and strongly
equivalent if the time evolution or paths of their boundaries have the same statistics. This allows us to
formally define object types in terms of how they interact with their environment. It also allows us to
reframe the problems of systems identification and macroscopic physics discovery as a problem of
Markov blanket detection. We take a generative modeling approach and use variational Bayesian
expectation maximization to develop a dynamic Markov blanket detection algorithm that is capable of
identifying and classifying macroscopic objects, given partial observation of microscopic dynamics.
This unsupervised algorithm uses Bayesian attention to explicitly label observable microscopic
elements according to their current role in a given system, as either the internal or boundary elements
of a given macroscopic object; and it identifies macroscopic physical laws that govern how the
object interacts with its environment. Because these labels are dynamic or evolve over time, the
algorithm is capable of identifying complex objects that travel through fixed media or exchange matter
with their environment. This approach leads directly to a flexible class of structured, unsupervised
algorithms that sensibly partition complex many-particle or many-component systems into collections
of interacting macroscopic subsystems, namely, “objects” or “things.” We derive a few examples
of this kind of macroscopic physics discovery algorithm and demonstrate its utility with simple
numerical experiments, in which the algorithm correctly labels the components of Newton’s cradle, a
burning fuse, the Lorenz attractor, and a simulated cell.
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1 Introduction

In this paper, we reconsider approaches to system identification and typification used in systems identification theory,
engineering, and statistical physics using the tools of information theory, in particular, the constructs of Markov blankets
and ontological potential functions that have been developed in the literature on the free energy principle (FEP). Inspired
by recent derivations of classical and statistical mechanics from information theoretic principles [31, 10], we present
a novel derivation of the FEP, foregrounding how it can be used to write down “ontological potential functions” that
define object types or phenotypes. This approach is based upon a consideration of the relative entropy formulation of
Jaynes’ principle of maximum caliber [41, 36, 42], with constraints imposed upon the boundary or Markov blanket of a
macroscopic object or subsystem of a certain type. We show that these Markov blanket constraints fully characterize
the interactions between an object or object type and the other objects in its environment, thereby formalizing the
behavioral profile of a subsystem in terms of the effects that it has on other subsystems. This approach subsumes the
more standard approaches to identification and typification of physical objects in contemporary reinforcement learning,
system identification theory, and macroscopic physics discovery.

The problem of identification and typification of systems and subsystems is deceptively simple. In plain language,
traditional systems identification theory asks the question: How can one characterize the complex interactions and
behavior of a many-component system using a simple black box function approximator? In the standard approach
to systems identification, the user identifies a subsystem as a connected subset of a large multi-component complex
system and then characterizes the relationship between the inputs to and outputs from the subsystem. For example,
in reinforcement learning, the inputs to a system are the observations of the agent and the outputs are its actions.
The function that maps inputs to outputs is called the “policy” and in this context, two agents that execute the same
policy perform the same actions given the same input conditions and, therefore, are considered to be equivalent. More
generally, two subsystems with the same input-output relationship can then be said to be subsystems of the same type.

Other than providing a means of typing subsystems, the utility of this approach lies in its ability to provide a compact
description of a complex subsystem, by modeling it as a simple transfer function or as a low-dimensional dynamical
system. This usually involves “black-boxing” the internal components of an overall system: that is, drawing a boundary
around a many-object or many-component system, and then determining a (hopefully simplified) mathematical
expression that summarizes the effect of the complex goings-on inside the boundary, in terms of their effects on the
boundary of the subsystem, i.e., in terms of its input-output relationship to other subsystems. In this setting, the
boundary itself is an arbitrary, user-defined boundary that separates the subsystem of interest from other subsystems.
The definition of systems equivalence used in reinforcement learning is the one from systems identification theory: Two
systems are then said to be of the same type if they have the same input-output relationship or policy, regardless of the
details of their inner workings.

In statistical physics, a similar notion of equivalence between macroscopic systems isused. Two systems are said
to be of the same type if they can be modeled by the same dynamical system or energy function (Hamiltonian or
Lagrangian). The main difference between the systems identification approach and the statistical physics approach is
the latter’s use of a coarse-graining procedure to simplify complex microscopic dynamics. This procedure begins by
drawing an arbitrary boundary around a connected volume of microscopic particles and identifying macroscopic state
variables that summarize the activity of the microscopic components (e.g., temperature, pressure, and density) inside the
volume. Rules or laws that relate internal state variables to the net flux of conserved quantities at the boundary are then
derived from knowledge of microscopic dynamics. Because flux is a conserved quantity, different volumes can then be
connected to yield field equations that govern a larger system that is itself made up smaller subsystems that use the same
flux variables. A macroscopic system of a given type can then be identified as consisting of the connected volumes that
can be modeled using the same flux-state relationship, i.e., it is a bucket of water because each fluid element in the
bucket has the same flux-state relationship. This extends the state space to a field that is dependent on the shape of the
macroscopic object and establishes the bucket as providing boundary conditions.

The free energy principle (FEP) has been proposed as a general mathematical modeling framework, unifying statistical
mechanics and information theory, and providing a formal, biologically plausible approach to belief formation and
updating as well as information processing. The FEP starts with a mathematical definition of a “thing” or “object”: any
object that when can sensibly label as such must be separated from its environment by a boundary. Under the FEP,
this boundary is formalized as a Markov blanket that establishes conditional independence between that object and
its environment. Within this framework, an object is defined not by physical states and fluxes or user labeled inputs
and outputs, but rather by the flow of information across the Markov blanket. Strictly speaking, a Markov blanket
defines the statistical boundary for a set of variables Z ⊂ X as the minimal set B ⊂ X such that Z is conditionally
independent of all variables not in Z or B, given the blanket B. [15, 36]. In the FEP literature, Markov blankets are
usually described as formalizing the notion of object, because the statistics of the Markov blanket fully characterize the
input-output relationship between an object and other objects in its environment.
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This seemingly abstract definition of a boundary is, in fact, implicit in the definitions of a boundaries used in systems
identification and statistical physics. In systems identification, the boundary of a system is directly defined by its inputs
and outputs. Complete specification of the inputs and outputs of a system allows one to the treat the subsystem as
a driving force on the system as a whole. Similarly, in statistical physics, knowledge of the fluxes into and out of
a subsystem fully characterize both the subsystem and its impact on the rest of system, in the same way that initial
conditions plus boundary conditions are sufficient to determine the evolution of the state variables. Thus, the notion that
conditional independence is a property of boundaries between a subsystem and its environment is uncontroversial. In
the FEP literature, it is therefore argued that we can define object types or phenotypes in terms of their Markov blankets.

In the interest of precision, however, we note that it would be more accurate to say that the presence of a Markov
blanket in a given system merely indicates a possible partitioning of the system into two interacting subsystems—and
nothing else. Having identified a blanket, one can then make use of the fact that the blanket summarizes inputs and
outputs of the associated subsystem to conclude that it is the statistics of the blanket that defines an object type. Recent
work has made explicit the mathematical conditions under which the existence of a partition into subsystems with
their Markov blankets can be guaranteed at steady state [44, 20]; and they are guaranteed to exist in the path-based
formulation of the FEP [43, 44]. Garnering significantly less interest is the question of how to discover these boundaries
in the first place in a data-driven manner. Indeed, in most of the FEP literature, the focus is on explicating the dynamics
of information flow in the presence of a blanket, and so the existence of a Markov blanket is usually assumed, i.e., the
existence and domain of the blanket are specified a priori. When methods are proposed in the literature to identify
Markov blankets, as they are, e.g., in [17], the focus is on an approximate blanket structure in the stationary distribution.
This kind of blanket is rarely realized, even in systems that have actual blanket structure. Moreover, Markov blankets
are always assumed to be static—or are associated with fixed components, giving rise to the false impression that things
that display material turnover, such as traveling waves, flames, and living creatures cannot be modeled as having a
Markov blanket [35, 30]. Taken together, all this suggests that the critical missing ingredient in the FEP literature is a
procedure for identifying dynamic Markov blanketed subsystems, which is thereby capable of describing a wide range
of stationary and non-stationary phenomena, including flames, lightning bolts, organisms, and other systems that have
transient or porous boundaries, and that can pop in and out of existence.

This requires the elucidation of a theoretical framework and associated class of inference algorithms that allow us to
metaphorically “carve the world at its joints”: that is, to partition complex many-component systems into macroscopic
objects and object types, and discover the physical laws or macroscopic rules that govern the interactions between these
objects. Ideally, such an unsupervised partitioning would (1) result in a compact, low-dimensional description of objects
and their interaction, and (2) largely agree with human intuition, in that the partitions of systems into subsystems that it
generates should largely be consistent with human intuitions about the associated perceptual phenomena. For reasons
that will become apparent below, the class of algorithms that we are describing are dynamic Markov blanket detection
algorithms. The overall approach we take is based upon the formulation of the FEP in the space of paths or trajectories
of systems over time, which is derived from Jaynes’ principle of maximum caliber, coupled to the Markov blanket based
definition of object and object type. This formulation leads directly to a notion of an “ontological potential function,”
which is specified in terms of constraints on the blanket statistics and constraints on blanket dynamics, and which can be
used as the basis for a taxonomy of object types. Here, “blanket statistics” refer to the typical summary of the dynamics
of a subsystem in terms of its input-output relationship with its environment; while “blanket dynamics” refers to how
the boundary itself changes over time.

Starting from this definition of objects and object types, we consider a class of macroscopic generative models utilize
two types of latent variables: (1) macroscopic latent variables that coarse-grain microscopic dynamics in a manner
consistent with the imposition of Markov blanket structure, and (2) latent assignment variables that label microscopic
elements or observations in terms of their role in a macroscopic object, its boundary, or the environment. Critically,
these latent assignment variables are also allowed to evolve over time, in a manner consistent with Markov blanket
structure. Finally, by taking a Bayesian approach to model discovery, we leverage to automatic Occam’s razor effect of
Bayesian inference to select the partitions of the system into subsystems, such that the global dynamics is as simple or
low-dimensional as possible.

In summary, we reformulate the problem of system identification as a Markov blanket detection problem. We take a
generative modeling approach and use variational Bayesian expectation maximization to develop a dynamic Markov
blanket detection algorithm that is capable of identifying and classifying macroscopic objects, given partial observation
of microscopic dynamics. This unsupervised algorithm uses Bayesian attention to explicitly label microscopic elements
according to their current role, as either the internal or boundary elements of a given macroscopic object; and it identifies
macroscopic physical laws that govern how the object interacts with its environment. Because these labels are dynamic
or evolve over time, the algorithm is capable of identifying complex objects that travel through fixed media or exchange
matter with their environment. Crucially, this approach eliminates the need to impose arbitrary user-specified boundaries
upon which systems identification typically relies, allowing for unsupervised segmentation of complex systems into
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collections of interacting macroscopic objects. Furthermore, by virtue of being based on discovering the statistics of
Markov blankets, it automatically inherits the ability to identify object types, allowing us to classify subsystems in
terms of the macroscopic rules or laws that govern how the object interacts with its environment.

The rest of this paper is structured as follows. We first present an overview of Markov blankets and their use in
the FEP. We then consider core elements of reinforcement learning, systems identification theory, and macroscopic
physics discovery, mapping two notions of systems equivalence onto the statistics of Markov blankets, and discussing
limitations. Following this, we return to Markov blankets under the FEP and discuss the mathematics of static and
dynamic Markov blankets. We then present the Markov blanket detection algorithm and examine numerical work
applying it to simple systems. We conclude with a discussion of implications of this work for the FEP broadly and
directions for future work. We argue that the statistics of Markov blankets as formulated in the FEP literature provide
us with the mathematical apparatus needed to establish the notion of an “ontological potential function,” i.e., a function
that rigorously defines object types via boundary constraints.

2 The free energy principle: Core elements

2.1 Markov blankets in the formulation of the free energy principle

At a high level, the standard formulation of the FEP starts from the equations of statistical physics, with Markov blanket
structure imposed. The notion of a Markov blanket was originally introduced by Pearl [33] as a means of identifying
the complete set of random variables that impact inference regarding the value of a given set of “internal” random
variables.1 Pragmatically, knowledge of a Markov blanket for each node in a graphical model can be used to identify
the structure of message passing algorithms used for efficient probabilistic inference. The property is inherited directly
from the definition of a Markov blanket of set of “internal” random variables z ⊂ X as set b ⊂ X such that z ⊥ s|b,
where s is the complement of the union of z and b, or equivalently:

p(s, z|b) = p(s|b)p(z|b) (1)

In a directed graphical model, the Markov blanket of a set of nodes Z consists of all the parents of the nodes in Z,
all the children of nodes in Z, and all the parents of the children of the nodes in Z. This establishes a conditional
independence relationship between nodes in Z and all of the other nodes not in the blanket of B, i.e. S = (Z ∪B)c,
where the superscript c denotes the complement,

p(z|b) = p(z|s, b) (2)
p(s|b) = p(s|z, b) (3)

where the lowercase refers to the values of the random variables in the corresponding set.

In the FEP, this Markov blanket structure is realized by assuming that the dynamics of a microscopic system can be
partitioned into three subsets of variables: internal variables (z), boundary variables (b), and external or environmental
variables (s), such that:

ds

dt
= fs(s, b) + ηs (4)

db

dt
= fb(s, b, z) + ηb (5)

dz

dt
= fz(b, z) + ηz (6)

where the η’s indicate noise that is independent across the s, b, z variables. This results in the desired posterior
probability distribution over trajectories or paths (indicated by subscript τ ):

p(sτ , zτ |bτ )p(bτ ) = p(sτ |bτ )p(zτ |bτ )p(bτ ) (7)
1Note that here we are using Markov blanket and Markov boundary interchangeably. In some parts of the literature, a Markov

blanket refers to any set that establishes the desired conditional independence structure, while the Markov boundary is the minimal
set. [33]

4



A PREPRINT - MARCH 3, 2025

Conditional independence follows from the absence of any direct causal interaction between s and z, but can be
intuitively understood as resulting from that fact that, if the path bτ is observed, then it can be treated as a known driving
force to two independent subsystems. It is important to note that the Markov blanket associated with this system applies
to paths (i.e., to the time evolution or trajectory of a system), and not to steady state distributions. Also important to
note is that dynamical systems that have blanket structure (i.e., that conform to Eq. 6) do not generally result in steady
state distributions that also have blanket structure. See [15] for some exceptions to this general rule.

The link between the Markov blanket and subsystem or object type also follows directly from the conditional inde-
pendence relationship. This is because two objects whose boundaries follow the same path must, by definition, have
the same effect on the environment, regardless of the details of their internal dynamics. As a result, one can define an
object type by the path statistics of a Markov blanket. See also [42]. Crucially, we note that this statistical definition of
object type is consistent with the definition of object type used in systems identification theory, which is standard in
reinforcement learning. This is because the blanket statistics fully characterize the interactions between a subsystem and
its environment, and thus, include both the inputs and outputs of the subsystem. As such, two objects with very different
internal structure and states, but with the same boundary statistics, will also have the same input-output relationship and
will interact with their environment in precisely the same way. This is trivially observed in the simple case where one
can partition the blanket into active states that directly influence the external variables and sensory states that directly
influence the internal variables, i.e. b = {a, o}. In this case, straightforward application of Bayes rule to the Markov
blanket based definition of object type, p(bτ ) = p(aτ , oτ ), allows for the direct computation of p(at|oτ<t), which we
recognize as the agent’s policy or the subsystem’s response function.

It is worth noting that this Markov-blanket-statistics-based formulation of systems equivalence offers a more complete
description than the one from systems identification, in that it contains more than just the policy of the agent or object
in question. This is because the equations are symmetric and so the blanket statistics also encode the “policy” of
the external system, p(ot|aτ<t). This makes it clear that the Markov-blanket-based definition of an object type is
environment-specific.

(a) ’Actual’ (b) Equivalent

Figure 1: The Markov blanket definition of object equivalence. The relationship between the boundary (green) and
environment (red) are fixed. The objects are equivalent if replacing the internal variables (blue) and their connections to
the boundary with some other set of variables and connections without affecting the distribution of boundary paths,
p(bτ ).

2.2 The maximum caliber route to an ontological potential function

The utility of any definition lies in its predictive power. Here, we show that, when combined with Jaynes’ principle
of maximum caliber [23, 10, 31], this blanket statistics based definition of an object leads directly to an “ontological
potential function” that formalizes the notion object type in terms of the macroscopic rules of behavior necessary to
instantiate an object of a given type, where type is defined by blanket statistics [41, 36]. That is, given path statistics on
a Markov blanket, p(btau), Jaynes’ principle can be used to identify an energy function and associated Lagrangian
that specify the dynamics of the environment, boundary, and object variables that give rise to an object of that type.
This is consistent with the notion of system typing used in physics, wherein physical systems are defined by the energy
functions or stationary actions that they minimize. (For a similar argument based on the maximum entropy principle, see
[27].) Here, we show that boundary statistics lead directly to an object-specific energy function, an ontological potential
function that corresponds to the generalized free energy and associated Lagrangian. This closes the gap between the
Markov blanket based definition of an object type and the notion of type used in statistical physics and leads naturally
to a typology of systems based on statistical constraints imposed on their Markov blankets [37].
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The objective function that one obtains from combining blanket statistics with Jaynes’ principle of maximum caliber is
precisely the free energy, providing the basis for an alternative derivation of the FEP. To this end we take inspiration
from recent derivations of statistics physics from purely information theoretic considerations [31, 10], and impose
boundary constraints within the maximum caliber framework. We show that this ultimately results in a free energy
minimization problem, consistent with the core elements of the path based formulation of the FEP [36]. Jaynes’
principle of maximum caliber is an information theoretic formulation that extends the constrained maximum entropy
approach [24] to the space of paths or trajectories through state space. This information theoretic approach is commonly
used in statistical inference, to determine the most parsimonious model of some data; where we maximize entropy or
caliber under constraint derived from data or known physical laws [23]. More recently, Jaynes’ principle applied to
paths through state space has been shown to provide an information theoretic foundation upon which one can derive the
equations upon which physics is based; that is, given an appropriately chosen set of constraints, optimizing Jaynes’
caliber objective leads directly to all the core equations of classical, statistical, and quantum physics in such a way
that the deep relationships between action, energy, work, and heat (Hamiltonian or Lagrangian functions) are made
plain [10, 31]. It can also be used to directly derive powerful theorems in non-equilibrium statistical physics, including
Crook’s theorem, Noether’s theorem, the Jarzynski inequality, and the second law of thermodynamics itself [31, 22, 19].

The near uniform applicability of Jaynes’ maximum caliber principle, when combined with the blanket-statistics-based
definition of an object type allows us to incorporate non-stationary and non-ergodic systems into the FEP modeling
framework, something that had seemed difficult to model using previous formulations (see [6, 35, 11, 30]). As we
will see, this flexibility will allow us to define—and ultimately discover, in a data-driven manner—the dynamic or
wandering Markov blankets that are required to model non-stationary, changing, and mobile things such as flames,
lightning bolts, and traveling waves, as well as objects that exchange matter with their environments.

2.2.1 Jaynes’ principle and ontological potential functions

Mathematically, maximum caliber begins with a probabilistic, and often coarse, characterization of the laws of physics,
p(ẋ, x, t). It then supposes that we have additional information about how a particular system works, which is given by
certain constraints that take the form of time dependent expectations

F (t) = ⟨f(ẋ, x, t)⟩ (8)

These expectations provide “instantaneous” constraints and, when combined with prior knowledge of dynamics,
effectively define a system type. For example, stationary geometric constraints < f(x) >= C,∀t lead to the traditional
potential function of classical mechanics, while the kinetic term arises from Newton’s laws, as expressed via p(ẋ, x, t).
A probability law q(ẋ, x, t) associated with that system type is then obtained by maximizing the relative path entropy,
with the constraints enforced by Lagrange multipliers, λ(t), i.e.

S[q(·), λ] = −KL(q(ẋ, x, t), p(ẋ, x, t))−
〈∫

λ(t) · f(ẋ, x, t)dt
〉

q(·)
(9)

along with the unstated additional constraint that q(·) is a well-defined probability distribution, i.e. the integral over all
paths is 1. Written in terms of the Lagrange multipliers, optimization of S[·] results in

q(ẋ, x, t) =
1

Z[λ(t)]
p(ẋ, x, t) exp

(
−
∫

λ(t) · f(ẋ, x, t)
)

(10)

where the path entropy at the maxima is given by

Smax = logZ[λ(t)] +

∫
λ(t) · F (t)dt (11)

Entropy = −Free energy + Energy (12)

with associated dimensionless Lagrangian and action:

L(ẋ, x, t) = log p(ẋ, x, t) + λ(t)f(ẋ, x, t) (13)

A [xτ ] =

∫
dtL(x, ẋ; t) (14)

6
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This relationship between expected energy, entropy, and free energy allows us to cast the maximization of caliber as a
free energy minimization, consistent with recent formulations of the FEP [16]. Moreover, armed with the Lagrangian,
one directly obtains the associated Hamiltonian with the interpretation that Hamiltonian dynamics yield the most
probable path [10]. Constraints that are also independent of time coupled with the assumption of time translation
symmetry leads directly to constant λ and the identification of a conserved energy (λ · F ).

Critically, we can interpret this log partition function form of free energy as a potential function, the partial derivatives
of which result in generalized notions of heat and work [31]. In this maximum caliber framework, it is the constraints
that ultimately lead to this potential function, as well as that Langevin and Hamiltonian dynamics that define physical
systems. This implies that the constraints themselves can be thought of as defining system type. For this reason, we
conclude that this free energy functional is an ontological potential function for noisy dynamical systems, and a central
component of a generic definition of “every” “thing.”

2.2.2 The Markov blankets of “every” “thing”

What the FEP approach adds to Jaynes’ principle of maximum caliber is a physical definition of the boundary of “every”
“thing.” That is, the FEP adds to maximum caliber a way of representing the notion that boundaries are not fictive (e.g.,
mere flux relations between volumes), but rather, that they correspond to distinct, seperable objects. This is inherited
from the notion that subsystems are defined by boundary or blanket constraints.

Combining the notion of an ontological potential function, as defined above, with the Markov blanket definition of a
subsystem type leads directly to a simple definition of a subsystem or “object” or “thing” in a given environment:

Maximum caliber definition of an object

1. A time dependent set or manifold B ⊂ X ⊗ T , parameterized by ΩB(t) ⊂ X that maintains Markov
blanket structure with respect to the prior on unconstrained dynamics p(x, ẋ)

2. A set of instantaneous constraints applied to both the set ΩB(t) and the elements of x ∈ ΩB(t)

It is easy to show that imposing blanket constraints does not disrupt the conditional independence structure inherited
from the prior dynamics. While it is possible to enforce the constraint that a particular p(bτ ) be realized directly[10],
we find it more intuitive to re-represent the blanket distribution by a (possibly infinite) set of instantaneous constraints
on expectations. Of course, the constraints needed to represent an arbitrary p(bτ ) are not necessarily the kind of
“instantaneous” constraints that are typically used with the maximum caliber objective. Instantaneous constraints,
however, are preferred because they lead to causal dynamics and are therefore considered “physically realizable.” We
restrict ourselves to this class of instantaneous constraints by defining a time-dependent blanket, ΩB(t) ⊂ X , and
imposing constraints of the form

FB(t) =
〈
fB(ẋ, x, t,ΩB(t)|x∈ΩB(t)

〉
(15)

Note that when applied to a blanket that is a manifold, geometric constraints simply add an additional flux term to
the associated Langevin equations, but do not otherwise change their structure. This arises from the time derivative
of the indicator function that restricts boundary constraints to elements in the boundary. This is true regardless of
whether or not the blanket is connected or persists for any length of time. Note also that judicious choice of constraint
functions, fB(·), can be used to place constraints on the shape and evolution of the manifold ΩB(t). The flexibility of
this approach follows from the fact that the boundary ΩB(t) can be either specified or treated as a random variable with
support on the set of Markov blankets specified by the prior p(·).
Before moving on, we note some connections to systems identification and reinforcement learning. As previously shown,
equivalence of Markov blanket statistics implies policy equivalence. In reinforcement learning, this is often referred to
as strong equivalence between two agents. Since policies can be derived from the blanket statistics, equivalence of
Markov blanket statistics implies policy equivalence; and therefore, agents that share Markov blanket statistics are
agents of the same type. Reinforcement learning also has a notion of weak equivalence that is associated with agents
that achieve the same reward rate. In an infinite horizon setting, with a reward function that only depends on actions
and outcomes, agents that are defined by stationary boundary statistics necessarily achieve the same reward rate. The
converse is also true: namely, agents with the same stationary boundary statistics have the same reward function, under
the assumptions imposed by the maximum entropy inverse reinforcement learning paradigm [49, 45]. This means that
weakly equivalent agents are associated with constraints on the stationary distribution of the boundary, p̃(b). A more
direct link to reinforcement learning can also be seen by noting the link between Jaynes’ maximum caliber objective
and that of KL control theory [26, 12]. This makes it plain that the Markov blanket statistics based notion of object
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type and associated ontological potential function subsumes the relevant notions of systems equivalence used in both
systems identification and contemporary reinforcement learning.

In short, this maximum caliber, blanket-statistics-based definition of object type has the desired property that it is widely
applicable, consistent with systems identification theory, and associated with a consistent objective function, namely,
the free energy. While the specific details of the constraints imposed by FB indicate an object’s particular type, gross
properties of the constraint functions themselves can be used to classify different kinds of objects. It also suggests the
possibility of developing a taxonomy of different object types based on the domain of the blanket and the kinds of
“ontological” or object-type-specific constraints imposed. For example, it is standard in the statistical physics literature
to refer to constraints that only depend upon x as geometric constraints. The approach outlined here elucidates at least
three degrees of freedom along which constraints can be defined: the shape or topology of the boundary ΩB(t), the
dynamics of the boundary, and the statistics of the boundary. For example, the boundary of a cell is, topologically
speaking, a spherical surface that is dynamic because it exchanges matter with its environment, and that has stationary
boundary statistics to the extent that achieves homeostasis in its environment. A rigid body, on the other hand, has no
internal states per se, and thus has a spherical “boundary” that is static in the sense that it does not change shape, but
dynamic in the sense that it can move.

2.3 A simple example: the flame

A common criticism of the Markov blanket definition of a “thing” has been that this definition does not apply to flames
[30, 35]. This misconception results from the false assumption that Markov blankets must be static or tied to matter.
However, the formalism presented here neatly captures flames and other traveling waves, due to the flexibility endowed
via a consideration of dynamic boundaries.

For example, consider a simple flame burning down a one dimensional fuse as an unsteady traveling wave (we provide
a numerical example in the following sections). Here, we will define the boundary to be the point that separates burned
from unburned regions, yb(t). The constraint we will impose is that the temperature at this point should correspond to
the ignition temperature of the exothermic chemical reaction that drives the flame

θig =

〈∫
dy′δ(y′ − yb(t))T (y

′, t)

〉
(16)

Implementing this constraint results in a Lagrangian and maximum a posteriori (MAP) estimate of temperature given
by:

L(T, Ṫ ,∇2T, yb(t), t) = log p(·) + λ(t)

∫
dy′δ(y′ − yb(t))T (y

′, t) (17)(
∂

∂t
− ∂2

∂y2
+ h

)
Tmap = σ2

pλ(t)δ(y − yb(t)) (18)

Thus, the imposition of the constraint results in a point heat source at the boundary, with magnitude proportional to the
Lagrange multiplier that implements the constraint. Here, σ2

p represents the variance of the deviation from a prior that
favors the heat equation for a 1 dimensional solid subject to Newton’s law of cooling. Recall that energy is given by the
constraint:

∫
dtλ(t)θig allowing for the interpretation of λ(t) as the energy that must be injected into the system in

order to keep the flame moving at a specified velocity ẏf (t).

While this example illustrates how constraints and boundaries can work together to lead to consistent and sensible
dynamics, it is not quite what we would like. Ideally, we would like a probability distribution over paths that includes a
distribution over the boundary location and state. This requires a prior that operates on the location of the boundary, and
that in general can include additional constraints. This allows us to treat yb(t) in the same way as T (y, t), resulting in
an expansion of the set of equations that must be simultaneously solved in order to determine MAP dynamics for both
temperature and flame speed. For example, if we assume a priori that the flame speed is normally distributed, then we
acquire an additional Euler-Lagrange equation that relates flame speed fluctuations to heat release and temperature flux
at the boundary:

d2

dt2
yb(t) = σ2

yb
λ(t)

∂

∂y
Tmap(yb(t), t). (19)
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2.4 Summary so far

In practice, how do you use an ontological potential function? We begin by specifying a physics via a prior on dynamics
p(ẋ, x, t), and we then specify the statistical properties of a boundary via constraints. The dynamical system that results
from this specification is guaranteed to give rise to the kind of object specified by the boundary statistics. This can be
interpreted as answering the questions: (1) how must microscopic elements (both internal and external to the subsystem)
organize themselves, or (2) how must energy be injected into and dissipated by the system, in order to instantiate a
boundary of the specified type.2

However, this method of instantiating the desired object still does not allow us to determine which particular subsets of
a given dynamical system system should qualify as an object. It only tells us something about systems that support
particular kinds of objects that we have already identified. Indeed, despite their utility, all the methods just reviewed do
not adequately address the problem of subsystem identification and typification, precisely because the boundaries are
effectively user defined.

Having established that sensible boundaries correspond to Markov blankets, it is tempting to conclude that any collection
of elements that has a Markov blanket corresponds to an object. Unfortunately, the definition of a Markov blanket is too
expansive to be of practical use, since every snapshot of every microscopic element has a blanket (Fig 2a); see [6] for
critical discussion. For this reason, much of the FEP literature has adopted the additional principle for “thing-ness”:
namely, stationarity [9]. That is, the blanket and object must be a proper subset of the system as a whole, and the
elements that make up the blanket and object must not change with time [15]. This assumption eliminates an arbitrary
fluid element from consideration, since matter can freely pass into and out of the element. As it does, the matter
transitions from being inside to outside the object by passing through the blanket, and thus, the blanket is not stationary
with respect to the elements that make up the fluid. But this rules out the possibility of modeling all sorts of interesting
systems, indeed perhaps the most interesting ones, which have dynamic boundaries and which experience material
turnover.

Here, we argue that this stationary formulation of boundaries is both too restrictive and not restrictive enough for our
purposes. On the one hand, it is too restrictive, because blanket stationarity prohibits one from concluding that a flame,
or any traveling wave, for that matter, is an object. This is because the elements of the medium that make up a traveling
wave change as the wave moves through matter. On the other hand, it is not restrictive enough, because it implies that
any arbitrary connected subset of elements correspond to an object. In the flame example above, this means that any
segment of the original fuse, down which the flame burns, must count as a thing, independent of the temperature profile,
reaction rate, and their dynamics.

What this example makes clear is that a more general definition of an object or thing should be able to accommodate
the notion of a blanket that can move or change, and should incorporate some aspects of the dynamics of the system
as a whole. Moreover, the inclusion of dynamic blankets results in a massive expansion of the number of blankets
present in any given system. It is clear that what is needed is an additional principle that allows us to select those
blankets that correspond to the things that we would like to call things. Since the goal is to sensibly carve the world at
its joints, an obvious choice for such a principle is Occam’s razor, applied to the global dynamics. We implement this
new principle by seeking low-dimensional dynamical systems with dynamic Markov blanket structure and employ a
Bayesian modeling approach to instantiate Occam’s razor.

3 A dynamic Markov blanket detection algorithm

We now present, in general form, a probabilistic generative model with dynamic Markov blanket structure that can be
inverted to identify Markov blankets and well as classify objects into types according to their blanket statistics and
dynamics. Markov blanket detection is, in general, a difficult problem. Even in static settings, it is NP-hard [18, 48].
This is because, even in a situation where the blankets are stationary, the number of Markov blankets in a given system
grows combinatorially with the number of system components. Allowing for blankets to be dynamic only makes things
worse.

We sidestep this issue by taking inspiration from macroscopic physical discovery, which focuses on discovering low-
dimensional dynamics that summarize high-dimensional systems. Specifically, we propose a class of dimensionality
reduction algorithms that partition high-dimensional dynamical systems into subsystems that have Markov blanket
structure. This is accomplished via the presumption that low-dimensional latent dynamics have Markov blanket structure
and that each element in the original high-dimensional observation space is driven by just one of the low-dimensional

2Of course, the dynamics obtained thereby are not unique: There might indeed be lower entropy solutions. However, the one
obtained via this maximum caliber approach can be guaranteed to be the most general.
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(a) Fundamental blanket
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Figure 2: In a spatially connected domain with nearest neighbor connectivity, the blanket of a single node at time t
(a) consists of its parents (the three adjacent nodes at the previous time step), its children (the three adjacent nodes at
the next time step), and its co-parents (which consist of the two nodes immediately to the left and right). This implies
that gradients can always be computed on the boundary. A static or stationary blanket (b) is defined as having a spatial
location that does not change. The intersection of any two blankets makes up blanket allowing for blankets to be
disconnected (c). Traveling waves are associated with moving blankets (d). All of these blankets (and many, many
more) are present solely by virtue of the topology of the network independent of its dynamics.
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latents. For example, in the case where a single object is assumed to be present, we seek a set of state variables that
represents the environment (s) and two sets of state variables for each object: one that summarizes the collective
behavior of the elements that belong to the boundary (b) and another that describes the collective behavior of the
elements that are inside the boundary (z). We leave open the possibility that the set of internal elements may be empty.

We design enough flexibility into the model to discover objects that have non-stationary blankets by directly modeling
the boundary, ΣB(t), as a latent assignment variable. This is accomplished by instantiating a dynamic attention
mechanism that probabilistically assigns a label to each microscopic element or measurement. These labels indicate
whether that element is an internal, external, or blanket element. Transitions between these labels obey the usual rules
for Markov blankets, i.e., label transitions from internal to external are prohibited and label transition probabilities
depend only on the macroscopic blanket variables. When multiple objects are present, we allow for the possibility that
there are a set of macroscopic variable for the boundary of each object (bn) as well as its internal state (zn), n = 1 · · ·N
and a single environment variable s. Observed data, denoted yi(t) ∈ RD, are assumed to be a relatively fine-grained
measurement of the activity. Associated with each observation index i is one of the discrete time dependent labels
ωi(t) ∈ {S,Bn, Zn}. These labels identify the boundary of each object and determine which of the macroscopic
variables influences the associated microscopic observation. Specifically, the label associated with each measurement
determines the conditional independence relationship:

p (yi(t)|ωi(t) = Zn, s(t), {b(nt), zn(t)}) = p (yi(t)|ωi(t) = Zn, zn(t)) (20)

with similar equations holding for the cases where ωi(t) is S or Bn. Though written in generative form, this observation
model corresponds to a noisy non-linear projection from observations to target macroscopic variables, modulated by the
assignment variables. The dynamics of both the macroscopic variables and the transition probabilities of the assignment
variables are constrained to obey Markov blanket structure, with the added restriction that the transition probabilities for
the labels depend only on the boundary variables.

dpi

dt
= T({bn})pi (21)

where T(·) is a 1+2n x 1+2n matrix, constrained such that TSZn
({bn} = TZnS({bn}) = 0 prohibiting element labels

from transitioning directly from object to environment. Similarly, the dynamics of the latent variables are constrained
such that the Jacobian of the global dynamics only allows zn-bn and bn-s interactions. See Fig. 3a.

This constitutes the general form of this kind class of blanket discovery algorithms. In order to convert this general
dynamic Markov blanket model into a more tractable form, a few additional simplifying assumptions are required. For
example, non-linear dynamics could be implemented via recurrent switching dynamics system and discovered through
variational inference[29] or specified by a neural network and learned via gradient descent[34]. Here, we will assume
simple linear dynamics and instantiate the non-linear observational model using a switching linear transform. We will
also assume that transition probabilities for the assignment variables are a priori independent of the macroscopic latents.
This leads to a factorial Hidden Markov Model (HMM) that mixes discrete and continuous latent variables, with the
unique feature that the labels associated with every observational node i has its own discrete HMM. See Fig. 4.

For a single object this linear model is given by

s′, b′, z′|s, b, z ∼ Normal (A[s, b, z] +B,Σsbz) (22)
ω′
i ∼ Categorical (Tωi) (23)
yi ∼ Normal (Cωi

[s, b, z] +Dωi
,Σωi

) (24)

where the matrix A is constrained to have Markov blanket structure by placing blocks of zeros in the upper right and
lower left corners. Similarly, the means of CS , CB , and CZ are constrained to have blocks of zeros so that observations
only depend upon one of the three continuous latents. These constraints are imposed on the mean via the action of
Lagrange multipliers. We reduce the degeneracy of the model by assuming that Σsbz is diagonal, with unit trace
imposed on the posterior mean, also via the action of Lagrange multipliers. This further encourages the discovery of
low-dimensional macroscopic dynamics via the action of the automatic Occam‘s razor effect of Bayesian inference.

In order to model the non-linear observation model, we expand the domain of the discrete latent assignment variables to
include “roles” associated with each of the labels, S,B,Z. This effectively instantiates a hierarchical hidden Markov
model (HHMM) for the label assignment variables, where the blanket structure is enforced at the highest level of the
hierarchy, and the lowest level represents a mixture of linear experts model to describe the relationship between the
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(a) Transition matrix (A or T ) (b) Observation tensor B[:, roles, latents]

Figure 3: (a) Constraints on transition matrices and observation tensors for N = 3 objects. (b) The observation model,
under the assumption that there are 4 roles per latent and a 4 dimensions in each observation vector yi(t).

targeted macroscopic variable and the observation. This is depicted in Fig. 3b. Note that we could have used the
same trick for the dynamics, effectively implementing a recurrent switching dynamical system, but rationalized linear
dynamics with a non-linear observation model, as an instantiation of the Koopman embedding trick [28]

3.1 Inference and learning

We approximate Bayesian inference using variational Bayesian expectation maximization (VBEM), with a posterior
that factorizes over parameters and the two classes of latents, i.e.

q(s, b, z, ω,Θ) = qsbz(s, b, z)qω(ω)qΘ(Θ) (25)

where Θ = {A,B,Cω, Dω,Σ
−1
sbz,Σ

−1
S,B,Z , T}. This leads to an inference algorithm that iteratively updates qsbz(s, b, z)

and qω(ω) until convergence, i.e.,

log qω(ω) = ⟨log p(s, b, z, ω|Θ)⟩p(s,b,z)p(Θ) (26)

log qsbz(s, b, z) = ⟨log p(s, b, z, ω|Θ)⟩p(ω)p(Θ) (27)

This follows the attend, infer, repeat (AIR) paradigm [14], where the posterior updates over the assignment variable
trajectories, ωi(t), corresponds to the attentional update, which is then followed by jointly inferring s, b, and z, and
then repeating prior to updating the posterior distributions over the parameters. Note that unrolling these two steps into
a neural network implementation leads to a variation on the powerful transformer architecture [46], but with added
structure that ties attention variables across layers of the network implementation.

Note that we do not factorize qsbz(·) or qω(·) over time, but instead implement a forward-backward scheme that
performs exact computation of the posterior distribution over the latent variables[3]. Conditional conjugacy allows us
to use a matrix normal gamma distribution for q(A,B,Σ−1), a matrix normal inverse Wishart for q(Cω, Dω,Σ

−1
ω ),

Dirichlet for rows of T , and normal inverse Wishart distributions and Dirichlet distributions for the relevant initial
conditions. Coordinate update rules for the natural parameters of the posteriors over Θ were augmented by a learning
rate parameter, typically set to 0.5, in order to enable parameter learning on minibatches of trajectories and reap the
benefits of stochastic natural gradient descent [25].
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Figure 4: Generative model for factorial hidden Markov model with Markov blanket structure. The dashed lines
determine how the macroscopic blanket variables affects the evolution of the blanket labels. This breaks the factorial
structure, increasing the complexity of inference. However, when simulating data for algorithm testing purposes, these
connections help maintain the stability or permanence of objects.

4 Results

We present simple numerical experiments that demonstrate how a dynamic Markov blanket detection algorithm sensibly
labels the components of Newton’s cradle, a burning fuse, the Lorenz attractor, and an artificial life simulation. Inference
and learning for this model are implemented using a custom message passing framework, specifically designed to
exploit conditional conjugacy and stochastic coordinate ascent [21]. The code for the dynamic Markov blanket
detection algorithm and the VBEM inference modules upon which it is built can be found at https://github.com/
bayesianempirimancer/pyDMBD. All simulations are trained on the complete data set, with a learning rate set to
0.5 for 50 training epochs. This is done a minimum of 10 times. Results shown are from the computational run that
achieves the largest expected lower bound (ELBO) on the log likelihood.

4.1 Newton’s cradle

The simulation of Newton’s cradle consists of 5 balls of equal size and shape that are suspended from strings, which are
separated by a distance equal to the diameter of any ball. At rest, the balls hang together, just barely touching. When the
leftmost ball is given an initial position away from the other 4, it swings down, halts its motion at its resting position,
and transfers its momentum through to the other balls. These move in sequence and similarly transfer their momentum
up to the rightmost ball, which this swings up and away; before returning, and repeating the process. If two balls are
initially perturbed, then two balls will pop out the other side, and so on. We simulate a Newton’s cradle with either zero,
one, two, or three balls initially perturbed by the same randomly selected angle between 0 and 3π/2. All the balls are
then randomly perturbed by a small angle difference, with standard deviation 0.1 radians.
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Applied to this data set, a static Markov blanket detection algorithm based upon exerted forces [15] discovers a single
object, centered on the middle ball, regardless of the dynamics of the system, and without regard for the number of
initially displaced balls. In contrast, the dynamic Markov blanket detection algorithm labels the balls in a manner that is
consistent with human intuition: that is, we tend to perceive Newton’s cradle dynamics as either as a pendulum or as a
set pair of interacting sets of balls, one on the left and one on the right. These two common precepts map precisely onto
the two most commonly discovered partition discovered by this simple DMBD algorithm. Specifically, Fig. 5 depicts
these two solutions, where color indicates label, with green for boundary, and red and blue for object and environment.
If two balls or more balls are initially perturbed, then the balls that move together are always given the same assignment.
The most commonly discovered solution (Fig. 5(a-c)) labels the object as the moving balls, regardless of which side of
the cradle they are on. In this case, the environment label is assigned to the more or less stationary balls. The boundary
consists of the balls that very briefly obtain high velocity due to collision. As a result, the boundary is not physically
realised most of the time. The second most commonly identified partition locates the boundary as the stationary balls,
and labels the object and environment as the moving balls. The ball on one side is always labeled environment and the
ball on the other side is labeled object. See Fig 5(d-f). Once again, when the leftmost or rightmost balls are more or less
stationary, they become part of the boundary.

(a) The object (blue) starts on the right (b) A collision creates a blanket (c) The object emerges on the left

(d) The object (blue) starts on the right (e) The ball is absorbed into the blanket (f) The environment emerges on the left

Figure 5: Newton’s Cradle. In (a-c), the ball that makes up the object (blue) collides with the environment (red). Since
the force transmitted must pass through the boundary, the dynamic Markov blanket discovery algorithm labels the
balls on the periphery as temporarily becoming part of the blanket. The momentum is then passed through to the balls
that make up the environment, and is transferred to the ball on the left, which also temporarily becomes part of the
blanket, before emerging as the object on the other side. In (d-f), we see another common solution to this problem
that is discovered by the dynamic Markov blanket discovery algorithm. In that solution, the blanket consists of the
stationary balls. When energy is transferred to the ball on the right, it is part of the object. When energy is transferred
to the ball on the left, it is part of the environment.

4.2 A burning fuse

To demonstrate how this approach can handle flames and traveling waves, we model a combustion front traveling down
a one dimensional medium, i.e., a burning fuse. The fuse is modeled as an in-homogeneous medium composed of
discrete fuel particles separated by a random distance, with unit mean and variance of 0.02. An oxidizer is modeled
as a diffusive process with an inexhaustible source, orthogonal to the fuse. Its effect on combustion is to determine
the rate of heat release. Ignition occurs when the particle reaches a critical temperature. The fuse is assumed have
constant thermal diffusivity of 1. We select this toy model because it is known to support traveling waves that propagate
smoothly, periodically, or chaotically, even in the absence of random perturbations to fuel particle size, location, and
oxidizer availability [4]. Here, the observable variables, yti consist of the fuel and oxidizer concentrations, as well as
the temperature at each location on the fuse, i. Broadly speaking, ahead of the combustion front, fuel and oxidizer are
plentiful; and behind the combustion front, fuel is absent but oxidizer is plentiful. Inside the combustion front, fuel
rapidly drops to zero, oxidizer dips and then returns to a level that corresponds to its current availability, and heat is
released (See Fig. 8a). We simulate a variety of combustion waves by systematically varying the fuel availability as
a function of location and the oxidizer availability as a function of time. The conjunction of these parameters drives
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(a) Case 1: Middle balls correspond to the environment and
moving balls is the environment. During transition of the
object from the left to the right side, there is a brief period
when the boundary appears associated with impacts.

(b) Case 2: The stationary balls are assigned to the boundary.
When the moving ball is on the left, it is labeled as the
environment; and when the moving ball is on the right, it is
labeled as the object.

Figure 6: The principal component is computed independently for the most likely path taken for each of the 4
dimensional latents: s, b, z. The dynamics of the latent assignments for each ball are summarized by the total number of
balls assigned to the environment, blanket, and object. Note that the macroscopic latent variables are highly correlated
and persist even when they lack physical realization via assignment to a ball. This is consistent with the notion that
internal (and blanket) variables maintain a representation of the environment, consistent with Bayesian mechanics.

variability in rate of heat released as the fuel particles burned. We also manipulate the ignition temperature across a
small range of values (0.4, 0.5). This leads to combustion waves that travel at different average speeds, with a range of
periodic or random fluctuations. Some combustion waves also go extinct. Fig. 8(b) shows an example of a wave that
has periodic fluctuations in wave speed. Curiously, the internal variable shows little correlation with object position and
seems to only represent heat release 9. In contrast, it is the environmental variable that is most strongly correlated with
flame position. For completeness, we note that while the results shown here are the most common result, the algorithm
sometimes converges on less sensible solutions. For example, the object sometimes corresponds to the burned portion
behind the combustion wave and the boundary sometimes corresponds to the region in which heat is released. The
solutions previously described, however, are associated with the greatest ELBOs and so are strongly preferred by a
Bayesian model comparison.

4.3 Lorenz attractor

The Lornez attractor also provides a unique test bed for this approach. In this case, there is a single 3 dimensional
observation, the x, y, z position of the object. The chaotic dynamics of the system supports two low (∼ 2) dimensional
attractors and global dynamics that switch between the attracting manifolds. Here, the algorithm discovers what could
be called a phase transition, by labeling the observation as part of the “object” when it is near to the attractor on the left
and part of the ”environment” when it is near to attractor on the right. The boundary label is sensibly associated with
the part of the trajectory that describes the transition between the two attractors. Because of the symmetry associated
with object and environment, we could interpret this as modeling a phase transition in which an single object changes
identity after passing through a phase transition boundary.

4.4 Synthetic biology simulation

For a final example, we use Particle Lenia to simulate a self-organizing system that exhibit cell-like structure and
behavior. We use the “rotator” example [7] for the simulation. Individual particles are characterized by different
distance-dependent attraction and repulsion functions. This leads to interesting self-organizing behavior depicted in Fig.
11, which shows an initially random soup of particles quickly that forms into a cell-like object, with a “nucleus” and
simple “cell membrane.” After some time, the membrane develops rotating flagella-like structures, and the nucleus
tightens into a smaller shape. We use this simulation as a test bed for this multiple-object discovery scheme, in the
hopes that it is able to discover that the different “parts” of the cell are different objects in a common environment. We
assume the presence of 11 different objects, each characterized by 2 dimensional dynamics for the blanket and object
variables. Each object is linked to observations via a single role for each of the blanket and object latents, to encourage
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(a) Idealized combustion wave (b) Fuse in the wind

Figure 7

Figure 8: The algorithm is trained on 200 flame trajectories with 4 dimensions per latent and a total of 12 roles.
Observables are sampled at 200 even-spaced locations and 800 points in time. Discovered dynamics are roughly 6
dimensional. Typical role usage is about 7 in total. Fig. 9 shows the maximum a posteriori label assignments that
the algorithm makes to each node at each point in time, when presented with a flame that goes extinct at approximate
t = 120. Blue represents the flame, red the environment, and green the boundary. The use of roles is critical in this case,
because the environment behaves very differently depending upon whether it corresponds to burned versus unburned
fuse. Indeed, the blanket only uses two roles: one for each of the front and back of the reaction zone. The object
requires only a single role.

(a) Node Assignments: environment in red, blanket in green,
object in blue. Around time t=120 the flame goes extinct
and disappears.

(b) The internal variable (blue) tracks the negative of heat
released. The environment variable tracks flame location.
Note that at approximately t = 125, the flame goes extinct.

Figure 9

the discovery of spatially localized objects. In the example shown, the simulation discovers 5 objects, corresponding to
(1) a disordered state (green), (2) simple cell membrane (yellow), (3) complex cell membrane (orange), (4) disordered
nucleus (purple), and (5) tight nucleus (blue). This illustrates the potential utility of this approach for segmenting
complex systems into multiple interacting dynamic subsystems.

5 Discussion

In this paper, we situated the FEP, Bayesian mechanics, Markov blankets, and ontological potential functions within
the broader set of ideas in Bayesian statistics and information theory, at the intersection of Jaynesian and Bayesian
approaches to mathematical physics, and to mathematical modeling more generally. In particular, the work that we
presented here shows that, in order to apply the logic and constructs of the FEP to model interesting things, we must
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(a) Lorenz Attractor. (b) Two dimensional projection
(c) Principal components and assign-
ments

Figure 10: Red represents the environment, green represents the blanket, blue represents the object. When in the ∼ 2
dimensional oscillating state, the object is present. Note that, at about t = 50, the attractor on the left nearly completely
captures the dynamics for an extended period of time.

step outside of the logic of the FEP itself and call upon an additional principle, by which to pick the best Markov
blanket partition, out of the exponentially many different possible ones. Satisfyingly, this turned out to be the same core
ideas from which we started in developing the FEP in the first place: Jaynes’ principle and surprise minimization. This
is unsurprising to us, because the dynamic Markov blanket detection algorithm that we developed is itself based on the
same underlying ideas that led to the development of the FEP.

We proposed a class of models and associated inference algorithms that treat the problem of dynamic Markov blanket
detection as a macroscopic physics discovery problem, which are fundamentally based upon the identification of
dynamic boundary elements that result in the simplest macroscopic description of the system as a whole. The output
of this process is a set of macroscopic object-type-specific rules that govern the interactions between the boundary
of an object and the environment in which it is embedded (mediated by some possibly fictive internal variables). We
motivated this approach by arguing that it is the statistics of Markov blankets that define object type, in a manner
consistent with systems identification theory and reinforcement learning; and by arguing that, when combined with
Jaynes’ principle of maximum caliber, this definition leads to familiar descriptions of the associated physical systems in
terms of energy functions, Hamiltonians, and Lagrangians. Moreover, the combination of these mathematical tools
leads directly to a characterization of objects in terms of an ontological potential function that precisely corresponds to
the free energy functional, and therefore, corresponds to an alternative derivation of the FEP that starts from information
theory (maximum caliber modeling), as opposed to the traditional approach to deriving the FEP, which begins with the
equations of statistical physics.

On its own, this information theoretic approach to typing objects is incapable of determining which of the many dynamic
blankets in a system should be labeled as proper subsystem. To resolve this ambiguity, we appealed to an additional
principle: parsimony. That is, good labels should lead to a compact, low-dimensional description of the system as a
whole. This is not meant to imply that labeled objects have some kind of metaphysical significance, only that good
labels are useful for prediction, generalization, and data compression.

To see how all this might apply in general, consider the humble proton. Despite being composed of a veritable zoo
of more fundamental particles, correctly applying the label “proton“ to the zoo results in a lower entropy of our
observations, if for no other reason than the fact that protons have positive charge, a particular mass, etc., and behave
accordingly; while a randomly selected particle might have a different mass, charge, etc., and accordingly, behave
differently. Indeed, that is why the zoo was given a label: The label has predictive power, in the sense that, given the
label and knowledge of the observable properties of a proton (position, momentum, spin, etc.), we can predict how the
particle will interact with other things in its environment without having to think about what’s going on inside.

That is, good labels globally minimize the conditional entropy of future observations (or surprise). In that sense, in
mathematical physics modeling, labels play the explanatory role of testable hypotheses: a good hypothesis makes sense
of data, in the sense that the data becomes unsurprising under the hypothesis that the process generating the data can be
labeled as being of this or that type. So, labels are useful because they allow us to compactly describe the dynamics
or observable behaviors of things, generating less surprise upon observing new data or upon considering past data
than if the label had not been used. The dynamics of things depend on their properties, and labels are a useful way of
denoting things with similar properties and behavior. Indeed, if the entropy of our observations does not, in fact, go
down conditioned on that label, then the mutual information between label and observations is zero by definition, and
therefore, the label is meaningless, both pragmatically and in an information theoretic sense.
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(a) Initial disordered state. (b) ’Cell membrane’ forms. (c) ’Flagella’ begin to form.

(d) ’Flagella’ fully formed (e) ’Organelles’ form. (f) ’Organelles’ interact.

Figure 11: DMBD fit to initial evolution of particle Lenia ’rotator’. Time increases left to right. In the initial disordered
state nearly all particles are assigned to a single object. As time progresses a cell membrane forms which is assigned to
a new object type. The cell membrane then undergoes a phase change as ’flagella’. This alters the object label of the
membrane. Meanwhile a tightly bound nucleus forms which is also given a unique label. An additional 8 repulsive
particles move about the region between the nucleus and membrane. This configuration is semi stable with the inner 8
particles transiting around the nucleus. The membrane pulses and rotates slightly perturbing the 8 inner particles which
causes the nucleus to pulsate as well. This causes the inner 8 particles to regularly shift in their object assignments
transitioning from nucleus to organelle to membrane and back.

Interestingly, conditional entropy is precisely the surprise objective most strongly associated with the FEP. However,
in that literature, the role of surprise minimization is treated tautologically, not empirically: the idea is that “things
minimize surprise,” as opposed to “labeling something as an object of a specific type minimizes my surprise.” As a
concrete example, consider the humble proton. Correctly applying the label “proton“ to a particle results in a lower
entropy of our observations, if for no other reason than the fact that protons have positive charge, a particular mass, etc.,
and behave accordingly; while a randomly selected particle might have a different mass, charge, etc., and accordingly,
behave differently. Indeed, that is why it was given a label: the label has predictive power, in the sense that, given the
label and knowledge of the observable properties of a proton (position, momentum, spin, etc.), we can predict how the
particle will interact with other things in its environment. To this end, consider why we bothered to label a proton a
“thing.” Correctly applied, the label reduces uncertainty/entropy and enhances our ability to predict the behavior of both
the proton and the system as a whole. That is, good labels globally minimize surprise. This suggests that the surprise
minimization objective plays a critical empirical role.

This is distinct from the manner in which the FEP is traditionally discussed. A good tautology provides a good starting
point for a definition. The FEP starts with the definition of an object as a blanketed collection of states, whose internal
and active states or paths minimizes surprise (as characterized by the free energy of blanket states or paths)—and
derives a principle of least action and ensuing Bayesian mechanics. That is, the principle focus of the FEP literature has
been on necessary properties of things, and not on empirically discovering which collections we can sensibly label
as objects. Conversely and in a complementary fashion, the approach described here starts from a Markov blanket
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based definition of system types, but takes an empirical point of view of an observer or modeler and seeks to provide a
justification for the decisions that an observer makes when modeling the dynamics of a system.

5.1 Response to technical critiques of the FEP

This work addresses some core technical criticism and limitations of modeling based on the FEP, which up until now
were arguably still open.3 The Markov blanket based approach to system identification has proven controversial (see,
e.g., [6, 35, 11, 5]). Some have argued that the Markov blanket based definition of object and object type is not as
obvious or trivial as its proponents say it is [35].4 Another line of criticism argues that actually identifying Markov
blankets (both mathematically and empirically, in real world data) rests upon nontrivial modeling decisions, and that, as
a result, the Markov blanket formalism is less easily or generally applicable than claimed [6]. Still others have noted
that demonstrations of the near universal applicability of the FEP seems at odds with the assumed form of the Markov
blanket and nonequilibrium steady state condition that together guarantee a partition between organism and environment
or between internal and external states [1, 5, 11, 30]. Indeed, the Markov blanket based definition of a macroscopic
object has been criticized as being ill posed (since many interesting types of systems will appear to have many Markov
blankets [6]) or inapplicable to systems that are strongly coupled to their environment, highly variable, or exchange
matter with their environment [35, 11, 30]. Plainly, the systems that are of most interest to us are open systems that
exchange matter and energy with their environments, exist far from thermodynamic equilibrium, and usually have
mobile and dynamic—and possibly non contiguous—boundaries. Candidate counterexamples to the applicability of the
Markov blanket based approach turned out to be things with mobile or wandering boundaries, like flames and organisms.
It was especially problematic because the FEP was developed originally to model the dynamics of the brain and the
behavior of living things, and is probably best known in this application.

As one would hope, these criticisms have led to substantial debate and an explicit acknowledgment that the FEP, as
formulated for systems at steady state, applies only to a rather “particular” class of macroscopic objects that only
sparsely or weakly interact with their environment [15, 1]. Here, we argue that many of these criticism ultimately stem
from the FEP literature’s prior focus on “static” Markov blanket construct. From a mathematical point of view, several
of these objections were resolved by moving from a state-wise formulation to a path-based or path integral formulation
of the FEP [43, 16], allowing us to avoid having to make assumptions about the steady state statistics of a system (see
[36] for a detailed discussion) or rely on approximate Markov blanket structure in the stationary statistics of the system
as a whole. In the path-based formulations of the FEP, quantities of interest and the equations that relate them now
are defined for paths of a system, i.e., they are defined in objects that make up a structured space or set of trajectories
that each represent a specific way the system might evolve over time. Moreover, a consideration of dynamic blankets
and maximum caliber modeling [36, 42] allows us to identify sensible objects and boundaries in complex systems that
include phase transitions, and to models of objects with transient and moving boundaries. Our contribution here is to
provide a mathematical framework and numerical demonstrations that show definitively that such dynamic objects can
be modeled within this framework, thereby resolving this debate in the literature empirically.

5.2 Niche construction and the role of the environment in active inference

In our simulation of a burning fuse, the environment played an unexpected role: we note that the position of the flame is
best tracked by the state of the environment, rather than by internal states of the combustion network. We also noted
above that, because the equations that govern the dynamics of Markov blankets are symmetric with respect to internal
and external states, the blanket encodes the policies of both the internal and the external subsystems, concluding that the
Markov blanket based definition of an object type is always environment-specific. This result sits well with recent work
reconsidering the role of the environment in active inference and with work on active inference in sociocultural systems
[47]. This work considers the multi scale recursively nested structure of the dynamics that coupled individual agents,
the sociocultural systems they form, and the ecological niche that these shape through action [8, 39, 47, 32]. There is
no a priori reason to always center our model on agents for every kind of task and situation. Instead, we can model
agents as special parts of the wider environment—that are highly salient to other agents; see e.g., [13]. This also speaks
to previous work in this tradition on niche construction work, emphasizing that the property of the synchronization
between objects that the FEP describes—i.e., that it is symmetric—can be exploited by agents. This work models the

3Albeit, see section 3.4. “Some remarks about the state of the art” in [36] for a discussion of the current state of affairs regarding
technical critiques of the FEP, and responses to them).

4Interestingly to us, when considering what possible alternative there could be to the FEP from an information theoretic
perspective, the authors [35] land upon maximum entropy as a possible alternative. This choice of candidate alternative approach is
telling, especially in light of recent developments on the duality of the FEP and maximum entropy/caliber. Indeed, there seems to be
no other game in town.
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passive (habitual, unintentional) and active construction (e.f., deliberate design) of an ecological niche by its denizens,
such that certain kinds of patterned behavior are solicited, as opposed to others that are discouraged [8, 38].

5.3 Future directions

Our specific realization of a member of this class of Markov blanket detection algorithms relied on linear approximations
and a decoupling of blanket (label) dynamics and macroscopic dynamics. This choice resulted in an algorithm that
sensibly partition systems, but that cannot be relied upon for prediction. This is for two reasons: (1) the assumption of
linear dynamics causes the effects of any non-linearities in the system to be attributed to noise, causing an effective
enhancement of diffusive strength; and (2) the assumption that the boundary dynamics are decoupled from the
macroscopic dynamics means that latent assignment variables quickly diffuse to a uniform stationary distribution in
the absence of observed data. We plan to address these issues in future work by imposing Markov blanket structure
on Bayesian instantiations of switching linear dynamical systems models. This work is also related to work on
mathematically modeling downward causality and emergent phenomena via dimensionality reduction [2, 40], in ways
that we plan to explore.
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