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Abstract
This manuscript aims to illustrate a quantum-classical dissipative theory (suited to be

converted to effective algorithms for numerical simulations) within the long-term project

of studying molecular processes in the brain. Other approaches, briefly sketched in the

text, have advocated the need to deal with both quantum and classical dynamic variables

when studying the brain. At variance with these other frameworks, the manuscript’s

formalism allows us to explicitly treat the classical dynamical variables. The theory must

be dissipative not because of formal requirements but because brain processes appear to

be dissipative at the molecular, physiological, and high functional levels. We discuss

theoretically that using Brownian dynamics or the Nosè-Hoover-Chain thermostat to

perform computer simulations provides an effective way to introduce an arrow of time

for open quantum systems in a classical environment. In the future, We plan to study

classical models of neurons and astrocytes, as well as their networks, coupled to quantum

dynamical variables describing, e.g., nuclear and electron spins, HOMO and LUMO

orbitals of phenyl and indole rings, ion channels, and tunneling protons.

Keywords: quantum-classical dynamics; quantum brain; open quantum systems;

neuroscience
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I. INTRODUCTION

Recent years have witnessed the coming of age of quantum biology [1–6]. This

has led to attempts at modeling some molecular and cell phenomena happening

in the brain in terms of quantum mechanics [7–9]. Quantum models are expected

to explain not only local effects, such as charge transfer or tunneling (important
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at both the cellular and the sub-cellular scales), but also non-local mechanisms,

invoking, for example, quantum synchronization and entanglement [10–12].

The diameter of the soma of neurons ranges to be between 4 and 100 µm while

thier lengths are about 10 to 25 µm. However, human motor neurons can be longer

than one meter. The hot (in healthy subjects, the average brain temperature is

38.5 ℃ and deeper brain regions frequently even exceed 40 ℃) and the watery

environment of the brain make quantum mechanical treatments of all the brain

coordinates unrealistic.

We do not believe that the coherence of large domains can be the physically

relevant property for quantum effects in the brain. Decoherence [13–15] suggests

that quantum coherence cannot play a role in the brain. However, nuclear and

electron spins, HOMO and LUMO orbitals of phenyl and indole rings, ion chan-

nels, and tunneling protons, for example, could be treated quantum mechanically

even at room temperature. Pascual Jordan proposed a mechanism to amplify in-

formation from the quantum to the classical level [4–6], and he considered it as key

to quantum biology. This process is akin to any measurement, where a quantum

state is reduced and registered irreversibly into a specific state of the environment

(i.e., a state of the measuring apparatus). In other words, the nonlinear quan-

tum reduction process controls the environment, determining its state. Jordan

used the term ‘amplification’ because in such a process the physical information

is transferred from the atomic/molecular level to the macroscopic scale of the en-

vironment. When devising explanations of quantum biological phenomena, we

think that Jordan’s amplification must be considered together with the environ-

ment backreaction onto the quantum subsystem [9]. The quantum-classical (QC)

formalism of Refs. [16–36] naturally complies with this physical requirement.

We consider microscopic (quantum) phenomena taking place on the scale be-

tween petaHz and teraHz. For example, the HOMO/LUMO frequency of oscil-

lations in carbon rings is of the order of petaHz. We expect proton tunneling to
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also unfold in the brain on the scale of petaHz. Another example of a quantum

process is given by the variation of both the magnitude and direction of the dipole

magnetic field at the nucleus of a Posner molecule, with a frequency around about

ten teraHertz [7, 8]. From teraHz upward, a classical description can often suffice.

Mesoscopic dynamics can be represented by oscillations of biomembranes. Their

thermal fluctuations can occur in the interval between teraHertz and gigaHertz.

The frequency of biomembranes’ dynamical response to stimuli, such as ion chan-

nels’ flow, can vary between Hz and kHz, while perturbations arising from, e.g.,

the application of biosensors can cause oscillations in the interval between kHz

to MHz. Such frequency values lead to resonances and nonadiabatic dynamics.

Considering the frequencies associated with quantum and classical coordinates’

dynamics, the resonance mechanism suggests that such dynamics are coupled.

Hence, we are led to consider brain models requiring the simultaneous pres-

ence of classical dynamical variables as well as quantum coordinates shielded from

decoherence. To this end, we introduced an abstract model [9], based on a quasi-

Lie bracket (QLB) [22–25], for studying molecular processes in the brain. The

formalism described in Ref. [9] treats quantum and classical dynamical variables

on an equal footing, entailing the occurrence of both quantum [37–39] and classi-

cal [40] phase transitions. From this perspective, the brain is a complex emergent

nested system that supports both quantum and classical complexity [41]. Numer-

ical algorithms are already available for performing computer simulations of such

models [26–33].

An example of the type of model we would like to simulate in the future is given

by a Hodgkin–Huxley model [42, 43] coupled with suitable quantum dynamical

variables, such as those above listed. In fact, despite its success, some weaknesses of

this model have already been discussed [44–46]. A significant one is the description

of ion channels [47, 48]. This is particularly relevant to our endeavor because

studies suggest the relevance of quantum mechanical effects in ion channels [49–
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51]. As we have already discussed above, such studies invoke quantum mechanics

based on shielding the confinement of quantum dynamical variables.

Besides devising abstract models, and adopting the ideas of complex systems

biology [52] in the study of the brain, it would also be important to first look for

observables carrying information from the quantum to the classical level, and only

afterward developing the theoretical model. In this respect, in agreement with our

thought, it has been suggested that the brain is both a (classical) neurocomputer

and a quantum computer [53]. One way to elaborate quantum information would

arise from the coupling between HOMO/LUMO quantum coherent dynamics and

the orientation of carbon rings in microtubules [54]. Another example is given by

cytoskeletal signaling, where it has been suggested that memory could be encoded

in microtubule lattices by CaMKII phosphorylation [55–57], offering far better

stability than that of synapsis.

We deem our theoretical efforts particularly useful in searching for such QC

observables that are relevant to brain dynamics. Given the current limitations

of experimental techniques, devising measurements with a high signal-to-noise ra-

tio is difficult. The hope is that the development of quantum metrology [58–66]

could also help in this endeavor. As the authors of Ref. [67] state, “Experimental

methods, which could distinguish classical from quantum correlations in the living

brain, have not yet been established.” Nevertheless, their NMR measurements

suggest that proton spins in bulk water act as an entanglement mediator between

quantum dynamical variables in the brain [67].

Quantum effects based on the tryptophan molecule were observed in Ref. [68].

Tryptophan organizes spatially in various cellular structures. The cooperative

effects induced by the ultraviolet excitation of tryptophan network structures,

which are of interest for biological systems, were theoretically and experimentally

investigated. The theory predicted a superradiant response of the tryptophan

networks to the ultraviolet excitation. In turn, this determines an enhancement of
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the fluorescence quantum yield that was experimentally confirmed [68].

Entanglement in the brain may also be generated by oscillations in C-H bonds

in the myelin sheath [69]. Using Cavity QED [70], the C-H bonds in the tails of

lipid molecules were observed to radiate entangled photon pairs [69]. The authors

suggested that the confining myelin sheath could play a similar role to the cavity of

the experiment, facilitating the emission of entangled photons by vibrating bonds.

In turn, such entangled photons would be responsible for the synchronization be-

tween far regions in the brain.

The systems of Refs. [67–69] can be analyzed through QC toy models on which

one can perform numerical experiments with the aid of a computer. The target

would be to trace the qualitative aspects of the observed behavior of the brain in

the numerical response exhibited by the toy models. This numerical approach has

no quantitative ambitions for the prediction of aspects of brain activity. Rather,

this investigative strategy could help us make progress in improving the selection

of the QC model to adopt.

In this paper, we highlight how quantum-classical models, when applied to the

dynamics of brain molecules, must necessarily be dissipative so that the direction

of time flow can be fixed. The formalism of Ref. [9] can simulate dissipation (and,

thus, the direction of time) using two methods, both based on embedding the

quantum subsystem in a dissipative classical bath [32]. The first method uses

Langevin-like dynamics for the classical variables [35]. The second one applies a

deterministic NHC thermostat [71, 72] to the classical variables [22, 23]. We must

note that there are other approaches, see Refs. [54, 73–82], to brain modeling that

entail dissipation and a fixed direction for the arrow of time. These approaches,

however, treat classical coordinates only implicitly, given that they do not appear

in the Hamiltonian.

The idea that theoretical models of the dynamics of brain molecules must pos-

sess a fixed direction for the arrow of time has been derived from psychology and
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neuroscience. In a deeply anesthetized subject, without self-awareness, there is no

feeling of the passage of time. From this perspective, we can say that self-awareness

is the necessary status of the mind making us capable of understanding the differ-

ence between the future and the past. The breaking of time-reversal symmetry is

associated with the second law of thermodynamics [83], and neuroscientists have

been interested in the details of how such a law applies to the brain; see, e.g.,

Refs. [84–88].

The paper is structured as follows. In Section II, we introduce the theory

of open quantum systems embedded in classical environments (also more simply

called quantum-classical systems). In Section III, we discuss an open quantum sub-

system in a dissipative classical bath that is subject to Langevin dynamics [35].

A different method of simulating dissipation, which uses the NHC thermostat, is

presented in Section IV. These three theoretical sections are followed by Section V.

In this section, we illustrate how nontrivial molecular processes and higher brain

functions of interest for our research projects display time asymmetry: the diffu-

sion molecular process [84] is involved in synaptic transmission, action potential

propagation, and ion flow in cellular channels [85], while the response of different

regions of the cerebral cortex to visual stimuli [86, 87], the time scale of irreversibil-

ity in obsessive-compulsive disorder (OCD) [88], and spatial neglect with temporal

asymmetry [89–92] are examples of phenomena in higher brain functions. We ex-

pect that these phenomena can ultimately constitute a field of research for our

theory. Our conclusions are given in Section VI. Appendices VI and VI sketch the

Dissipative Quantum Model of the Brain (DQMB) [73–78] and the Orchestrated

Objective Reduction (Orch-OR) approach, respectively.
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II. QUANTUM SYSTEMS IN CLASSICAL ENVIRONMENTS

The formalism of Refs. [16–25] can be expressed in a way that is suitable for

studying the dynamics of brain molecules [9]. The fundamental object of the

theory is the Wigner function operator depending on the classical degrees of free-

dom (DOF) of the system S + B, pictorially represented in Figure 1. When

studying open systems, the rigorous approach is based on the use of the density

matrix, which in this case reads ρ̂(r̂, R̂, t), where r̂ are the position operators of

system S and R̂ are the position operators of system B. The equation dictat-

ing the dynamics of the total system S + B is the quantum Liouville equation

∂ρ̂(t)/∂t = −i/ℏ[Ĥ, ρ̂(t)] [93], where Ĥ is the total Hamiltonian operator of the

interacting system S + B. Upon performing a partial Wigner transform of the

density matrix over the operators R̂ [21], the density matrix transforms into the

Wigner operator F̃W(X; t), where X = (R,P ), and the quantum Liouville equation

transforms into

∂F̃W(r̂, X; t)

∂t
= F̃W(r̂, R; t)e

ℏ
2i

←−
∇Ω
−→
∇H̃ − H̃e

ℏ
2i

←−
∇Ω
−→
∇F̃W(r̂, X; t) . (1)

Variables R and P in Equation (1) are c-numbers and can be interpreted as phase

space coordinates. Accordingly, ∇ = ((∂/∂R), (∂/∂P )) is the phase space gradient

and Ω is the symplectic matrix

Ω =

 0 1

−1 0

 . (2)

The symbol H̃ denotes the partial Wigner transform of the Hamiltonian operator

Ĥ. Also, note that from here onwards purely quantum operators will be denoted

by Ô, phase-space-dependent operators will be denoted as Õj, j = 1, . . ., n, and

purely classical variables will be denoted as OJ(X), J = 1, . . ., N . The definition

of X, Õj, and OJ(X) is determined by the system to be studied. We want to

remark that Equation (1) is exact and that, at this stage, we have not simplified
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the formulation concerning the quantum Liouville equation. However, if the de

Broglie wavelength λ associated with the dynamics variables r̂ is much larger than

the de Broglie wavelength Λ associated with the dynamical variables R̂, λ >> Λ,

Equation (1) can be linearized, obtaining a QC approximation of the dynamics of

the system S + B:

∂

∂t
F̃W(t) = − i

ℏ

[
H̃ F̃W(t)

]
D


H̃

F̃W(t)

 , (3)

= − i

ℏ

(
H̃, F̃W(t)

)
. (4)

In Equation (4), we have defined the antisymmetric matrix operator D as

D =


0

(
1 + ℏ

2i

←−
∇Ω
−→
∇
)

−
(
1 + ℏ

2i

←−
∇Ω
−→
∇
)

0

 . (5)

Such an approach naturally leads to emergent complex nested systems [41].
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FIG. 1: Pictorial representation of a quantum subsystem S in its classical environ-

ment B. The quantum system is specified by quantum operators Ô that interact

with the classical DOF of system B, whose phase space coordinates are (R,P ).

The transformation of the description from Ŝ + B̂ to Ŝ + B defines a complex

emergent nested system [41].

The second equality in the r.h.s of Equation (4) defines the QLB (. . ., . . .).

When Equation (4) is written in its explicit form,

∂

∂t
F̃W(t) = − i

ℏ

[
H̃, F̃W(t)

]
+

{
H̃, F̃W(t)

}
−

{
F̃W(t), H̃

}
2

= −i ˆ̂LF̃W(t) , (6)

it is known as the QC Liouville equation, where the QC Liouville operator ˆ̂L is

ˆ̂L =
1

ℏ

(
H̃, . . .

)
=

1

ℏ

[
H̃, . . .

]
+ i

{
H̃, . . .

}
−
{
. . . , H̃

}
2

. (7)

The QLB is defined as (. . . , . . .) = ℏ ˆ̂L. In a previous paper [9], we compared

transcranial direct current stimulation [94–98] to the compression of specific areas

of the brain cortex. Here, we would like to note that a modification of Ω in

Equation (4), according to what is explained in Ref. [72], can simulate the action

of a barostat on a computer. This could be used to devise compressible models of

the brain, the responses of which can be compared to experiments [94–98].
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Suppose self-awareness is related to an asymmetric time flow. In that case, the

QC picture of the brain should also describe an irreversible motion in time of the

dynamical variables. However, although the primitive form of the QLB formalism

breaks time-translation invariance, it is still formally time reversible. To achieve

time irreversibility, a second, larger environment including the first classical bath

must be included [83]. The QLB confers to QC dynamics peculiar time properties.

The QLB [24] obeys the same algebraic rules of Lie brackets, such as Poisson

brackets and commutators, except the Jacobi relation that is not valid in general:∑
even perm j,k,m

((
Õj(X), Õk(X)

)
, Õm

)
̸= 0 , (8)

where Õj, j = 1, 2, 3 are arbitrary operators. and we sum over the even permu-

tations of (j, k,m). One important consequence of Equation (8) is that the QLB

(and thus the whole theory) violates time translation invariance:

e
it
ℏ (...,H̃)

(
Õj(0), Õk(0)

)
̸=

(
e

it
ℏ (...,H̃)Õj(0), e

it
ℏ (...,H̃)Õk(0)

)
=

(
Õj(t), Õk(t)

)
,

(9)

where we have introduced the operator
(
. . ., H̃

)
Õ =

(
Õ, H̃

)
. In other words, the

algebraic expressions built with the QLB, such as those arising in the definition of

correlation functions, have an internal ‘clock’, which singles out the time origin.

Nevertheless, microscopic dynamics is formally time-reversible:

e
it
ℏ (...,H̃)

(
e

it
ℏ (...,H̃)

)†
= e

it
ℏ (...,H̃)e

−it
ℏ (...,H̃) = 1 . (10)

In practice, QC dynamics is represented as a piece-wise deterministic process,

i.e., a process where deterministic trajectories of the classical-like DOF are in-

terspersed by stochastic events. The interplay of quantum effects and classical

statistical fluctuations can be numerically simulated by means of state-of-the-art

algorithms [26–33]. There is ample proof of the effectiveness of such algorithms

for numerically simulating the dynamics of non-trivial models of condensed matter

systems (see, for example, [26–33]).
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III. DISSIPATIVE QC DYNAMICS

Although the time-evolution of a QC system is conservative and time-reversible,

one can imagine situations in which it can be viewed as the dissipative dynamics

of the QC system included in a stochastic bath. A dissipative QC formalism is

suited to describe brain phenomena lacking time-reversal symmetry [32, 33]. We

can imagine that the system S + B, represented in Figure 2, is included in a larger

bath, U, of very fast classical DOF, Y = (Q,Z); see Figure 2. The embedding

bath U interacts only with the small bath B and does not directly couple to

the quantum subsystem S. The Y DOF act as a thermal bath and lead to the

dissipative dynamics of the S + B system [34]. The total system S + B + U

provides an example of a complex emergent nested system [41]. Using projection

operator methods, the equation of motion for the QC system S + B has been

derived in Ref. [34]. It takes the form of

∂F̃W(t)

∂t
= − i

ℏ

[
H̃ F̃W(t)

]
D


H̃

F̃W(t)


+ η

∂

∂P

(
P

M
+

∂

∂(βP )

)
F̃W(t) , (11)

= −i ˆ̂LDF̃W(t) , (12)

where β = 1/kBT , η is the friction constant, and ˆ̂LD is the dissipative QC Liou-

ville operator. Equation (11) is derived under the assumption that the coordinates

X ′ = (R′, P ′) of system U describe harmonic oscillators and they are weakly cou-

pled to the X coordinates of system B. The specific way to integrate over coordinate

X ′ is chosen in order to obtain a correct description of the multiparticle Brown-

ian motion of system S. Without quantum dynamical variables, Equation (11)

describes a Markov process. However, when both quantum and classical variables

are present, the presence of memory terms depends on whether the total dynamics
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are adiabatic or nonadiabatic. When the dynamics are nonadiabatic, quantum

transitions between the different energy surfaces occur. Moreover, the backreac-

tion of the classical onto the quantum subsystem is expected to generate memory

effects for S + B, even if B is affected by memoryless white noise.

̂χ
(R, P)

B

S

U (R′ , P′ )

FIG. 2: Pictorial representation of a quantum subsystem S included in a dissipative

classical bath B. The B DOF, (R,P ), have dissipative dynamics because they are

coupled to a larger classical system U with classical DOF (R′, P ′). The total

system S + B + U provides an example of a complex emergent nested system [41].

Whenever the dynamics of U are not considered explicitly, the equations of motion

in the Markovian approximation for subsystem B can take a Langevin form.

Upon writing Equation (12) in the adiabatic basis and invoking the theory of

random processes [99], one can show that the propagation of the Wigner operator
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can be calculated in terms of piecewise trajectories on adiabatic trajectories or

their coherent superposition, the accumulation of phase factors, and quantum

transitions between such trajectories. Here, we sketch this derivation, and more

details are found in Refs. [34, 35].

The typical partially phase-space-dependent Hamiltonian operator found in sta-

tistical mechanics has the form of

H̃ =
P 2

2M
+ η̃(R) . (13)

The adiabatic basis is defined by the eigenvectors |Φα⟩ of the phase-space-

dependent Hamiltonian operator η̃(R) of subsystem S:

η̃(R)|Φα⟩ = Eα(R)|Φα⟩ , (14)

where Eα(R) are the adiabatic eigenvalues. The adiabatic representation of ˜̃L
D

is

given by

iLD
αα′,νν′(t) =

(
iϕαα′(R′) + iΓK

αα′(t)
)
δανδα′ν′ − Jαα′,νν′ , (15)

where ϕαα′(R′) are the Bohr frequencies and Jαα′,νν′ are the quantum transition

operators. The detailed expressions of both ϕαα′(R′) and Jαα′νν′ have already been

reported many times in the literature [26–29, 32–35]. For the sake of the present

discussion, it is enough to know what the different terms represent conceptuality.

The Bohr frequencies determine a non-holonomic phase factor that must be in-

tegrated along the phase space trajectory when the propagation is coherent, i.e.,

α ̸= α′. The symbol Jαα′νν′ denotes the quantum transitions operator that is

responsible for quantum jumps between the adiabatic energy surfaces.

Instead, it is useful to write the explicit expression of the Kramers operator [34,

35]:

iΓK
αα′(t) =

[
P

M

∂

∂R
+

Fα(R) + Fα′(R)

2

∂

∂P
− η

∂

∂P

(
P

M
+

∂

∂(βP )

)]
∂

∂P
, (16)

where Fα(R) = −∂Eα(R)/∂R is the Hellmann–Feynman force on adiabatic surface

α.
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Now, considering any phase-space-dependent operator Õ(X), its QC average is

calculated as

⟨Õ⟩(t) =
∑

αα′,νν′

∫
dXOαα′(X) exp

[
−itLD

]
αα′,νν′

Fνν′

W (X)

=
∑

αα′,νν′

∫
dXFνν′

W (X) exp
[
itLDB

]
νν′,αα′ Oαα′(X) , (17)

where iLDB
νν′,αα′ is the backward QC dissipative Liouville operator:

iLDB
νν′,αα′ =

[
iϕνν′ + iΓKB

νν′

]
δναδν′α′ − Jνν′,αα′ , (18)

where the backward Kramers operator iΓKB
νν′ is

iΓKB
νν′ =

[
P

M

∂

∂R
+

Fα(R) + Fα′(R)

2

∂

∂P
− η

(
P

M
− ∂

∂(βP )

)
∂

∂(βP )

]
δναδν′α′ .

(19)

In agreement with the theory of random processes [99], the evolution determined

by the backward QC Kramers operator can be substituted by an average over

swarms of Langevin trajectories [35] defined by the equations of motion:

Ṙ =
P

M
(20)

Ṗ = −η P

M
+

Fα(R) + Fα′(R)

2
+N (t) , (21)

where N (t) is a Gaussian white noise process with the properties

⟨N (t)⟩ = 0 , (22)

⟨N (t)N (t′)⟩ = 2kBTηδ(t− t′) . (23)

With Equations (20) and (21), we can associate a classical-like time-dependent

Liouville operator:

iΓL
νν′(t) =

P

M

∂

∂R
+

(
Fν(R) + Fν′(R)

2
− η

P

M
+N (t)

)
∂

∂P
. (24)
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Considering the possibility of nonadiabatic transitions, the complete QC Langevin

Liouville operator reads [34, 35]:

iLL
νν′,αα′(t) =

[
iϕνν′ + iΓL

νν′(t)
]
δναδν′α′ − Jνν′,αα′ . (25)

We can now define a QC Langevin time-dependent propagator as

UL
αα′ββ′(t, 0) = T exp

[∫ t

0

dt′iLL
αα′ββ′(t′)

]
, (26)

where T is the time-ordering operator. In this Langevin theory, the QC average

of a dynamical variable Õ is

< Õ > (t) =
∑

αα′νν′

∫
dXFνν′

W (X)UL
νν′αα′(t)O′α′α(X) , (27)

where the over-line stands for an average over the different realizations of the

Langevin stochastic process. Equation (27) expresses dissipative QC averages as

weighted sums over different Langevin trajectories with phase factors, interspersed

with quantum transitions. Its form is convenient for numerical simulations.

The dynamics of the bath B, defined by the propagator in Equation (26), are

derived under certain assumptions concerning the larger bath U [34, 35], includ-

ing the absence of memory effects and the lack of direct interaction between U

and S. Hence, when S is not present, it is legitimate to state that the evolution

of B is Markovian. However, this is no longer true when S is present and inter-

acts with B. The QC formalism of this paper [9, 21–36] is derived from the full

quantum description invoking neither the Markovian nor the rotating-wave ap-

proximation [36]. Non-Markovian effects are particularly important in the photon

blockade [100–102].

IV. NHC CONSTANT-TEMPERATURE QC DYNAMICS

Temperature control can be imposed on computer models of QC systems

by the deterministic NHC thermostat [71]. A simple NHC of length two
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can produce ergodicity even for high-frequency dynamics [71, 72]. The phase

space coordinates X and the coordinates of the thermostat define an aug-

mented phase space. The augmented phase space coordinates are written as

Xe = (R, ξ1, ξ2, P, ζ1, ζ2). Consequently, the augmented gradient is ∇e =

((∂/∂R), (∂/∂ξ1), (∂/∂ξ2), (∂/∂P ), (∂/∂ζ1), (∂/∂ζ2)). The matrix R = −R−1 can

now be defined:

R =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 −P 0

0 −1 0 P 0 −ζ1
0 0 −1 0 ζ1 0


, (28)

together with the Wigner function operator of the augmented Hamiltonian,

H̃e(Xe) = ĤS +HB(X) + ṼSB(R) +
2∑

K=1

ζ2K
2µK

+ gkBTξ1 + kBTξ2 , (29)

where µK , K = 1, 2 are the fictitious masses associated with the NHC coordinates,

kB represents the Boltzmann constant, and T represents the temperature of the

classical bath. The Hamiltonian ĤS describes the quantum subsystem S, HB(X)

models the bath B, and HB(X) describes the interaction between S and B. The

remaining terms of the total energy of the augmented model are
∑2

K=1
ζ2K
2µK

+

gkBTξ1 + kBTξ2, where g is the number of DOF whose temperature must be kept

constant. Such a QC model constitutes an example of a complex emergent nested

system [41]. The isothermal QC dynamics are defined by the following compact

equation [24]:

∂tÕe(t) =
i

ℏ

[
H̃e Õe(t)

]
Ω

 H̃e

Õe(t)

− 1

2
H̃e←−∇eR

−→
∇eÕe(t)

+
1

2
Õe(t)

←−
∇eR

−→
∇eH̃e , (30)
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where Õe(t) = Õe(Xe, t). In Figure 3, one can see a pictorial representation of the

action of the NHC thermostat, where the forces

G0(P ;TB) =
P 2

M
− gkBTB , (31)

G1(ζ1;TB) =
ζ21
µ1

− kBTB . (32)

The thermostat forces in Equations (31) and (32) enter the equations of motion

ζ̇1 = G0(P ;TB) , (33)

ζ̇2 = G1(ζ1;TB) , (34)

where ζJ = µJ ξ̇J , with J = 1, 2.

Isothermal averages and correlation functions can be calculated by choosing the

Wigner function operator F̃ e
W(Xe) in augmented space as

F̃ e,T
W,αα′(X

e) = ŵSF̃T
rmW,αα′(X)

2∏
I=1

2∏
L=1

δ
(
η
(I)
L

)
δ
(
P (I)
ηL

)
, (35)

where ŵS is the density matrix of the quantum subsystem while FT
W,αα′(X) is

the thermal Wigner function operator of the physical system with phase space

coordinates X. Because we want to calculate isothermal averages and correlation

functions of physical QC quantities, we must consider QC operators Õ(X) that

at t = 0 only depend on the physical phase space point X. Hence, the isothermal

QC averages are defined as

⟨Õ(X, t)⟩e = Tr′
∫

dXe F e
W(Xe)Õ(X, t) , (36)

⟨Õ1(X, t)Õ2(X)⟩e = Tr′
∫

dXe F e
W(Xe)Õ1(X, t)Õ2(X) . (37)

19



FIG. 3: Pictorial representation of an open quantum system coupled to a dissipa-

tive environment at constant temperature. The subsystem S is nested into bath

B, whose temperature is controlled by the NHC thermostat. For simplicity, we

have considered only two virtual phase space coordinates (ξ1, ξ2) and two virtual

momenta (ζ1, ζ2). The thermostat forces G0(P ;TB) and G1(ζ1;TB) are defined as

equal to P 2

M
− gkBTB and ζ21

µ1
− kBTB, respectively. In the expression of G1, g is

the number of DOF that the coordinates (ξ1, ζ1) must thermostat. The coupling

of system B to the NHC thermostat takes place through the equations of motion

ζ̇J = GJ−1, with J = 1, 2. The link between the coordinates and the momenta of

the NHC thermostat is given by ζJ = µJ ξ̇J , with J = 1, 2.

The dynamics generated by the NHC thermostat are non-Markovian. The time

evolution of (ζ1, ζ2) contains all the frequencies of the DOF of B. As a result, the

dynamics of P [22, 23], given by the equation

Ṗ =
Fα + Fα′(R)

2
− ζ1

µ1

P , (38)
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also contain all frequencies of the system, given that

ζ̇1 =
P 2

M
− gkBT −

ζ2
µ2

ζ1 , (39)

ζ̇2 =
ζ21
µ1

− kBT . (40)

The use of longer chains, i.e., (ζ1, ζ2, . . . , ζn), each having associated a different

inertial parameter (µ1, µ2, . . . , µn), can also easily produce coloured noise.

V. INDICATIONS OF TIME-ASYMMETRY IN THE BRAIN

In the previous sections, the methods describing brain molecular phenomena

affirm that models must lack time-reversal symmetry. The models we plan to con-

struct, e.g., comprising suitable quantum dynamical variables coupled to classical

nonlinear networks akin to the Hodgkin–Huxley model [42, 43], are ultimately

meant to study higher brain functions. The final computer simulation algorithm

will be based on a multiscale theory, going from the quantum to the classical

level of neuron models. In this section, we want to provide some examples of the

macroscopic phenomena and higher functions in the brain that manifest an arrow

of time. Indeed, many specific mechanisms that characterize mesoscopic brain

activity, e.g., memory, show a well-defined and non-reversible direction of time.

Time asymmetry and irreversibility naturally emerge in the brain on the meso-

scopic scale because of the second law of thermodynamics. Figure 4 provides a

representation of the breaking of time-reversal symmetry in the brain. We discuss

the importance of such a symmetry breaking at the macroscopic level in the follow-

ing. The QC theory we adopt predicts the backreaction of the classical variables

on the quantum coordinates. Such a backreaction causes the irreversible dynamics

of the quantum subsystem. This implies the quantum irreversible dynamics of

both molecular brain structures and quantum coordinates.

21



FIG. 4: Pictorial representation of the breaking of time-reversal symmetry in the

brain.

The approaches of Sections III and IV describe diffusive dynamics in classical

phase space coupled to the dynamics of a quantum subsystem. The diffusion pro-

cess is found everywhere in living systems and also plays an important part in the

brain. Smith takes diffusion as a paradigm to discuss how time asymmetry arises

in the brain [84]. For example, diffusion plays a key role in both synaptic trans-

mission and action potential propagation [85]. For action potentials and a given

voltage gradient, both calcium and sodium passive channels are opened and ions

flow irreversibly into the cell because of intracellular/extracellular concentration

difference. In synaptic transmission, diffusion involves the motion of neurotrans-

mitter molecules. Neurotransmitters diffuse from the vesicles to the receptor also

for gradient concentration. Finally, the reception of the ion is also based on dif-

fusion driven by gradient concentration. One must also note that action potential

generation is caused by the sufficient depolarization of the target neuronal mem-

brane via the sum of incoming depolarizations originating from various sources,

including synaptically driven depolarizations, and traveling action potentials from

the neuron, which crosses the threshold for action potential generation. The sum

(or integration) of incoming depolarization causes a loss of information, i.e., a

production of entropy. In this way, action potential generation also depends on

transmembrane concentration gradients of sodium and potassium. For example,
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a minimal QC model of the action potential generation could be constructed in

terms of a chain of quantum spins coupled to the nonlinear electrical and mechani-

cal oscillations representing neuronal dynamics. As discussed before, the quantum

dynamics of the spin chain can steer the classical mechanics of the nonlinear model

thanks to the amplification mechanism introduced by Pascual Jordan [5, 6].

The time arrow is not only expected to appear in complex emergent nested

systems [41] on conceptual grounds. It manifests itself, and indeed, it has been

studied experimentally in higher brain functions. For example, the response of dif-

ferent regions of the cerebral cortex to visual stimuli, provided by silent movies, has

been studied by functional magnetic resonance tomography [86, 87]. The authors

adopted the usual conventional activation analysis [87] to look for the different

brain responses to stimulations relative to the dynamics of the movie in the time

domain. Such stimuli were directed in time in three different ways: Uniformly

forward, uniformly backward, and randomly forward–backward in time. The re-

searchers observed time arrow-independent effects in primary visual areas. How-

ever, more complex regions displayed time-dependent effects, relevant to “making”

sense of a scene, occurring only for forward-played movies. Complex brain areas

also require that the movie’s information be accumulated over a longer time than

primary visual areas before a response can be registered. Particularly, for primary

sensory areas, these encode something one can think about visual pictures, but

not a pattern evolving with time. Thus, time is not a relevant factor, because the

pictures will be the same, wherever these are shown in time. The more complex

areas encode for scenarios that develop in time. Thus, the temporal succession con-

tains critical information, which cannot be decoded similarly if movies are shown

backward. We are not aware of any model addressing these behaviors. It would

be interesting to study QC models where the quantum levels display quantum

resonances and Jordan amplification.

OCD also offers a case study for investigating the brain’s time arrow. A method
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that can be followed to determine the presence of a time asymmetry is to analyze

brain dynamics in terms of stationary stochastic processes. Since linear Gaussian

random processes and static non-linear transformations of such processes are time-

reversible, time irreversibility cannot be present when Gaussian linear models are

detected. Bernardi et al. compared the magnetoencephalographic [88] recordings

of brain activity in the resting state in two groups of people. One group was

composed of patients with OCD and the other was composed of control individuals

matched according to sex and age. The recordings showed that time directionality

was more prominent at faster time scales in the case of patients with OCD [88],

who also displayed a more uniform distribution of time asymmetry in their brain

hemispheres than healthy controls [88]. This could be because patients with OCD

may have more uniform thoughts, e.g., obsessive thoughts, whereas there is more

randomness in healthy controls.

From our perspective, the phenomenon of spatial neglect is much more com-

plex, requiring the understanding of how the brain weaves time and space within

perceptions. Physicists are used to thinking of a spatiotemporal continuum, where

space and time are inextricably interleaved. A recent study showed how this is nat-

urally engrained in the brain and relates to spatiotemporal attention [103]. Spatial

neglect (or hemispatial neglect) is defined as missing visual perception in the left

or the right visual field [89–92]. It was shown that beyond anatomy-based founda-

tions of damaged/disturbed visual areas, spatial neglect also involves asymmetric

spatial attention. This spatial attention deficit also has an anatomical foundation.

Spatial neglect has space components, but also temporal dynamics because atten-

tion takes place in the time domain. This displays a space-time connection in such

an impaired perceptual function. This knowledge was accompanied by the conjec-

ture that left spatial neglect is caused (at least in part) by non-spatial attention

disorders associated with dysfunctions of the right side of the frontoparietal brain

area [89–92]. Recent tests focused on the comparison of foveal perception (the
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fovea is the area of maximum visual acuity and color discrimination in the eye)

in patients with right-hemispheric damage and no spatial neglect, both compared

to healthy patients [103]. The result of the study was that the impairment of

temporal attention caused left spatial neglect [103].

The examples presented in this section exemplify the brain functions for which

we believe a QC approach could prove most useful. We leave checking these ideas

to both our future efforts and time.

VI. CONCLUSIONS

This manuscript has introduced, without conceptual uncertainties or veiled con-

jectures, an approach to capture some aspects of the physical processes that reg-

ulate brain dynamics. Based on both physical and physiological considerations,

we have proposed that a complex emergent nested system [41], such as the one

provided by QC systems, is suitable for modeling brain processes at various spa-

tiotemporal scales. Attention has been focused on which essential features QC

systems must have to be viable models of the dynamics of brain molecules. Such

models are meant to be studied through computer simulation methods. We have

concluded that there is no need to invoke an improbable quantum coherence of

large domains in the brain to have quantum mechanics play an important role.

The reduction of the state vector of a few quantum dynamical variables coupled

to even many classical coordinates can control their classical dynamics. This is

Pascual Jordan’s [5, 6] amplification process. State reduction is an irreversible pro-

cess; equivalently, the backreaction of the environment dynamics on the subsystem

forces its dynamics to become dissipative on general grounds. This can be real-

ized by enclosing the quantum subsystem in a classical isothermal bath. We have

shown explicitly how this can be theoretically achieved using Brownian dynamics

or the NHC thermostat. We can conclude that the lack of time-reversal symmetry
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is essential for modeling the brain. The unfolding of higher brain functions also

witnesses the importance of the arrow of time in brain processes [84–88].

Other quantum descriptions of brain dynamics invoke the use of QC dynamical

variables [75–78]. However, in these alternative approaches, the classical variables

are somewhat hidden, and their effective role does not appear to be easily analyz-

able. Instead, our mathematical formalism (defined through the qLB) treats QC

dynamical variables explicitly [9, 24, 25]. Statistical properties can be calculated

by taking the appropriate QC average, tracing it over quantum coordinates, and

integrating it over phase space DOF. Within such an approach, classical DOF can

be treated with atomistic detail.

Future works will be devoted to two different lines of research. The first is

to apply our description to specific processes in the brain, compare our results

to what is already available in the literature, and try to understand the general

qualitative features of a given brain process. The second is to further develop the

theory by defining a non-Hermitian dynamics for the quantum subsystem and/or

driven non-equilibrium dynamics of the classical bath.
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Umezawa’s and Vitiello’s Quantum Field Theories of the Brain]Umezawa’s and

Vitiello’s Quantum Field Theories of the Brain

The Quantum Model of the Brain [73, 74] and the DQMB [75] introduce

some key ideas, agreeing with Karl Lashley’s proposal concerning the direct rela-

tion between memory formation and the mass of both neuropil and the connec-

tome [104, 105]. Nowadays, Lashley’s ideas [104, 105] are somewhat outdated,

depending on specific functions, and very small lesions to the appropriate target

area can have critical effects. However, Lashley’s hypothesis was supported by a

set of experiments in which surgical ablation of brain tissue alters memories only
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in proportion to the mass of the cortex (Principle of Mass Action [104, 105]). Un-

less the brain suffers serious damage, it can also happen that different parts of the

cortex can overtake memory functions when other parts are damaged (Principle

of Equipotentiality [104, 105]). To the Principle of Mass Action and the Principle

of Equipotentiality, one must also add evidence that memory is only momentarily

impaired by electric shock or drug administration. For such reasons, at the time

of its inception, the predictions of the DQMB were compared to those of Lashley’s

proposal [104, 105].

Despite other data regarding the functional differentiation of disparate areas

of the cerebral cortex, the idea that non-local quantum effects [10–12, 67, 69]

are responsible for information processing in biological organs [106–112] is worth

investigating. Such non-local effects are described within the QMB [73, 74]

and DQMB [75] through quantum bosonic fields. These bosonic fields provide

the coarse-grained description of a number of microscopic variables of the order

1023. Long-range, non-local effects are described through quantum wave excita-

tions [106–112].

The excitations of the quantum fields are called Corticons. Corticons are dis-

tinct from neurons and, e.g., astrocytes, other brain cells’ excitations, in the model,

are considered classical because of their very short de Broglie wavelength. Thus,

one should think of the brain as a QC system [9, 16–21, 24, 25] where, according to

the QMB, the dynamics of macromolecules is classical and the dynamics of other

collective variables is quantum mechanical. However, in the QMB [73, 74] and

DQMB [75], the classical dynamical variables are not explicitly treated: the neu-

ron is a classical object but it is somewhat awkwardly described by quantum Cor-

ticons. At the same time, the interaction between neurons and Corticons [73, 74]

is not specified, as acknowledged by the authors themselves [74].

According to the QMB and DQMB, spontaneous symmetry breaking gener-

ates a code for memory storage, producing multiple ground states with their
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associated quantum numbers. A model Hamiltonian is introduced in Ref. [74]

to illustrate that a spin-boson model can give rise to a degenerate ground state

through symmetry-breaking. Even if the multiple ground states are isoenergetic,

they are separated by very high entropic barriers. Collective oscillatory modes,

known as Nambu–Goldstone bosons [113–115], emerge as perturbations of each

degenerate ground state. Nambu–Goldstone bosons are the sources of long-range

correlations within the infinite number of ground states. In the QMB and DQMB,

such Nambu–Goldstone bosons are responsible for memorizing and remembering,

and synchronization between distant brain areas. The Nambu–Goldstone bosons

emerging in the QMB and DQMB are called Symmetrons [73, 74]. The DQMB

identifies the Corticons with the excitations of the polarization field of water and

the Symmetrons with dipolar wave quanta. Hence, only the rotational symmetry

of the polarization field is present in the DQMB. The choice for a special role of

the water polarization field is supported by the brain composition, which is 1%

carbohydrates and inorganic salts, 2% soluble organic substances, 8% proteins, 10

to 12% lipids, and 77 to 78% water [116]. This identification is phenomenologically

consistent with the fact that dehydration strongly impacts cognitive functions of

the brain [117–123].

Vitiello generalized the QMB [73, 74] to solve the problem with memory stor-

age [75]. Given that in the QMB, different ground states cannot be superimposed,

because of the entropic barrier, every ground state can code only one memory.

In other words, a new memory overwrites the preceding one. If one does not

perform the thermodynamic limit but still considers very big systems, the degen-

erate ground states are no longer entropically separated from each other and can

be superimposed. However, the memory storage problem is still not solved be-

cause the code could be continuously scrambled by random transitions (caused

by external perturbations) between the degenerate ground states. A completely

different physical situation emerges if one takes the coding ground state as a co-
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herent superposition of all the infinite ground states corresponding to a single

value of the order parameter. Adopting Umezawa’s finite temperature quantum

field theory [124–126], known as thermo field dynamics, Vitiello developed the

DQMB [75]. In this approach, the brain is coupled to the environment, which acts

as a thermostat.

Within thermo field dynamics [124–126], the duality between the polarization

field and the dipolar wave quanta determines the appearance of a non-Hermitian

energy-non-conserving Hamiltonian. This Hamiltonian, comprising both physical

and fictitious fields, conserves the energy of the total system to keep the temper-

ature constant. Physical and fictitious quanta populate the dynamical states of

the total system. Because of such a trick, thermal averages can be calculated on

a ground state defined on a doubled Fock space. Since the energy of the total

system is conserved, the energy of the physical system is not: the physical system

is dissipative and breaks time reversal invariance. The fictitious DOF provide a

virtual representation of the environment.

Orch-OR

The Orch-OR theory [54, 79–82] suggests that quantum effect tubulin lattices,

found in the cytoplasm of brain cells, can operate on physical information in a non-

computational way. Time evolution of electronic wave function of decoherence-

shielded carboxyl groups inside tubulin’s hollow region, the spinorial dynamics

of the nuclei, various forms of information communication between microtubules,

followed by the spontaneous reduction of microtubules’ quantum state vectors are

the pillars of the theory. The unpredictable reduction of the state vector is an

irreversible process that introduces the direction of the flow of time. The idea that

the inside of the cell could work as an information-processing unit was developed

by Hameroff after considering the reaction of microtubule lattices to anesthetics.

Penrose’s spontaneous collapse process provides the means to overcome the limited

efficiency that classical diffusion dynamics has for transferring physical information
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over long distances.

In Orch-OR, quantum gravity makes the superposition of states associated with

different masses unstable. Past a determined time interval, such superpositions

collapse spontaneously. The superposition lifetime can be estimated considering

the Bohr frequency associated with the superimposed eigenstates:

ωBohr = ∆E/ℏ . (41)

Hence, the estimated lifetime is

τ ≈ h

∆E
. (42)

Brain dynamics is then interspersed with discrete events associated with state

vector reductions. Each reduction introduces a time direction because the proba-

bilistic collapse acts as a wall between the states before and after the collapse.

The Orch-OR hypothesizes that inside each tubulin there are coordinates sup-

porting quantum dynamics between wave function collapses. Carbon rings and

delocalized molecular orbitals provide one example. Coherent dynamics can be

sustained by carboxyl groups found inside the microtubulin’s hollow space, where

they are protected from decoherence [13–15]. The correlated orientation of car-

boxyl groups in the microtubule lattice form preferred pathways along which en-

ergy can be transported without dissipation [54, 82]. For example, Orch-OR can

affect the feedback [53] between quantum effects in microtubule lattices and the

classical time-evolution of microtubule-associated proteins [56, 57].
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