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ALVI Labs

koval.alvi@gmail.com

Abstract

We present a system for decoding hand movements using surface EMG signals.
The interface provides real-time (25 Hz) reconstruction of finger joint angles
across 20 degrees of freedom, designed for upper limb amputees. Our offline
analysis shows 0.8 correlation between predicted and actual hand movements. The
system functions as an integrated pipeline with three key components: (1) a VR-
based data collection platform, (2) a transformer-based model for EMG-to-motion
transformation, and (3) a real-time calibration and feedback module called ALVI
Interface. Using eight sEMG sensors and a VR training environment, users can
control their virtual hand down to finger joint movement precision, as demonstrated
in our video: youtube link.

1 Introduction

Upper limb amputation has substantial physical, psychological, and occupational impacts on individ-
uals (1). Even the most advanced bioelectric prostheses cannot completely solve the problem of low
degree of freedom and control flexibility, which is relevant for the users. The main challenge is to
create a universal and convenient control system for the prosthesis, simulating the natural control
of a real hand. In recent works (2; 3), authors have presented systems that convert muscle electrical
signals from the surface of the forearm (sEMG) into precise hand movements in healthy people.
However, for people with amputation, creating such a system remains difficult due to the absence
of target movements to train the decoders.(4; 5) In this study, we present a system for decoding
individual finger movements using sEMG signals for people with hand amputation in real-time. Our
approach includes:

• a VR setup for collecting paired datasets of finger movements and forearm muscle activity
in amputees, which provides essential training data;

• a transformer-based model for decoding individual finger movements from sEMG signals,
which processes this data;

• the ALVI Interface, a real-time system that enables adaptive control and visualization of a
virtual hand with 20 degrees of freedom.

2 Methods

2.1 Dataset

We developed a VR application to collect accurate hand movement data from amputees, crucial for
training our sEMG-based decoding algorithm (6). The system consists of three main components:
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an experimental environment, a hand reflection module, and a data aggregation module (figure 1).
The VR environment features a display screen that shows instructions and guides users through
specific movement sequences. This controlled setting enables participants to practice diverse hand
motions while receiving real-time visual feedback. The hand reflection module was specifically
designed to precisely capture target finger positions for the amputated hand. This is accomplished by
tracking the coordinates of the fingers on the participant’s intact hand using the Oculus Quest hand
tracking system. These coordinates are then mirrored to create a virtual 3D model of the absent hand,
reflecting the movements of the intact hand in a symmetrical manner. The data aggregation module
synchronizes all input data, including finger positions and signals from sEMG sensors (obtained via
wireless Myo Armband by Thalmic Labs). We used the open-source Lab Streaming Layer (LSL)
framework (7) to facilitate precise time-synchronized streaming of all data channels in real-time.

Figure 1: Data collection system. Participant with VR headset and sEMG armband performs
movements with intact hand. System tracks movements, mirrors them to create virtual model of
absent hand, and records muscle activity from residual limb.

We implemented real-time inference for prosthetic hand control. After a brief calibration with simple
gestures, users can perform any movement and see the virtual hand respond in the real-time.

Experiment Our experiment included 72 daily-life gestures (45 dynamic, 27 static), performed
symmetrically with both hands. We had 22 participants (20 non-amputees, 2 amputees), each
completing 3 sessions on different days: 2 for training and 1 for testing. Sessions lasted 1-1.5 hours,
with movements repeated for 1 minute each.

Data preprocessing Raw EMG activity (200 Hz sampling frequency) is normalized to the [-1, 1]
range using min-max scaling. Target movements are encoded as quaternions for 21 joint orientations,
normalized relative to the palm position. We extract 4 angles for each finger, following the approach
presented in NeuroPose3D. The electrode order for the left-hand data is rearranged to match the
right-hand configuration to enable cross-hand compatibility. Movement data is downsampled from 40
Hz to 25 Hz for real-time processing. Our many-to-many approach uses a 1.28-second input window
(8 channels, 256 time points) to predict 32 time points of 20 movement-encoding variables.

2.2 Model

We introduce HandFormer, a transformer-based architecture designed for EMG-to-motion translation.
The model consists of an Encoder and a Decoder, optimized for processing EMG signals and
generating hand movements. The EMG data are split into patches, each patch representing one
electrode’s activity over 8 time points (input shape: [8, 256], patch size (1, 8), resulting in 256
total tokens). The encoder processes tokenized EMG data to extract relevant features. The Decoder
employs a Perceiver-like architecture (8) with 32 learnable queries that match the number of movement
frames. Notably, we use non-autoregressive prediction, which empirically outperforms autoregressive
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approaches for our task. HandFormer’s pretraining consists of two sequential stages. The first
stage, EMG Encoder Pretraining, implements a masked autoencoder architecture (9) with 70% token
masking to learn EMG signal patterns. In the second stage, we use the pretrained encoder weights for
full model training, optimizing hand pose predictions using L1 loss between the predicted and target
joint angles.

Figure 2: Architecture of the model. The HandFormer architecture transforms muscle activity
(sEMG) into hand movements through a two-stage process. The Encoder (left) tokenizes sEMG
signals from 8 channels into patches and extracts relevant features. The Decoder (right) employs a
Perceiver-like architecture with 32 learnable queries corresponding to predicted movement frames.
This non-autoregressive design enables efficient real-time translation of muscle signals into precise
finger joint angles across 20 degrees of freedom.

2.3 ALVI Interface

Building upon our data collection platform, ALVI Interface extends the system from passive recording
to active bidirectional control. While the initial system focuses on capturing training data, ALVI adds
real-time decoding, visual feedback, and adaptive tuning capabilities, enabling users to immediately
see their intended movements and participate in refining the model through interactive training.
This evolution creates a comprehensive motion decoding system that enables practical, personalized
control for amputees. (Figure 3).
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Figure 3: ALVI Interface system architecture..
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System Architecture: The distributed pipeline connects four key components: sEMG armband
(input), VR headset (visualization), laptop (processing), and AI server (adaptation). Laptop processes
sEMG signals to generate real-time hand movement predictions displayed in VR. Simultaneously, data
is streamed to the AI server, which continuously updates the prediction model and sends improved
weights back to the laptop, creating an adaptive learning loop between the system and user.

Interactive Adaptation: ALVI Interface implements a novel approach to model calibration through
interactive real-time training. During a 10-minute session, users perform movements while simulta-
neously observing their virtual hand’s response, allowing them to:

• Immediately see the quality of movement reconstruction

• Focus on specific gestures that need improvement

• Actively guide the training process based on visual feedback

The system continuously finetunes the pretrained HandFormer model to the user’s sEMG patterns,
updating weights every 10 seconds. This interactive loop combines both new and historical data,
ensuring that each session builds upon previous ones while adapting to current conditions. The
challenge of implementing closed-loop adaptive systems with real-time constraints is also being
addressed in brain-computer interfaces, as demonstrated by the BRAND platform (10).

Real-time Performance: The system processes sEMG signals through a 256-point sliding window
at 200 Hz, predicting 32 frames of movement at 25 Hz. It uses the most recent predicted frame for
immediate control, with exponential moving average applied to joint angles for smoothness. This
enables responsive, natural hand control with minimal latency.

After initial adaptation, the Interface runs independently on the laptop, enabling seamless hand control
in VR without requiring constant server connection. This architecture provides a practical foundation
for long-term prosthetic control in virtual environments, significantly enhancing user autonomy and
experience.

3 Results

Our system demonstrated strong performance in both quantitative metrics and qualitative assessments.
The evaluation was conducted across three key dimensions: offline accuracy, real-time performance,
and user experience.

Quantitative Performance In offline testing with 22 participants (20 non-amputees, 2 amputees),
the system achieved finger movement reconstruction with a correlation of 0.86 for non-amputee
participants and 0.80 for amputee participants. The mean angular error was 8.09° and 14.50°
respectively. Notably, our system is among the first to demonstrate such high performance levels for
amputee users.

Table 1: Performance comparison between non-amputees and amputees

Subject Group Angle error (◦) Correlation
Non-amputees 8.09 0.86
Amputees 14.50 0.80

Real-time Performance The system operates in real-time at 25 Hz with a latency of 51.2 ms
(1.28-second window / 25 frames). After a 10-minute calibration period, users can perform natural
hand movements in VR with smooth response. The continuous adaptation mechanism maintains
consistent performance throughout extended usage sessions, with model weights updating every 10
seconds based on new sEMG patterns.

User Experience We conducted extensive qualitative evaluation with amputee participants (n=2)
over multiple sessions. Our participants’ interaction with the system revealed an interesting learning
dynamic. Initially, users performed predefined gestures without system feedback to establish baseline
data collection. After implementing real-time feedback through ALVI Interface, we observed
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significant improvements in control quality. Within the first 10 minutes of interactive training, users
gained precise control over individual finger movements, showing rapid adaptation to the system.

A particularly interesting finding emerged after 30 minutes of use, when participants reported a
mutual learning phenomenon - both the system and users adapted their behavior to achieve better
results, similar to findings reported in other myoelectric interfaces (11).

Users noticed they were unconsciously adjusting their muscle activation patterns to match the model’s
expected inputs, while the system continuously refined its predictions based on user behavior.

The system’s ability to retain personalized models across sessions proved valuable. Each subsequent
session required less adaptation time, as both the system and user retained their learned patterns
from previous interactions. This continuous improvement cycle created an increasingly natural and
responsive interface, with users reporting more intuitive control in each session.

These observations suggest that our approach of combining initial structured training with interactive
learning leads to a more personalized and effective user experience. The decreasing adaptation time
across sessions indicates successful long-term learning on both the system and user sides.

4 Discussion

Our findings indicate that ALVI Interface can provide high-fidelity finger movement decoding in
real-time using sEMG signals, even for individuals with upper limb amputation. A key challenge
remains the inherent variability of sEMG signals—affected by electrode placement, muscle fatigue,
and day-to-day fluctuations—necessitating regular calibration. Our co-adaptive approach offers a
practical solution: the system continuously updates the model based on user input while users adapt
their muscle activation patterns, resulting in rapid proficiency gains within each session.

This co-adaptation capability is particularly valuable for individuals with amputation, as they can
quickly learn fine motor control in VR. Over multiple sessions, participants reported a growing sense
of intuitive control, suggesting that sustained use further refines both the user’s activation strategy
and the system’s decoding performance. Beyond prosthetic control, the same methodology could
benefit stroke or injury rehabilitation by providing real-time visualization of intended movements,
enhancing both patient motivation and clinical insights.

While the results are promising, larger clinical trials with more amputees are needed to generalize
these findings and address known challenges in myoelectric prosthesis control (12). Future work
will focus on improving the long-term stability of the interface, integrating position-invariant sEMG
decoding, and exploring advanced adaptation techniques to reduce calibration frequency. Further
research should also investigate integrating ALVI with physical prostheses for real-world tasks, as
well as exploring how VR-based training might accelerate users’ functional recovery.
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