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Abstract

Zero-one reaction networks play a crucial role in cell signaling. Determining
the equivalence of reaction networks is a fundamental computational prob-
lem in the field of chemical reaction networks. In this work, we develop an
efficient method for determining the equivalence of zero-one networks. The
efficiency comes from several criteria for determining the equivalence of the
steady-state ideals arising from zero-one networks, which helps for cutting
down the expenses on computing Gröbner bases. Experiments show that
our method can successfully classify over three million networks according to
their equivalence in a reasonable time.
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1. Introduction

For the dynamical systems that arise from biochemical reaction networks,
the following computational question is fundamental.

Question 1. Which reaction networks have the same steady-state ideal?

The equivalence of steady-state ideals is one of the equivalence problem
in the field of chemical reaction networks. The dynamical features of chem-
ical reaction networks such as multistability, Hopf-bifurcation, and absolute
concentration robustness (ACR) are linked to switch-like behavior, decision-
making process, oscillation, and so on in cellular signaling [7, 23, 27, 9, 3, 25].
Usually, looking at the steady states is the first step for studying the dy-
namical behaviors of a chemical reaction system arising under mass-action
kinetics. However, it is possible for two different networks to have the same
steady-state ideal (notice that the steady states can be considered as real
points located in the algebraic variety generated by the steady-state ideal).
For instance, consider the two reaction networks:

X1 +X2

κ1−→ 0, X2

κ2−→ X1 +X2, 0
κ3−→ X1 +X2, 0

κ4−→ X2; (1)

X1 +X2

κ1−→ X2, X2

κ2−→ X1, 0
κ3−→ X1, 0

κ4−→ X2. (2)

They respectively have the following steady-state systems (see how to write
down the system for a given network later in (8))

{−κ1x1x2 + κ2x2 + κ3,−κ1x1x2 + κ3 + κ4}; (3)

{−κ1x1x2 + κ2x2 + κ3,−κ2x2 + κ4}. (4)



It is straightforward to compute the reduced Gröbner bases [8] for the above
two steady-state systems, and we find that in Q(κ)[x] they have the same
reduced Gröbner basis

{κ2x2 − κ4, κ1κ4x1 − κ2κ3 − κ2κ4}. (5)

In many cases, the above two networks are considered to be equivalent be-
cause when we only care about the dynamical behaviors determined by the
steady states such as multistationarity, multistability, Hopf-bifurcation and
ACR, we only need to study one of the networks that have the same steady-
state ideal. Notice that relabeling the species or the reactions in a network
naturally gives another kind of equivalence (see more details in [5] on the
“dynamical equivalence” of networks). For instance, if we relabel the species
X1 and X2 and we relabel the first and the second reactions in the network
(1), then we get the following network

X1

κ1−→ X1 +X2, X1 +X2

κ2−→ 0, 0
κ3−→ X1 +X2, 0

κ4−→ X1. (6)

Of course, the network (6) should be considered to be equivalent to the
network (1) and so, it is also equivalent to the network (2). Hence, in our
context, we say two networks are equivalent if they have the same steady-
state ideal after relabeling (see Definition 1).

Determining the equivalence is computationally challenging since a stan-
dard approach is to compute the reduced Gröbner bases. In a recent related
work [12], the authors point out that there are few works on looking at
the equivalence of the steady-state ideals, and we see that deriving explicit
conditions for the equivalence is difficult in general. So, we might need to
focus on a special class of networks for making this problem more feasible.
The standard way (computing Gröbner bases [17, 15, 13, 14, 1, 16]) might
be efficient for small networks such as one-species networks or two-reaction
networks. However, in the studying of small networks, we usually need to
deal with a substantial amount of networks. The idea of studying the small
networks is motivated by the fact that many important dynamical features
have inheritance from a large network to a smaller “subnetwork” such as
multistability [20, 6], oscillation [2] and local bifurcations [4]. In many re-
cent works, people are searching for the smallest networks from a big class
of networks that admit these dynamical behaviors. In these studies, we
need to first determine the equivalence of networks for making the searching
process easier. For instance, Banaji and Boros [3] recently completely clas-
sify the smallest at-most-bimolecular networks that admit Hopf bifurcations
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(they contain three species and four reactions). Tang and Wang [27] find
that the smallest zero-one networks that admit Hopf bifurcations are four-
dimensional (they contain four species and five reactions). Kaihnsa, Nguyen
and Shiu [21] prove that an at-most-bimolecular network admitting both
multistationarity and ACR has at least three species and three reactions,
and it is at least two-dimensional. The focus of this work is the zero-one net-
works since many biological significant networks in cell signaling are zero-one
such as phosphorylation-dephosphorylation cycle [18], cell cycle [24], hybrid
histidine kinase [26], and so on.

In this work, our main contribution is an efficient algorithm (Algorithm
1) for determining the equivalence of zero-one networks. The efficiency of
the proposed new method comes from several criteria for determining the
equivalence of the steady-state ideals arising from zero-one networks, which
dramatically cuts down the expenses on computing Gröbner bases since many
computations are avoided. We have successfully applied the new method to
determining the equivalence of the smallest zero-one networks that admit
multistationarity (these networks are three-dimensional, three-species and
five-reaction [19]). The input contains over three millions such networks, and
the new algorithm returns 32394 networks after determining the equivalence.
The computation is completed in a short time (see Table 1).

The rest of this paper is organized as follows. In Section 2, we review
the basic concepts on reaction networks and the dynamical systems arising
from mass-action kinetics. Also, we formally define the steady-state ideal and
the equivalence of networks in our context. In Section 3, we prove a series
of sufficient conditions (Theorems 1–3) for determining the equivalence of
networks. In Section 4, we present the main algorithm (Algorithm 1) with
two sub-algorithms (Algorithms 2–3) for determining the equivalence of zero-
one networks. In Section 5, we illustrate how the main algorithm performs
by applying it to the three-dimensional zero-one networks with three species
and five reactions. Also, we explain the implementation details and present
the computational timings.

2. Background

In this section, we briefly recall the standard notions and definitions for
reaction networks and computational algebraic geometry, see [10] and [11]
for more details.
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A reaction network G (or network for short) consists of a set of s
species {X1, X2, . . . , Xs} and a set of m reactions:

α1jX1 + · · ·+ αsjXs

κj

−→ β1jX1 + · · ·+ βsjXs, for j = 1, 2, . . . , m, (7)

where all stoichiometric coefficients αij and βij are non-negative integers,
and we assume that (α1j , . . . , αsj) 6= (β1j , . . . , βsj). Each κj ∈ R>0 is called a
rate constant corresponding to the j-th reaction in (7). We say a reaction
is a zero-one reaction, if the stoichiometric coefficients αij and βij in (7)
belong to {0, 1}. We say a network (7) is a zero-one network if it only
has zero-one reactions. For any reaction defined in (7), the stoichiometric
vector is (β1j−α1j , . . . , βsj−αsj)

⊤ ∈ Qs. We say finitely many reactions are
linearly independent if their corresponding stoichiometric vectors are linearly
independent. We call the s × m matrix with (i, j)-entry equal to βij − αij

the stoichiometric matrix of G, denoted by N . The dimension of G is
defined as the rank of N . We call the s ×m matrix the reactant matrix
of G with (i, j)-entry equal to αij , denoted by Y .

Denote by x1, . . . , xs the concentrations of the species X1, . . . , Xs, respec-
tively. Under the assumption of mass-action kinetics, we describe how these
concentrations change in time by the following system of ODEs:

ẋ = f(κ, x) := N v(κ, x) = N





















κ1

s
∏

i=1

xαi1

i

κ2

s
∏

i=1

xαi2

i

...

κm

s
∏

i=1

xαim

i





















, (8)

where x = (x1, x2, . . . , xs)
⊤, v(κ, x) = (v1(κ, x), . . . , vm(κ, x))

⊤ and

vj(κ, x) := κj

s
∏

i=1

x
αij

i . (9)

By viewing the rate constants as a real vector of parameters κ := (κ1, κ2, . . . , κm)
⊤,

we have polynomials fi(κ, x) ∈ Q(κ)[x], for i ∈ {1, . . . , s}. The polynomial
ideal generated by f in Q(κ)[x], denoted by 〈f〉, is called the steady-state
ideal.
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Definition 1. Two reaction networks are equivalent if they have the same
steady-state ideal in the sense of relabeling.

For any given rate-constant vector κ∗ ∈ Rm
>0, a steady state of (8) is

a vector of concentrations x∗ ∈ Rs
≥0 such that f(κ∗, x∗) = ~0, where f(κ, x)

is on the right-hand side of the ODEs (8), and ~0 denotes the column vector
whose coordinates are all zero. If all the coordinates of a steady state x∗ are
strictly positive (i.e., x∗ ∈ Rs

>0), then we call x∗ a positive steady state.
For the stoichiometric matrix N ∈ Qs×m, the positive flux cone of N is
defined as

F+(N ) := {γ ∈ Rm
>0|N γ = ~0}. (10)

In applications, we usually only care about positive steady states of a net-
work. It is well-known that a network admits positive steady states if and
only if F+(N ) 6= ∅.

3. Theorem

3.1. Sufficient conditions for vacuous ideals

For any matrix A, we denote by rowi(A) and coli(A) the i-th row and
the i-th column of A, respectively. For any vector a, we denote by ai the i-th
coordinate of a.

Theorem 1. For any network G (7), let f be the steady-state system defined
as in (8). If there exists a ∈ Qs such that

(1) P := N⊤a 6= ~0, and

(2) for any i ∈ {1, . . . , s}, if Pi 6= 0, then we have coli(Y) = ~0,

then 〈f〉 = 〈1〉 in Q(κ)[x].

Proof. Let v = (v1, . . . , vm)
⊤ be defined as in (9). By the condition (1), we

have

P⊤v =

s
∑

i=1

airowi(N )v. (11)
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Note that P 6= ~0. We denote by Pi1, . . . , Pin all the non-zero coordinates in
P . So, by (11), we have

s
∑

i=1

airowi(N )v =

n
∑

j=1

Pijvij . (12)

By the condition (2), for any j ∈ {1, . . . , n}, we have colij (Y) = ~0. Hence,
by (9), for any j ∈ {1, . . . , n},

vij = κij .

Then, by (8) and by (12), we have

s
∑

i=1

aifi =
s

∑

i=1

airowi(N )v =
n

∑

j=1

Pijκij ∈ 〈f〉.

Thus, we have 〈f〉 = 〈1〉 in Q(κ)[x].

Example 1. We illustrate how Theorem 2 works by the following network:

X1

κ1−→ X2, X2

κ2−→ X1, 0
κ3−→ X2.

The corresponding reactant matrix is

Y =

(

1 0 0
0 1 0

)

. (13)

The corresponding stoichiometric matrix is

N =

(

−1 1 0
1 −1 1

)

.

Let a = (1, 1)⊤. Then, we have P := N⊤a = (0, 0, 1)⊤. Note that P3 6= 0.
By (13), col3(Y) = ~0. Hence, by Theorem 1, we have 〈f〉 = 〈1〉.

A row (column) of a matrix is called a non-zero row (column) if there
exists a non-zero element in this row (column). If a row (column) has both
positive and negative elements, we say the row (column) changes signs.

Theorem 2. For any d-dimensional zero-one network G (7), let f be the
steady-state system defined as in (8). We denote by c the number of zero
columns of the reactant matrix Y. Assume that all the rows of the stoichio-
metric matrix N are non-zero and change signs. Then, we have the following
statements.
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1. There is at least one non-zero column in Y (i.e., c < m).

2. If c = m− 1 and d ≥ 2, then 〈f〉 = 〈1〉 in Q(κ)[x].

3. If c = m− 2 and d = s ≥ 3, then 〈f〉 = 〈1〉 in Q(κ)[x].

4. If c = 0, then 〈f〉 6= 〈1〉 in Q(κ)[x].

Proof. 1. Recall that any stoichiometric coefficients αij and βij are de-
fined as in (7). By the definition of zero-one network, for any (i, j) ∈
{1, . . . , s} × {1, . . . , m}, we have βij ∈ {0, 1}. So, if there exists (i, j)
such that αij = 0, then the (i, j)-entry of N (i.e., βij −αij) can only be
0 or 1. Hence, if all entries of Y are 0 (i.e., c = m), then all entries of
N are 0 or 1. It is contrary to the assumption that all the rows of N
are non-zero and change signs. Therefore, there is at least one non-zero
column in Y (i.e., c < m).

2. Since all the rows of N are non-zero and change signs, there exists the
element −1 in every row of N . By the definition of zero-one network,
we have αij ∈ {0, 1} and βij ∈ {0, 1}. Hence, if there exists an (i, j)-
entry of N such that the entry is −1 (i.e., βij−αij = −1), then αij = 1.
Hence, there exists the element 1 in every row of Y . Since the number
of zero columns is m− 1, we can assume that the first m− 1 columns
of Y are the zero vector. Note that there exists the element 1 in every
row of Y . So, all the coordinates of the the m-th column of Y must be
1. Then, we have

Y =







0 · · · 0 1
. . .

...
0 · · · 0 1






.

By the definition of zero-one network, if there exists (i, j) such that
αij = 0, then the (i, j)-entry of N (i.e., βij − αij) can only be 0 or 1.
Hence, every coordinate of the first m − 1 columns of N can only be
0 or 1. Note that there exists −1 in every row vector of N . So, all
the coordinates of the the m-th column of N are −1. Thus, N has the
following form

N =







−1

A1

...
−1






, (14)
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where all the entries of the s× (m−1) submatrix A1 are 0 or 1. Recall
that for any i ∈ {1, . . . , s}, we denote by rowi(N ) the i-th row of N .
Since d ≥ 2 (note here, rank(N ) = d), there exist i, j ∈ {1, . . . , s} such
that P⊤ := rowi(N )− rowj(N ) 6= ~0⊤. So, if Pk 6= 0, then by (14), we
have k ∈ {1, . . . , m − 1}. Note that for any k ∈ {1, . . . , m − 1}, the
k-th column vector of Y is a zero vector. Therefore, by Theorem 1, we
have 〈f〉 = 〈1〉.

3. Assume that the first m − 2 columns of Y are the zero vector. Then,
by the definition of zero-one network, we have

Y =







0 · · · 0
. . . A2

0 · · · 0






,

where the entries of the s× 2 submatrix A2 are 0 or 1. Then, similar
to the proof of (2), by the definition of zero-one network, we have

N =
(

A3 A4

)

, (15)

where the entries of the s× (m− 2) submatrix A3 are 0 or 1. Since all
rows of N are non-zero and change signs, there exists the element −1
in every row of N . Hence, the rows of the s× 2 submatrix A4 must be
in the set

{(0,−1), (−1, 0), (1,−1), (−1, 1), (−1,−1)}. (16)

(i) Assume that there exist k < s different row vectors in (16) ap-
pearing in A4. Since k < s, at least two rows in A4 are the same.
Assume that the i-th and the j-th (i, j ∈ {1, . . . , s}) rows in A4

are the same. Define P⊤ := rowi(N )− rowj(N ). Then, we have
Pm−1 = Pm = 0. Since rank(N ) = d = s, we have P 6= ~0. There-
fore, for any k ∈ {1, . . . , m}, if Pk 6= 0, we have k ∈ {1, . . . , m−2}.
Note that for any k ∈ {1, . . . , m− 2}, the k-th column of Y is the
zero vector. Hence, by Theorem 1, we have 〈f〉 = 〈1〉.

(ii) Assume that there exist s different row vectors in (16) appearing
in A4. Note that any matrix consisting of s ≥ 3 different row
vectors in (16) is rank-two. Hence, rank(A4) = 2. Note that there
are s ≥ 3 rows in A4. So, there exists a ∈ Qs \ {~0} such that

9



A⊤
4 a = ~0. Recall that a = (a1, . . . , as)

⊤. By (15), A⊤
4 a is equal to

the last two coordinates of P⊤ :=
s
∑

i=1

airowi(N ). Hence, we have

Pm−1 = Pm = 0. Note that rank(N ) = d = s. So, P 6= ~0 since
a 6= ~0. Hence, for any k ∈ {1, . . . , m}, if Pk 6= 0, then we have
k ∈ {1, . . . , m − 2}. Note that for any k ∈ {1, . . . , m − 2}, the
k-th column of Y is the zero vector. Therefore, by Theorem 1, we
have 〈f〉 = 〈1〉.

4. Since there is no zero columns in Y , by (9), for any i ∈ {1, . . . , m},

vi = κi

∏s

j=1
xαji , where

s
∑

j=1

αji ≥ 0 since αji ∈ {0, 1}. Hence, by (8),

all terms in f contain the variables xi’s. So, in Q(κ)[x], 1 /∈ 〈f〉. Hence,
we have 〈f〉 6= 〈1〉.

Example 2. We illustrate how Theorem 2 works by the following examples.
(1) Consider the following zero-one network:

0
κ1−→ X3, 0

κ2−→ X2, 0
κ3−→ X2 +X3,

0
κ4−→ X1, X1 +X2 +X3

κ5−→ 0.

The stoichiometric matrix N is




0 0 0 1 −1
0 1 1 0 −1
1 0 1 0 −1



 .

Note that rank(N ) = 3. The reactant matrix Y is




0 0 0 0 1
0 0 0 0 1
0 0 0 0 1



 .

Note that there are 4 zero columns in Y (i.e., c = 4 = m − 1). Hence, by
Theorem 2 (2), we have 〈f〉 = 〈1〉. Note that

f1 =κ4 − κ5x1x2x3,

f2 =κ2 + κ3 − κ5x1x2x3,

f3 =κ1 + κ3 − κ5x1x2x3.
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It is straightforward to check that f1−f2
κ4−κ2−κ3

= 1.
(2) Consider the following zero-one network:

0
κ1−→ X3, 0

κ2−→ X2, 0
κ3−→ X2 +X3,

X2

κ4−→ X1, X1 +X2 +X3

κ5−→ 0.

The stoichiometric matrix N is




0 0 0 1 −1
0 1 1 −1 −1
1 0 1 0 −1



 .

Note that rank(N ) = 3, i.e., d = s = 3. The reactant matrix Y is




0 0 0 0 1
0 0 0 1 1
0 0 0 0 1



 .

Note that there are 3 zero columns in Y (i.e., c = 3 = m − 2). Hence, by
Theorem 2 (3), we have 〈f〉 = 〈1〉. Note that

f1 =κ4x2 − κ5x1x2x3,

f2 =κ2 + κ3 − κ4x2 − κ5x1x2x3,

f3 =κ1 + κ3 − κ5x1x2x3.

It is straightforward to check that f1+f2−2f3
−2κ1+κ2−κ3

= 1.
(3) Consider the following zero-one network:

X1

κ1−→ X3, X1

κ2−→ X2, X1

κ3−→ X2 +X3,

X2

κ4−→ X1, X1 +X2 +X3

κ5−→ 0.

The stoichiometric matrix N is




−1 −1 −1 1 −1
0 1 1 −1 −1
1 0 1 0 −1



 .

The reactant matrix Y is




1 1 1 0 1
0 0 0 1 1
0 0 0 0 1



 .
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Note that there is no zero columns in Y (i.e., c = 0). Hence, by Theorem 2
(4), we have 〈f〉 6= 〈1〉. Note that

f1 =− κ1x1 − κ2x1 − κ3x1 + κ4x2 − κ5x1x2x3,

f2 =κ2x1 + κ3x1 − κ4x2 − κ5x1x2x3,

f3 =κ1x1 + κ3x1 − κ5x1x2x3.

It is straightforward to check that 1 /∈ 〈f〉.

3.2. Sufficient conditions for equivalence

Theorem 3. For any two networks G and G
′

, let N and N
′

be the corre-
sponding stoichiometric matrices, and let Y and Y

′

be the reactant matrices.
Let f and f

′

be the steady-state systems defined as in (8). If

(1) Y = Y
′

, and

(2) for any i ∈ {1, . . . , s}, we have

rowi(N ) ∈ spanQ{row1(N
′

), . . . , rows(N
′

)},

and
rowi(N

′

) ∈ spanQ{row1(N ), . . . , rows(N )},

where spanQ{·} means the rational vector space spanned by a set of rational

vectors, then 〈f〉 = 〈f
′

〉 in Q(κ)[x].

Proof. Let v = (v1, . . . , vm)
⊤ and v

′

= (v
′

1, . . . , v
′

m)
⊤ be defined as in (9)

corresponding to G and G′ respectively, where

vi = κi

s
∏

j=1

x
αji

j , v
′

i = κi

s
∏

j=1

x
α
′

ji

j . (17)

By Y = Y
′

, for any i ∈ {1, . . . , s} and for any j ∈ {1, . . . , s}, αij = α
′

ij .

Hence, by (17), we have v = v
′

. So, the conclusion follows from (8) and the
condition (2).

Example 3. Consider the following two networks G and G
′

.

G : X1 +X2

κ1−→ X2, X2

κ2−→ 0, 0
κ3−→ X1 +X2,

G
′

: X1 +X2

κ1−→ X2, X2

κ2−→ X1, 0
κ3−→ X2.

12



Note that the two networks G and G
′

have the same set of reactants. Hence,
the reactant matrices Y and Y

′

are equal. The stoichiometric matrices N
and N

′

are as follows.

N =

(

−1 0 1
0 −1 1

)

, N
′

=

(

−1 1 0
0 −1 1

)

.

Note that row1(N ) = row1(N
′

) + row2(N
′

), row2(N ) = row2(N
′

) and
row1(N

′

) = row1(N ) − row2(N ). So, by Theorem 3, the ideals generated
by f and f

′

are equal.

Remark 1. We remark that although Theorem 1 and Theorem 3 are straight-
forward to prove, the hypotheses in these theorems can not be directly checked
by a computer, while Theorem 2 is explicit enough. In the next section, we
will solve this issue by Algorithms 2 and 3.

4. Algorithm

In this section, we propose a main algorithm (Algorithm 1) to determine
the equivalence of zero-one networks with two sub-algorithms (Algorithm
2 and 3). The goal of the main algorithm is to efficiently classify all d-
dimensional s-species m-reaction zero-one networks according to the equiva-
lence determined by their steady-state ideals. The correctness of Algorithm
1 follows from Theorem 3 and the correctness of the two sub-algorithms.

Algorithm 1. DetermineEquivalence

Input. The number of the species s, the number of the reactions m and the
dimension d

Output. Finitely many classes of d-dimensional s-species m-reaction zero-
one networks such that the networks in the same class have the same
steady-state ideal

Step 1. Enumerate all d-dimensional s-speciesm-reaction zero-one networks.

Step 2. Pick the networks satisfying the following two conditions simulta-
neously.

1. All the rows of the stoichiometric matrix N are non-zero and
change signs.

13



2. The set F+(N ) defined as in (10) is not empty.

(#By this step, we remove the networks definitely admitting no positive
steady states.)

Step 3. For each remaining network, do the following steps:

Step 3.1. If c = m− 1 and d ≥ 2, then delete the network.

Step 3.2. If c = m− 2 and d = s ≥ 3, then delete the network.

(#Note here, c denotes the number of zero columns of the reactant
matrix Y.)

Step 4. We call CoefficientsForVacuous(s, d), and we get a set S ⊂ Qs.

Step 5. For each remaining network, if there exists a ∈ S such that

(1) N⊤a 6= 0, and

(2) for any i ∈ {1, . . . , s}, if the i-th coordinate of N⊤a is non-zero,
then coli(Y) = ~0,

then delete the network.

Step 6. Delete the same networks after relabeling the species.

Step 7. We call CoefficientsForEquivalence(s, d), and we get a set Sa ⊂ Qs.

Step 8. For each pair of networks G and G
′

from the remaining networks
in Step 6, do the following steps.

Step 8.1. If there exists a permutation on the rows of Y and Y
′

such
that Y and Y

′

are equal after permutating their rows in the same
way, then permutate the rows of N and N

′

in the same way, and
go to Step 8.2. Otherwise, consider the next pair of networks.

Step 8.2. Check if N and N
′

satisfy the following condition: for any
i ∈ {1, . . . , s}, there exist (ai1 . . . , ais)

⊤ ∈ Sa and (bi1, . . . , bis)
⊤ ∈

Sa such that

rowi(N
′

) =
s

∑

j=1

aijrowj(N ), rowi(N ) =
s

∑

j=1

bijrowj(N
′

).

If yes, then put the networks G and G
′

into the same class. If not,
then consider the next pair of networks.
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Step 9. For every class generated in Step 8, choose the first network as the
representative element. Calculate the reduced Gröbner bases for these
representative networks. Delete the networks whose reduced Gröbner
base are {1} or have a monomial as an element.

Step 10. Combine the networks with the same reduced Gröbner basis into
the same class. Choose the first network as the representative element.
Return these representative elements.

Algorithm 2. CoefficientsForVacuous

Input. The number of species s and the dimension d

Output. A set S ⊂ Qs such that for any d-dimensional s-species zero-one
network, if there exists a ∈ Qs such that the conditions (1) and (2) of
Theorem 1 hold, then there exists ã ∈ S satisfying the conditions (1)
and (2) of Theorem 1

Step 1. Enumerate all s-species zero-one reactions.

Step 2. Let S := ∅. For every n ∈ {1, . . . , d − 1}, choose n linearly inde-
pendent reactions from the reactions enumerated in Step 1. For every
choice, do the following steps.

Step 2.1. Denote by

M =







M1

...
Mn







an n × s matrix, where each row Mj is the transpose of the sto-
ichiometric vector of a reaction from the chosen n independent
reactions.

Step 2.2. Calculate the basis of the null space of M and add all the
vectors in the basis into the set S.

(#Note here, all these vectors in the basis are in Qs.)

Step 3. Return the set S.

Proof of the Correctness of Algorithm 2. Define

∆1 := {i ∈ {1, . . . , m}|coli(Y) 6= ~0}, (18)

∆2 := {1, . . . , m} \∆1. (19)
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Let M and Mk (k ∈ {1, 2}) be the real vector spaces spanned by the columns
of N and the set of column vectors {coli(N )|i ∈ ∆k}, respectively. By (18)
and the condition (2) of Theorem 1, we have

a ∈ M⊥
1 .

Since N⊤a 6= ~0 (the condition (1) of Theorem 1), we have a 6∈ M⊥. Since
M1 ⊂ M , we have dim(M1) < dim(M) = d. So, by Step 2 of Algorithm 2,
there exists B ⊂ S such that B is the basis of M⊥

1 . Notice that there exists
ã ∈ B such that ã 6∈ M⊥, i.e., N⊤ã 6= ~0. Otherwise, we have B ⊂ M⊥ and
hence, we have M⊥

1 ⊂ M⊥, which is contrary to the fact that a ∈ M⊥
1 \M

⊥.
So, the conditions (1) and (2) of Theorem 1 hold for ã ∈ Qs.

Example 4. We illustrate how Algorithm 2 works for s = d = 3.

Step 1. Enumerate all three-species zero-one reactions (there are 56 reactions
in total).

Step 2. Let S := ∅. Note that d = 3. For every n ∈ {1, 2}, choose n linearly
independent reactions from the 56 reactions enumerated in Step 1 and
for every choice, do the following steps (below we only give details on
the first round).

Step 2.1 Suppose (0, 0, 1) is the stoichiometric vector corresponding to the
first reaction from the 56 reactions. Let M := (0, 0, 1).

Step 2.2 The basis of the null space of M is {(1, 0, 0)⊤, (0, 1, 0)⊤}. Add the
vectors in the basis into the set S.

Similarly, we do Steps 2.1 and 2.2 for all the other choices of reactions.
Then, we get the set S:

{0, 1}3 ∪ ({−1, 1}s × {2})∪

({−1, 1} × {−2, 2} × {1}) ∪ ({−2, 2} × {−1, 1} × {1})∪

{(−1,−1, 1)⊤, (1,−1, 1)⊤, (−1, 1, 1)⊤, (−1, 0, 1)⊤,

(−1, 1, 0)⊤, (0,−1, 1)⊤} \ (0, 0, 0)⊤. (20)

Algorithm 3. CoefficientsForEquivalence

Input. The number of species s and the dimension d
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Output. A set Sa ⊂ Qs such that if two d-dimensional s-species zero-one
networks satisfy

(1) Y = Y
′

, and

(2) for any i ∈ {1, . . . , s},

rowi(N
′

) ∈ spanQ{row1(N ), . . . , rows(N )}, (21)

then for any i ∈ {1, . . . , s}, there exists (ai1, . . . , ais)
⊤ ∈ Sa such that

rowi(N
′

) =

s
∑

j=1

aijrowj(N )

Step 1. Enumerate all possible zero-one reactions with s species (here, we
only enumerate one direction in a pair of reversible reactions). Write
the corresponding stoichiometric vectors into a set E ⊂ Qs (here, it is
possible for different reactions to have the same stoichiometric vector,
and we only put different vectors into the set E).

Step 2. Let Sa := ∅. For any d column vectors from E, do the following
steps.

Step 2.1. Let A be the s×d matrix consisting of the d column vectors.
If A has any zero rows, then stop and go to the next group of d
vectors chosen from E.

Step 2.2. Denote by ~1 and −~1 the column vectors whose coordinates
are all 1 and −1, respectively. Define

Λ1 := {i ∈ {1, . . . , d}|coli(A) = ~1}, (22)

Λ2 := {i ∈ {1, . . . , d}|coli(A) = −~1}, (23)

Λ3 := {1, . . . , d} \ (Λ1 ∪ Λ2). (24)

Define a set of vectors

F := {0, 1}|Λ1| × {−1, 0}|Λ2| × {−1, 0, 1}|Λ3| ⊂ Qd. (25)

(#Notice here |Λ1|+|Λ2|+|Λ3|= d.)

For any column vector b in the set F , do the following steps.
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Step 2.2.1. Solve a ∈ Qs from A⊤a = b.

Step 2.2.2. If there exists finitely many solutions, then add the
solutions into the set Sa. If there exists infinitely many solu-
tions, then add one of the solutions into the set Sa. If there
is no solutions, then go to the next vector b ∈ F .

Step 3. Return the set Sa.

Proof of the Correctness of Algorithm 3. Consider two d-dimensional
s-species zero-one networks G and G

′

. Assume that their reactant matrices
are equal, i.e., Y = Y

′

. First, we prove a claim.
Claim. If there exists A in Step 2.1 of Algorithm 3 such that A = N ,

then for any j ∈ {1, . . . , s}, there exists b ∈ F (defined as in (25)) such that
rowj(N

′

)⊤ = b.
In fact, by (22), for any i ∈ Λ1, all the coordinates of coli(A) are 1. Then,

since N = A, for any i ∈ Λ1, all the coordinates of coli(N ) are 1. By the
definition of zero-one network, all the coordinates of coli(Y) are 0. Then,
since Y = Y

′

, all the coordinates of coli(Y
′

) are 0. Thus, by the definition
of zero-one network again, we have all the coordinates of coli(N

′

) are 0 or
1. Hence, for any j ∈ {1, . . . , s} and for any i ∈ Λ1, the i-th coordinate
of rowj(N

′

) is 0 or 1. Similarly, we can derive that for any j ∈ {1, . . . , s}
and for any i ∈ Λ2, the i-th coordinate of rowj(N

′

) is −1 or 0. Note that
by the definition of zero-one network, for any j ∈ {1, . . . , s} and for any
i ∈ Λ3, the i-th coordinate of rowj(N

′

) is −1, 0 or 1. Hence, by (25), for
any j ∈ {1, . . . , s}, rowj(N

′

)⊤ ∈ F . So, for any j ∈ {1, . . . , s}, there exists
b ∈ F such that rowj(N

′

)⊤ = b.
Below, we prove the correctness of Algorithm 3 by discussing two cases.

Case 1. Assume that all the columns of N are in the set E generated in Step 1
of Algorithm 3.

(i) Assume that all the columns of N are different. Since all the
columns in E are different. by the choice of A in Step 2 of Al-
gorithm 3, there exists A such that A = N . By (21), for any
i ∈ {1, . . . , s}, there exists a

′

:= (a
′

i1, . . . , a
′

is)
⊤ ∈ Qs such that

rowi(N
′

) =
s

∑

j=1

a
′

ijrowj(N ). (26)
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Hence, by (26), for any i ∈ {1, . . . , s}, we have

N⊤a
′

= rowi(N
′

)⊤. (27)

By A = N and by the claim, for any i ∈ {1, . . . , s}, there exists
b ∈ F such that rowi(N

′

)⊤ = b. Hence, by N = A and (27),
we have A⊤a

′

= b, i.e., there exists a solution to the equation
A⊤a = b. By Step 2.2.2, there exists a ∈ Sa such that A⊤a = b.
Hence, for any i ∈ {1, . . . , s}, by A = N and rowi(N

′

)⊤ = b, we

have N⊤a = rowi(N
′

)⊤, i.e., rowi(N
′

) =
s
∑

j=1

aijrowj(N ), where

(ai1, . . . , ais)
⊤ = a ∈ Sa.

(ii) Assume that at least two columns inN are the same. Without loss
of generality, assume that the first m1 columns of N are different
and for any i ∈ {m1+1, . . . , m}, there exists j ∈ {1, . . . , m1} such
that coli(N ) = colj(N ). By (21), for any i ∈ {1, . . . , s}, there
exists (a

′

i1, . . . , a
′

is)
⊤ ∈ Qs such that

rowi(N
′

) =
s

∑

j=1

a
′

ijrowj(N ). (28)

We denote by N1 andN
′

1 the firstm1 columns ofN andN
′

. Then,
by (28), we have for any i ∈ {1, . . . , s},

rowi(N
′

1) =

s
∑

j=1

a
′

ijrowj(N1).

Note that all the columns of N1 are different. Then, by (i), for
any i ∈ {1, . . . , s}, there exists (ai1, . . . , ais)

⊤ ∈ Sa such that

rowi(N
′

1) =
s

∑

j=1

aijrowj(N1). (29)

Note that for any k ∈ {m1+1, . . . , m}, there exists j ∈ {1, . . . , m1}
such that colk(N ) = colj(N ). Hence, by (28), the k-th and the
j-th coordinates of rowi(N

′

) are equal. So, by (29), for any i ∈

{1, . . . , s}, rowi(N
′

) =
s
∑

j=1

aijrowj(N ), where (ai1, . . . , ais)
⊤ ∈ Sa.
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Case 2. Assume that some columns of N are not in the set E. By (21), for any
i ∈ {1, . . . , s}, there exists (a

′

i1, . . . , a
′

is)
⊤ ∈ Qs such that

rowi(N
′

) =
s

∑

j=1

a
′

ijrowj(N ). (30)

Define two new matrices Ñ and Ñ ′ as follows. For any j ∈ {1, . . . , m},
if colj(N ) ∈ E, then define

colj(Ñ ) := colj(N ), and colj(Ñ
′) := colj(N

′

).

If colj(N ) 6∈ E, then define

colj(Ñ ) := −colj(N ), and colj(Ñ
′) := −colj(N

′

).

Then, by the definition of E, all the columns of Ñ are in the set E.
Note that by (30), for any i ∈ {1, . . . , s},

rowi(Ñ
′) =

s
∑

j=1

a
′

ijrowj(Ñ ). (31)

Then, by (31) and by (Case 1)–(ii), for any i ∈ {1, . . . , s}, there exists
(ai1, . . . , ais)

⊤ ∈ Sa such that

rowi(Ñ
′) =

s
∑

j=1

aijrowj(Ñ ).

Therefore, by the definition of Ñ and Ñ ′, we have

rowi(N
′

) =
s

∑

j=1

aijrowj(N ),

where (ai1, . . . , ais)
⊤ ∈ Sa.

Example 5. We illustrate how Algorithm 3 works for s = d = 2.

Step 1 Enumerate all possible zero-one reactions with two species (only enu-
merate one direction in a pair of reversible reactions).

0
κ1−→ X1, 0

κ2−→ X2, 0
κ3−→ X1 +X2,

X1

κ4−→ X2, X1

κ5−→ X1 +X2, X2

κ6−→ X1 +X2.
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Put the corresponding stoichiometric vectors (only consider different
vectors) into a set:

E = {(1, 0)⊤, (0, 1)⊤, (1, 1)⊤, (−1, 1)⊤}. (32)

Step 2 Let Sa := ∅. Note that d = 2. Choose 2 column vectors from (32).
There are six possibilities as follows:

{

(

1 0
0 1

)

,

(

1 1
0 1

)

,

(

1 −1
0 1

)

,

(

0 1
1 1

)

,

(

0 −1
1 1

)

,

(

1 −1
1 1

)

}.

For each matrix in the above set, do the following steps (we only show
the details for the first matrix).

Step 2.1. A =

(

1 0
0 1

)

.

Step 2.2. By (22)–(24), we have

Λ1 = Λ2 = ∅,Λ3 = {1, 2}.

Then, by (25), we have

F ={(−1,−1)⊤, (−1, 0)⊤, (−1, 1)⊤, (0,−1)⊤,

(0, 0)⊤, (0, 1)⊤, (1,−1)⊤, (1, 0)⊤, (1, 1)⊤}.

For any b ∈ F , solve a from A⊤a = b. Then, we get the set of the
solutions is

{−1, 0, 1} × {−1, 0, 1}.

Add all these solutions into the set Sa.

Similarly, we do Steps 2.1 and 2.2 for all other matrices. Then, we get
the set Sa:

{−1, 0, 1}2 ∪ {(2,−1)⊤, (2, 1)⊤, (−1, 2)⊤, (1, 2)⊤,

(−1,−2)⊤, (−2,−1)⊤, (
1

2
,
1

2
)⊤, (−

1

2
,
1

2
)⊤, (

1

2
,−

1

2
)⊤}.
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5. Implementation

We have implemented the procedure in Algorithm 1. The supporting
codes are available online https://github.com/YueJ13/equivalence. As a
larger example, we apply the algorithm to all the three-dimensional three-
species five-reaction zero-one networks.

Step 1. We enumerate all three-species five-reaction zero-one networks. There
are 3819816 networks.

Step 2. We call CoefficientsForVacuous(3, 3), and by the computation car-
ried out in Example 4, we get the set of rational vectors S in (20). For
each network from the 3819816 networks, we do the following steps.

Step 2.1. If the stoichiometirc matrix N of the network is rank three
(i.e., the network is three-dimensional), and all rows of N are
non-zero and change signs, then pick the network.

Step 2.2. If the set F+(N ) is not empty, then pick the network.

Step 2.3. If c = 3 or 4, then delete the network. (Note here, c denotes
the number of zero columns of the reactant matrix Y .)

Step 2.4. If there exists a ∈ S such that

(1) N⊤a 6= ~0, and

(2) for any i ∈ {1, 2, 3}, if the i-th coordinate of N⊤a is non-zero,
then coli(Y) = ~0,

then delete the network.

Then, we get 484477 networks.

Step 3. Delete the same networks after relabeling the species. Then, we get
76752 networks.

Step 4. We call CoefficientsForEquivalence(3, 3), and we get a set of vectors
Sa ⊂ Q3, where for any a = (a1, a2, a3) ∈ Sa, we have

ai ∈ {±4,±3,±2,±
3

2
,±

4

3
,±1,±

3

4
,±

2

3
,±

1

2
,±

1

3
,±

1

4
, 0}.

For each pair of networks G and G
′

from the 76752 networks in Step
3, check if N and N

′

(after permutation according to the description
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in Step 8.1 of Algorithm 1) satisfy the following condition: for any
i ∈ {1, 2, 3}, there exist (a1, a2, a3)

⊤ ∈ Sa and (b1, b2, b3)
⊤ ∈ Sa such

that

rowi(N
′

) =

3
∑

j=1

ajrowj(N ), rowi(N ) =

3
∑

j=1

bjrowj(N
′

).

If yes, then put the networks G and G
′

into the same class. Then, we
get 40522 classes of networks. Choosing the first network from every
class, we get 40522 networks.

Step 5. Calculate the reduced Gröbner bases of the 40522 networks. Delete
the networks whose reduced Gröbner bases are 1 or have a monomial
as an element. Then, we get 32668 networks.

Step 6. Combine the networks having the same reduced Gröbner basis into
the same class. Choosing the first network from every class, we get
32394 networks.

We record the timings for carrying out the above steps in the following Table
1. In the experiments, we use the command Basis [13] in Maple [22] to cal-
culate the reduced Gröbner bases. Note that if we do not apply Algorithm 1,
then we need about 60 hours to check the reduced Gröbner bases of all three-
dimensional three-species five-reaction zero-one networks. Our purpose is to
show the improvement Algorithm 1 makes comparing with purely comput-
ing Gröbner bases. One can improve the computational timings presented in
Table 1 by applying any more advanced tools for computing Gröbner bases
rather than the standard Maple package.
Acknowledgments We thank Professor Balázs Boros for his suggestion
on how to efficiently generate small networks in the Joint Annual Meet-
ing KSMB-SMB 2024. We thank Professor Murad Banaji for generating and
providing all three-dimensional three-species five-reaction zero-one networks
by his own efficient procedure as a reference for us.
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