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Abstract

This research gives a thorough examination of an HIV infection model that
includes quiescent cells and immune response dynamics in the host. The model,
represented by a system of ordinary differential equations, captures the complex
interaction between the host’s immune response and viral infection. The study focuses
on the model’s fundamental aspects, such as equilibrium analysis, computing the
basic reproduction number R0, stability analysis, bifurcation phenomena, numerical
simulations, and sensitivity analysis.

The analysis reveals both an infection equilibrium, which indicates the persistence
of the illness, and an infection-free equilibrium, which represents disease control
possibilities. Applying matrix-theoretical approaches, stability analysis proved that
the infection-free equilibrium is both locally and globally stable for R0 < 1. For the
situation of R0 > 1, the infection equilibrium is locally asymptotically stable via the
Routh–Hurwitz criterion. We also studied the uniform persistence of the infection,
demonstrating that the infection remains present above a positive threshold under
certain conditions. The study also found a transcritical forward-type bifurcation
at R0 = 1, indicating a critical threshold that affects the system’s behavior. The
model’s temporal dynamics are studied using numerical simulations, and sensitivity
analysis identifies the most significant variables by assessing the effects of parameter
changes on system behavior. Keywords: Virus dynamics; Quiescent cells; Immune

response; Stability analysis; Lyapunov function, Bifurcation.

1 Introduction
Human immunodeficiency virus (HIV) affects millions of individuals worldwide. The
body’s fight against infections depends heavily on CD4+ T cells, which are the precise
target of this substance. Understanding the intricate dynamics of HIV infection
has been made possible by the use of within-host models [1, 2, 3]. These models
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offer a framework for researching the complex relationships between various immune
system components, viral replication, and the disease’s course in an infected person.
Quiescent cells, or resting cells, are an essential component of within-host models
and play a major role in the latency and persistence of HIV infection [4, 5]. These
cells are essential in determining the long-term course of HIV infection because they
act as reservoirs for the virus even in the midst of antiretroviral therapy. Researchers
can learn more about the dynamics of quiescent cells and how they interact with the
immune system by including them in the models [6]. Additionally, the immunological
response, which involves intricate interactions between immune cells, antibodies,
and cytokines, plays a vital role in combating HIV. The way the infection progresses
depends on the dynamic interaction of the virus, immune system, and quiescent
cells, which affects viral load, reservoir formation, and disease development rates [7].

Moreover, although they have ineffective infection rates, dormant CD4+ T cells
have been identified as possible contributors to the viral reservoir [8]. These cells
are essential to the dynamics of HIV, and the way they interact with the immune
system creates a complicated picture. Prior research indicates that immunological
quiescence, defined as low immune activation [9], may function as a barrier to HIV
infection by reducing the number of target cells available. Nevertheless, substantial
numbers of improperly processed viral ends and abortive circles are involved in the
integration of HIV into quiescent CD4+ T cells [10], impeding the infection process.
Potential targets for treatment development are provided by the identification of
particular biological proteins in quiescent cells that prevent HIV infection[11].

The influence of viral variety and its consequences on treatment results and disease
progression is another important aspect of HIV infection [12]. HIV’s rapid replication
rate and error-prone replication process result in considerable genomic diversity. Due
to this diversity, an infected human may contain several virus strains, often known
as quasispecies [13, 14]. The virus can adapt and elude immune responses due to the
constant production of new versions, which makes the development of antiretroviral
treatments and vaccines difficult. Mathematical models that incorporate viral variety
provide useful insights into the evolutionary dynamics of HIV and its repercussions
on the host-virus interaction, various models have been introduced [15, 16, 17, 18, 19].
With the aid of these models, researchers can investigate methods to reduce the
viral variety and its possible effects on treatment efficacy, as well as the formation
and spread of drug-resistant strains and the influence of immune selection pressure.
To improve therapeutic approaches and patient outcomes in HIV infection, it is
crucial to comprehend the intricate interactions among immune responses, treatment
results, and viral variety.

We present and assess a model that builds on Kouche et al. [22] and Pang et al.
[20]’s advances in the field. Kouche et al. [22] updated Guedj et al. [23]’s model,
taking into account RT inhibitors and quiescent cells. Their findings showed that
increasing the drug’s potency or extending its active period could help eliminate
the infection faster. Pang et al. [20] updated Nowak et al.’s model [24] by utilizing
a Holling type 2 function to classify immunological responses. Their contributions
served as a motivation for our research, encouraging a thorough dynamical analysis
of an HIV infection model that includes quiescent cells and the immune response.
We hope that our research will provide useful insight into the complex interaction
between the virus and the host’s defense mechanisms. Given the scarcity of works
on the mathematical analysis of HIV dynamic systems that include the quiescent
cell state.

Our paper is organized as follows: in the next section, we present our proposed
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model, which incorporates the dynamics of HIV infection, quiescent cells, and the
immune response. We thoroughly examine the mathematical well-posedness of
the model in Section 3. Section 4 is dedicated to the study of equilibria, where
we analyze the Infection-free equilibrium and calculate the reproduction number.
Subsequently, in the following section, we delve into the stability analysis of both the
Infection-free and infection equilibria, shedding light on the long-term behavior of
the system. Furthermore, we investigate the existence of transcritical bifurcation, in
the subsequent section. In Section 6, we present our numerical analysis to validate
our theoretical findings. Finally, we conclude the paper with a concise discussion,
summarizing our key findings, highlighting the implications of our research, and
identifying potential avenues for future exploration.

2 Model derivation
The model is determined by the following system of equations:

dQ

dt
= Λ + ϱT − σQ − µ1Q,

dT

dt
= σQ − βT V − ϱT − µ2T,

dI

dt
= βT V − µ3I − pIZ,

dV

dt
= ξI − µ4V,

dZ

dt
= b + cIZ

κ + I
− µ5Z.

(1)

This is a within-host model represented by a system of ordinary differential equations,
where the state variables represent different components of the host immune response
to a viral infection. The variables and their corresponding meanings are as follows:

Q: quiescent cells, representing a dormant or inactive population of cells;
T : healthy activated cells, representing cells that have become activated in response

to the viral infection;
I: infected cells, representing cells that have been infected by the virus;

V : free virus, representing the number of virus particles circulating in the host;
Z: CTL (cytotoxic T-lymphocyte) cells, representing the number of immune cells

that specifically target and kill infected cells.
We denote by Λ the rate of influx of quiescent cells, ϱ stands for the rate of transition
of healthy activated cells back to quiescent cells, and σ for the rate of transition
of quiescent cells to healthy activated cells. We introduce the notations µ1, µ2,
and µ3 for the natural death rates of quiescent cells, healthy activated cells, and
infected cells, respectively. The notation β represents the rate of infection of healthy
activated cells by free virus. The rate of killing of infected cells by CTL cells is
denoted by p, while ξ denotes the rate of production of free virus from infected cells.
We introduce µ4 for the rate of clearance of free virus and µ5 for the natural death
rate of CTL cells. For the immune response equation, b is the parameter representing
the rate of production of CTL cells, and c denotes the rate at which the CTLs are
stimulated and activated in response to the presence of infected cells. To model the
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activation and proliferation of CTL cells, we use the function cIZ
κ+I

, where κ is the
virus load required for half-maximal CTL cell stimulation [21]. This function reflects
both antigenic stimulation and the export of specific precursor CTL cells from the
thymus, providing a more accurate representation of immune dynamics. Unlike the
traditional bilinear term used in earlier models [20], this saturating function better
captures the immune system’s behavior by considering non-cytolytic mechanisms,
where CTL cells control the infection without directly killing infected cells. The
parameter κ plays a crucial role in balancing the immune response, reflecting how
CTL stimulation adjusts according to the viral load [21].

Table 1: Parameters of model (1).

Parameter Definition
Λ Rate of influx of quiescent cells
ϱ Rate of transition of healthy activated cells back to quiescent cells
σ Rate of transition of quiescent cells to healthy activated cells
µ1 Natural death rate of quiescent cells
β Rate of infection of healthy activated cells by free virus
µ2 Natural death rate of healthy activated cells
µ3 Rate of death of infected cells
p Rate of killing of infected cells by CTL cells
ξ Rate of production of free virus from infected cells

µ4 Rate of clearance of free virus
b Rate of production of CTL cells

c
Rate at which the CTLs are stimulated and activated
in response to the presence of infected cells

κ Represents the virus load for half-maximal CTL cell stimulation.
µ5 Natural death rate of CTL cells

The parameters of the model and their definitions are summarized in Table 1, while
the flow chart depicting the within-host dynamics of the model is shown in Figure 1.

3 Positivity and boundedness of the solutions
We begin our analysis of system (1) by examining some fundamental properties of the
model. Firstly, we will show that any solution of (1), initiated from a non-negative
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Figure 1: Flow chart of the model (1)

initial condition in R5
+, will remain non-negative. Specifically, we can see that

dQ

dt

∣∣∣
Q=0

= Λ + ϱT > 0 for all T ≥ 0,

dT

dt

∣∣∣
T =0

= σQ ≥ 0 for all Q ≥ 0,

dI

dt

∣∣∣
I=0

= βT V ≥ 0 for all T, V ≥ 0,

dV

dt

∣∣∣
V =0

= ξI ≥ 0 for all I ≥ 0,

dZ

dt

∣∣∣
Z=0

= b > 0.

This proves that R5
+ is positively invariant with respect to system (1), meaning that

any solution of (1) will remain in R5
+ for all times.

We aim to show that the solutions of the system are bounded, under the
assumption µ5 ≥ c. Let W (t) = Q(t) + T (t) + I(t) + µ3

2ξ
V (t) + Z(t), the derivative

of which can be computed as

Ẇ = Q̇ + Ṫ + İ + µ3

2ξ
V̇ + Ż

= Λ + b − µ1Q − µ2T − µ3

2 I − pIZ − µ3µ4

2ξ
V + cIZ

κ + I
− µ5Z

≤ Λ + b − µ1Q − µ2T − µ3

2 I − µ3µ4

2ξ
V + (c − µ5) Z

≤ Λ + b − m

(
Q + T + I + µ3

2ξ
V + Z

)
= ξ − mW,

where we define m = min
{

µ1, µ2, µ3
2 , µ4, µ5 − c

}
and ξ = Λ + b. In particular, the

inequality uses the fact that p, κ, Z(t) and I(t) are all nonnegative.
We can rewrite the inequality as Ẇ + mW ≤ ξ, which is a linear ordinary

differential inequality with a negative coefficient for W . Hence, by applying the
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integrating factor emt, we get:

W (t) ≤ e−mt
(

W (0) − ξ

m

)
+ ξ

m
.

This implies that 0 ≤ W (t) ≤ M1, where M1 = ξ
m

, and thus 0 ≤ Q(t), T (t), I(t), Z(t) ≤
M1 and 0 ≤ V (t) ≤ M2 for all t ≥ 0, provided that the initial conditions satisfy
Q(0) + T (0) + I(0) + µ3

2ξ
V (0) + Z(0) ≤ M1. Here, we have defined M2 = 2ξM1

µ3
.Thus,

we have demonstrated that the solutions are bounded. Consequently, we can assert
that the set

D :=
{

(Q, T, I, V, Z) ∈ R5
+ | Q + T + I + Z ≤ 3M1, V ≤ M2

}
is positively invariant.

4 Equilibria, reproduction number
4.1 Infection-free equilibrium point
To find the equilibria of (1), one has to solve the algebraic system of equations

0 = Λ + ϱT ∗ − σQ∗ − µ1Q∗,

0 = σQ∗ − βT ∗V ∗ − ϱT ∗ − µ2T ∗,

0 = βT ∗V ∗ − µ3I∗ − pI∗Z∗,

0 = ξI∗ − µ4V ∗,

0 = b + cI∗Z∗

κ + I∗ − µ5Z∗.

(2)

The unique infection-free equilibrium of (1) can be calculated as

E0 =
(

Λ(µ2 + ϱ)
µ1(µ2 + ϱ) + µ2σ

,
Λσ

µ1(µ2 + ϱ) + µ2σ
, 0, 0,

b

µ5

)
.

4.2 Basic reproduction number (R0)
To determine the basic reproduction number (R0), we use the next-generation matrix
method (see e.g. [25]). The transmission matrix f and the transition matrix v are
given by

f =
[

βT V
0

]
and v =

[
−µ3I − pIZ

ξI − µ4V

]
.

The basic reproduction number is obtained from the spectral radius (dominant
eigenvalue) of F V −1

1 , where F and V1 are the Jacobian matrices of f and v evaluated
at the infection-free equilibrium point.

The matrices F and V1 for the model are given by

F =
(

0 βΛσ
µ1(µ2+ϱ)+µ2σ

0 0

)
and

V1 =
(

− bp+µ3µ5
µ5

0
ξ −µ4

)
,
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hence,

F V −1 =
(

− βΛµ5σξ
µ4(bp+µ3µ5)(µ1(µ2+ϱ)+µ2σ) − βΛσ

µ1µ4(µ2+ϱ)+µ2µ4σ

0 0

)
,

and the spectral radius of this matrix can be calculated as

R0 = βΛµ5σξ

µ4(bp + µ3µ5)(µ1(µ2 + ϱ) + µ2σ) .

4.3 Infection equilibrium
By solving the system of algebraic equations to find infection equilibria of (2), one
obtains

V ∗ = ξ

µ4
I∗,

Z∗ = b(κ + I∗)
µ5κ + I∗(µ5 − c) ,

T ∗ = µ3µ4

βξ
+ bpµ4(κ + I∗)

(µ5κ + I∗(µ5 − c))βξ
,

Q∗ = 1
µ1 + σ

(
ϱ

[
µ3µ4

βξ
+ bpµ4(κ + I∗)

(µ5κ + I∗(µ5 − c))βξ

]
+ Λ
)

.

(3)

If we replace these expressions into the second equation of (2), we get

AI∗2 + BI∗ + C = 0, (4)

where
A = − βξ(µ1 + σ)(bp + µ3(µ5 − c)),
B = − βξ(bκp(µ1 + σ) + Λσ(c − µ5) + κµ3µ5(µ1 + σ))

+ µ4(µ1(µ2 + ϱ) + µ2σ)(µ3(c − µ5) − bp),
= µ4(R0 − 1)(bp + µ3µ5)(µ1(µ2 + ϱ) + µ2σ) − βξ(κ(µ1 + σ)(bp + µ3µ5) + cΛσ)

+ cµ3µ4(µ1(µ2 + ϱ) + µ2σ),
C = βκΛµ5σξ − κµ4(bp + µ3µ5)(µ1(µ2 + ϱ) + µ2σ)

= κµ4(bp + µ3µ5)(µ1(µ2 + ϱ) + µ2σ)(R0 − 1).

We assume that µ5 > c and R0 > 1, which implies that B2 − 4AC > 0. Under these
conditions, the equation has two real roots given by

I∗
− = −B +

√
B2 − 4AC

2A
,

I∗
+ = −B −

√
B2 − 4AC

2A
.

Additionally, since I∗
+ × I∗

− = κµ4(1−R0)(bp+µ3µ5)(µ1(µ2+ϱ)+µ2σ)
βξ(µ1+σ)(bp+µ3(µ5−c)) < 0, it follows

that I∗
+ and I∗

− have opposite signs, and It is clear that I∗
+ > 0. Hence the system

(1) has a unique positive equilibrium

E1 = (Q∗, T ∗, I∗, V ∗, Z∗).

Alternatively, if µ5 < c < bp
µ3

+ µ5 and R0 > 1 , additional conditions are re-
quired to ensure equilibrium positivity. Under this condition, we enforce I∗

+ <
Im = µ5κ

c−µ5
. This guarantees the existence of a unique positive equilibrium E1 =

(Q∗, T ∗, I∗, V ∗, Z∗) in system (1).
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5 Stability analysis
5.1 Local stability
In this subsection, we will examine the local stability of the equilibria identified
in the previous analysis. Our focus will be on the stability of the infection-free
equilibrium E0. The Jacobian matrix of system (1) evaluated at the infection-free
equilibrium is given by

J =


−µ1 − σ ϱ 0 0 0

σ −µ2 − ϱ 0 − βΛσ
µ1(µ2+ϱ)+µ2σ

0
0 0 − bp

µ5
− µ3

βΛσ
µ1(µ2+ϱ)+µ2σ

0
0 0 ξ −µ4 0
0 0 bc

κµ5
0 −µ5

 .

The eigenvalues of the Jacobian matrix can be calculated as

λ1 = −µ5,

λ2 = 1
2

(
−
√

2σ(µ1 − µ2 + ϱ) + (−µ1 + µ2 + ϱ)2 + σ2 − µ1 − µ2 − σ − ϱ
)

,

λ3 = 1
2

(√
2σ(µ1 − µ2 + ϱ) + (−µ1 + µ2 + ϱ)2 + σ2 − µ1 − µ2 − σ − ϱ

)
,

λ4 = −

√
4βΛµ2

5σξ+(µ1(µ2+ϱ)+µ2σ)(bp+µ5(µ3−µ4))2
√

µ1(µ2+ϱ)+µ2σ
+ bp + µ5(µ3 + µ4)

2µ5
,

λ5 = −
−

√
4βΛµ2

5σξ+(µ1(µ2+ϱ)+µ2σ)(bp+µ5(µ3−µ4))2
√

µ1(µ2+ϱ)+µ2σ
+ bp + µ5(µ3 + µ4)

2µ5
.

It is noted that these eigenvalues hold significant information about the stability of
the system, with negative eigenvalues indicating stability at the equilibrium.

Based on the expressions

(µ1 + µ2 + σ + ϱ)2 −
(√

2σ(µ1 − µ2 + ϱ) + (−µ1 + µ2 + ϱ)2 + σ2
)2

= 4(µ1(µ2 + ϱ) + µ2σ) > 0

and

(bp + µ5(µ3 + µ4))2 −
(√

4βΛµ2
5σξ+(µ1(µ2+ϱ)+µ2σ)(bp+µ5(µ3−µ4))2

√
µ1(µ2+ϱ)+µ2σ

)2

= 4µ4µ5(1 − R0)(bp + µ3µ5),

it is evident that all the eigenvalues are negative if the basic reproduction number R0
is less than 1. This observation implies that the infection-free equilibrium solution
is asymptotically stable if R0 < 1.

We now analyze the stability of the infection equilibrium. The Jacobian matrix
of system (1) at this equilibrium is given by

J1 =


−µ1 − σ ϱ 0 0 0

σ −µ2 − ϱ − βV ∗ 0 −βT ∗ 0
0 βV ∗ −pZ∗ − µ3 βT ∗ −pI∗

0 0 ξ −µ4 0
0 0 cZ∗κ

(κ+I∗)2 0 cI∗

κ+I∗ − µ5

 .
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To simplify our analysis, we employ symbolic computation by reducing the number
of parameters. At the equilibrium point E1, the relation µ3 + pZ∗ = βT ∗ξ

µ4
holds.

Using this, we define the transformations α1 = βT ∗ξ
µ4

, α2 = ϱ + µ2 + βV ∗, α3 = pI∗,
α4 = cZ∗κ

(κ+I∗)2 , α5 = µ5 − cI∗

κ+I∗ , and α6 = βV ∗ to obtain

J2 =


−µ1 − σ ϱ 0 0 0

σ −α2 0 −α1
µ4
ξ

0
0 α6 −α1 α1

µ4
ξ

−α3

0 0 ξ −µ4 0
0 0 α4 0 −α5

 .

The characteristic equation of J2 is given by

λ5 + ξ1λ4 + ξ2λ3 + ξ3λ2 + ξ4λ + ξ5 = 0,

where

ξ1 = α5 + µ4 + αl + α2 + σ + µ1,

ξ2 = α1α2 + α1α5 + α1µ1 + α1σ + α2α5 + α2µ1 + α2µ4 + α3α4 + α5µ1

+ α5µ4 + α5σ + µ1µ4 + µ4σ + σ (α2 − ϱ) ,

ξ3 = α1α2α5 + α1α2µ1 + α1α5µ1 + α1α5σ + α1α6µ4 + α2α3α4 + α2α5µ1

+ α2α5µ4 + α2µ1µ4 + α3α4µ1 + α3α4µ4 + α3α4σ + α5µ1µ4 + α5µ4σ

+ σ (α1 + α4 + α4) (α2 − ϱ) ,

ξ4 = α1α2α5µ1 + α1α5α6µ4 + α1α6µ1µ4 + α1α6µ4σ + α2α3α4µ1 + α2α3α4µ4

+ α2α5µ1µ4 + α3α4µ1µ4 + α3α4µ4σ + σ (α1α5 + α3α4 + µ4α5) (α2 − ϱ) ,

ξ5 = α1α5α6µ1µ4 + α1α5α6µ4σ + α2α3α4µ1µ4 + σα3α4µ4 (α2 − ϱ) .

Since α2 − ϱ > 0, it follows that ξ2, ξ3, ξ4, ξ5 > 0.
Algebraic calculations show that

ξ1ξ2 − ξ3 = Φ1 + σ(α2 + µ1 + σ)(α2 − ϱ) + α1µ4(α2 − α6).

Furthermore,

ξ3 − ξl (ξ5 − ξ1ξ4)
ξ3 − ξ1 · ξ2

= 1
Φ2 + α1α4 (α2 − α6) + σ (α2 + µ1 + σ) (α2 − ϱ)
× (Φ3 + (α2 − α6) (α2

1α2α5µ4 + α2
1α2µ1µ4 + α2

1α2
5µ4

+ 2α2
1α5µ1µ4 + 2α2

1α5µ4σ + α2
1α6µ4 + α2

1µ2
1µ4 + Φ4

+ σ (α2 − ϱ) (α3
1α2 + α3

1µ1 + α3
1σ + α2

1α2
2 + α2

1α2α5 + 3α2
1α2µ4 + 2α2

1α2σ

+ α2
1α5µ1σ + α2

1α5σ + α2
1µ2

1 + 3α2
1µ1µ4 + 2α2

1µ1σ + 3α2
1µ4σ + Φ5)).

Detailed but lengthy calculations (see Appendix) confirm the positivity of Φ1, Φ2,
Φ3, Φ4 and Φ5. Although the expressions are extensive, we have thoroughly verified
that they are positive. Moreover, since α2 − α6 = ϱ + µ2 > 0, we conclude that
ξ1ξ2 − ξ3 > 0 and ξ3 − ξl(ξ5−ξ1ξ4)

ξ3−ξ1·ξ2
> 0.

Applying the Routh–Hurwitz criterion [27], which asserts that the number of roots
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of the characteristic polynomial with positive real parts (right half-plane roots)
corresponds to the number of sign changes in the first column of the Routh array,
we find that the first column of the complete Routh scheme is entirely positive. This
indicates that all roots of the characteristic polynomial have negative real parts.
Consequently, the infection equilibrium point E1 is locally asymptotically stable.

5.1.1 Global stability of the infection-free equilibrium
In order to analyze the global stability of the infection-free equilibrium, we will
use a matrix-theoretic method defined in a previous study by Shuai et al. [26]. To
apply this method, we need to calculate the matrices F and V1, which are given in
Section 4. Using these matrices, we can compute the following matrix:

V −1
1 =

(
µ5

bp+µ3µ5
0

µ5ξ
bµ4p+µ3µ4µ5

1
µ4

)
.

We will follow the notation introduced in Theorem 2.1 of [26]. This notation involves
defining x = (I, V ) and y = (Q, T, Z) for the model (1) we have

f(x, y) :=
(

Ip
(
Z − b

µs

)
+ βV

(
Λσ

µ1(µ2+e)+µ2σ
− T

) )
.

By adopting this notation, we proceed by applying Theorem 2.1, which states that
if f(x, y) ≥ 0 in a subset D ⊂ R5

+, along with the conditions F ≥ 0, V −1
1 ≥ 0, and

R0 ≤ 1, then the function Q = ωT V −1x can be used as a Lyapunov function for the
model. In our case, we apply the theorem by defining Q = ωT V −1

1 x, choosing ωT as
the left eigenvector of the matrix V −1

1 F that corresponds to the basic reproduction
number R0, and differentiating Q along solutions of (1) to obtain

Q′ = ωT V −1
1 x′ = ωT V −1

1 (F − V )x − ωT V −1
1 f(x, y)

= (R0 − 1) ωT x − ωT V −1
1 f(x, y).

As seen above, the conditions F > 0 and V −1
1 > 0 are always true, but the condition

f(x, y) ≥ 0 does not always hold. It is easy to see that the first coordinate is positive
if the conditions

Z(t) >
b

µ5
and T (t) <

Λσ

µ1(µ2 + ϱ) + µ2σ

hold. For the first condition, we have

dZ

dt
≥ b − µ5Z.

A simple comparison principle shows that Z(t) ≥ b
µ5

for t large enough.
For the second condition, we consider the infection-free subsystem

dT

dt
= Λ + ϱT − σQ − µ1Q,

dQ

dt
= σQ − ϱT − µ2T.

We will show that all solutions of this subsystem tend to the equilibrium (Q∗, T ∗),
where

Q∗ := Λ(µ2 + ϱ)
µ1(µ2 + ϱ) + µ2σ

and T ∗ := Λσ

µ1(µ2 + ϱ) + µ2σ
.
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To do so, we use the Dulac–Bendixson criterion. This criterion states that if the
divergence of a continuously differentiable vector field on a simply connected region
does not change sign and is nonzero, then the system cannot admit periodic orbits
within that region. In our case, we introduce the positive function g(Q, T ) = 1

T

defined in the region T > 0 and Q > 0. We compute the divergence of the vector
field multiplied by g as

div(g · F⃗ ) = −Qσ + T (µ1 + σ)
T 2

This expression is negative for all (Q, T ) in the phase space. Therefore, by the
Dulac–Bendixson criterion, there are no closed orbits and all positive solutions tend
to the unique equilibrium (Q∗, T ∗). Again, using a simple comparison argument, we
obtain that T < T ∗ for t large enough.

5.2 Uniform persistence
In this section, we will show that the infection related compartments – the infected
cells I(t) and the virus particles V (t) – will persist if R0 > 1. In order to state our
main result on uniform persistence of I(t) and V (t), we will recall some theory from
[29].
Definition 1. Let X be a nonempty set and ρ : X → R+. A semiflow Φ: R+ ×X →
X is called uniformly weakly ρ-persistent, if there exists some ε > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

Φ is called uniformly (strongly) ρ-persistent if there exists some ε > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

A set M ⊆ X is called weakly ρ-repelling if there is no x ∈ X such that ρ(x) > 0
and Φ(t, x) → M as t → ∞.

System (1) generates a continuous flow on the state space

X := {(Q, T, I, V, Z) ∈ R5
+} ⊂ R5

+.

To keep our notations simple, we will aplly the notation x = (Q, T, I, V, Z) ∈ X for
the state of the system. As usual, the ω-limit set of a point x ∈ X is defined as

ω(x) := {y ∈ X : ∃{tn}n≥1 such that tn → ∞, Φ(tn, x) → y as n → ∞}.

Theorem 2. I(t) and V (t) are uniformly persistent if R0 > 1.

Proof. Suppose R0 > 1 and choose ρ(x) = I + µ3
ξ

V . Define the infection-free
subspace

X0 := {x ∈ X : ρ(x) = 0} = {(Q, T, 0, 0, Z) ∈ R5
+}.

It is clear that X0 is invariant and that Ω := ∪x∈X0 = {E0}. Following [29,
Chapter 8], we first prove weak ρ-persistence. Define M1 = {E0}, then clearly
M1 ⊂ Ω, it is isolated, compact, invariant and acyclic. To complete the proof of
weak ρ-persistence, applying [29, Theorem 8.17], we need to show that M1 is weakly
ρ-repelling. Suppose the contrary, then there exists solution with its ω-limit set
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being M1, such that I + kV > 0 with a constant k to be determined later. From
this convergence, we have that for t large enough,

T (t) >
Λσ

µ1(µ2 + ϱ) + µ2σ
− ε and Z(t) <

b

µ5
+ ε

hold. Then, for t large enough, we can estimate (I(t) + kV (t))′ as

(I(t) + kV (t))′ = βT (t)V (t) − µ3I(t) − pI(t)Z(t) + k (ξI(t) − µ4V (t))

≥
(

βΛσ

µ1(µ2 + ϱ) + µ2σ
− βε

)
V (t) −

(
µ3 + p

b

µ5
+ pε

)
I(t)

+ k(ξI(t) − µ4V (t))
= K(I(t) + kV (t)) (5)

for appropriately chosen positive constants K and k. From the above calculations
we obtain that finding such positive constants K and k, enables us to estimate the
solution from below by the solution of the equation

(I(t) + kV (t))′ = K(I(t) + kV (t)),

which would contradict (I(t) + kV (t)) → 0.
Finding such constants K and k is equivalent to finding a positive eigenvalue K

with positive corresponding eigenvector of the matrix(
−µ3 − bp

µ5
− pε βΛσ

µ1(µ2+ϱ)+µ2σ
− βε

ξ −µ4

)
.

As ε can be chosen arbitrarily small, by continuity, it is enough to find a positive
eigenvalue with corresponding positive eigenvector of the matrix

M =
(

−µ3 − bp
µ5

βΛσ
µ1(µ2+ϱ)+µ2σ

ξ −µ4

)
.

As the off-diagonal elements of M are nonnegative, M is a Metzler matrix, so we
can apply [30, Theorem 11], which states that for any Metzler matrix A ∈ Rn×n, the
spectral abscissa η(A) of A (i.e., the maximum of the real parts of the eigenvalues
of A) is an eigenvalue of A and there exists a nonnegative eigenvector x ≥ 0, x ̸= 0
such that Ax = η(A)x. Hence, we only need to show that η(M) is positive if R0 > 1.
The characteristic polynomial of M takes the form

λ2 + λ

(
bp

µ5
+ µ3 + µ4

)
+ bµ4p

µ5
+ µ3µ4 − βΛξσ

µ1(µ2 + ρ) + µ2σ
.

The first and second coefficients of the characteristic polynomial are positive, while
the constant term is negative if and only if R0 > 1. This is demonstrated by the
following proof:

R0 > 1 ⇔ βΛµ5σξ

µ4(bp + µ3µ5)(µ1(µ2 + ϱ) + µ2σ) > 1

⇔ βΛσξ

(µ1(µ2 + ϱ) + µ2σ) >
µ4bp + µ3µ4µ5

µ5

⇔ bµ4p

µ5
+ µ3µ4 − βΛσξ

(µ1(µ2 + ϱ) + µ2σ) < 0.

12



Therefore, if this condition holds, then, according to the Routh–Hurwith theorem,
there exists an eigenvalue with positive real part. This implies the positivity of the
spectral abscissa η(M) and the corresponding eigenvector, hence, for ε sufficiently
small (i.e., for t sufficiently large) we can find positive constants K and k such that
the equality (5) holds, which implies the weak persistence of I(t) + kV (t) in the case
R0 > 1. Applying [29, Theorem 4.5], the uniform persistence of I(t) + kV (t) follows.
Simple calculations yield the uniform persistence of I(t) and V (t).

5.3 Transcritical bifurcation at R0 = 1
In the following, we use the centre manifold theory [28] to explore the possibility of
transcritical bifurcation in (1). To do so, a bifurcation parameter β∗ is chosen, by
solving for β from R0 = 1, giving

β∗ = µ4(bp + µ3µ5)(µ1(µ2 + ϱ) + µ2σ)
Λµ5σξ

.

The matrix J1(E0, β∗) (which is equal to J1 at E0 with β = β∗) has one simple zero
eigenvalue and four negative eigenvalues.

To calculate the following formulas we introduce the notation x = (Q, T, I, V, Z),

a =
5∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(E0, β∗),

b =
5∑

k,i=1

vkwi
∂2fk

∂xi∂β
(E0, β∗),

where w, v are the right and left eigenvectors of J corresponding to the zero eigenvalue
defined as follow:

w =
{

− κµ5ϱ(bp + µ3µ5)
bc(µ1(µ2 + ϱ) + µ2σ) , −κµ5(µ1 + σ)(bp + µ3µ5)

bc(µ1(µ2 + ϱ) + µ2σ) ,
κµ2

5
bc

,
κµ2

5ξ

bcµ4
, 1
}

.

v =
{

0, 0,
µ5ξ

bp + µ3µ5
, 1, 0

}
.

As v1 = v2 = v5 = 0 the derivatives of f1, f2 and f5 are not needed. All second
order derivatives of f3 and f4 are zero, except for

∂2f3

∂x2∂x4
= β∗,

∂2f3

∂x3∂x5
= −p,

∂2f2

∂x4∂β
= Λσ

µ1(µ2 + ϱ) + µ2σ
.

Therefore, the quantities a and b are given by

a = −2
(

κ2µ3
5ξ(µ1 + σ)
(bc)2Λσ

+ pµ3
5ξκ

bc(bp + µ3µ5)

)
b = κµ3

5ξ2

(bp + µ3µ5)bcµ4

Λσ

µ1(µ2 + ϱ) + µ2σ

Based on these results, we can derive the following theorem.
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Theorem 3. A transcritical bifurcation of forward-type occurs at R0 = 1
To further illustrate the bifurcation dynamics, we present two figures. The first

figure 2 demonstrates how the viral load, V ∗, changes as the transmission rate, β,
increases. The second figure 3 shows the behavior of the infected cell population,
I∗, as a function of β, incorporating two scenarios: one where the natural death
rate of CTL cells, µ5, exceeds the critical value c, and another where µ5 is below
c. These plots highlight how I∗ varies with increasing β, clearly demonstrating the
occurrence of a transcritical bifurcation at the threshold.

Figure 2: Viral load V ∗ as a function of the transmission rate β, illustrating the system’s
behavior near the bifurcation point. The plot demonstrates how the viral load increases as β
crosses the critical threshold.

Figure 3: Infected cell population I∗ as a function of the transmission rate β. The figure shows
two cases: one where the natural death rate of CTL cells µ5 exceeds the critical value c, and
another where µ5 is below c. The transcritical bifurcation is visible as β increases.
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6 Numerical simulation
6.1 Time series analysis
In this section, we present time series analyses for two scenarios: R0 < 1 and R0 > 1.
The following plots show the time series of (1) for these two scenarios.

Table 2: Model parameters and their values in Figures 4 and 5.

Parameter Value for Fig. 4 Value for Fig. 5
Λ 100 0.1
ϱ 0.1 0.1
σ 0.2 0.2
µ1 0.01 0.01
β 0.3 0.3
µ2 0.01 0.01
µ3 0.1 0.1
p 0.05 0.05
ξ 10 0.01
µ4 0.1 0.1
b 1 1
c 0.1 0.1
κ 50 50
µ5 0.05 0.05
Q(0) 10 10
T (0) 1 1
I(0) 10 10
V (0) 0 0
Z(0) 10 10

According to Figures 4 and 5, when the basic reproductive number, R0, is less
than 1, and when R0 is greater than 1. In the scenario where R0 is less than
1, we observed a distinct pattern in the time series analysis. The quiescent cells
exhibit a decreasing trend, eventually converging to a stable value. Simultaneously,
the number of healthy activated cells, representing cells that respond to the viral
infection, increases and converges to a steady state. The infected cells gradually
decrease and eventually diminish to zero, while the free virus particles initially
increase, reach a peak, and then decrease, eventually stabilizing. Additionally, the
immune response, represented by the CTL (cytotoxic T-lymphocyte) cells, shows an
increasing trend throughout the observation period.

On the other hand, when R0 is greater than 1, the time series analysis reveals
a different behavior. Quiescent cells exhibit an increasing trend, suggesting a larger
pool of inactive cells. In contrast, the number of healthy activated cells, representing
the target cells for viral infection, experiences a decreasing trend. The infected cells
initially increase, reach a peak, and then gradually converge to a stable value. Simi-
larly, the free virus particles display an increasing trend, reaching a peak value, and
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Figure 4: Time series plot for R0 < 1 scenario.
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Figure 5: Time series plot for R0 > 1 scenario.
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subsequently stabilizing. Notably, the immune response, characterized by the CTL
cells, exhibits a consistent increase throughout the observation period, indicating an
intensified effort to combat the infection and control the spread of the virus.

6.2 Analysis of the reproduction number’s sensitivity
In this subsection, we carry out a sensitivity analysis to explore how different param-
eters impact the basic reproduction number, R0. Using Partial Rank Correlation
Coefficients (PRCC) analysis, we can evaluate the influence of each parameter
on R0. Parameters with positive PRCC values show a direct relationship, where
increasing them raises R0, while those with negative PRCC values are inversely
related, meaning that an increase in their values lowers the reproduction number.
According to our results, displayed in Figure 6, the natural death rate of CTL cells
(µ5) exerts the strongest positive effect on R0, followed by the transition rate of
healthy activated cells to quiescent cells (ϱ). Meanwhile, the infection rate of healthy
activated cells by free virus (β) and the production rate of CTL cells (b) were found
to most effectively reduce R0.

The rate of infection of healthy activated cells by free virus (β)

The rate of influx of quiescent cells (Λ)

The natural death rate of CTL cells (μ5)

The rate of transition of quiescent cells to healthy activated cells (σ)

The rate of production of free virus from infected cells (ϛ)

The rate of clearance of free virus (μ4)

The rate of production of CTL cells (b)

The rate of killing of infected cells by CTL cells (p)

The rate of death of infected cells (μ3)

The natural death rate of quiescent cells (μ1)

The natural death rate of healthy activated cells (μ2)

The rate of transition of healthy activated cells back to quiescent cells (ϱ)

Figure 6: Partial rank correlation coefficients of parameters of model (1).

7 Discussion and conclusion
In this paper, we presented a comprehensive analysis of an HIV infection model that
incorporates quiescent cells and the host immune response. Our model, based on a
system of ordinary differential equations, captures the complex dynamics of viral
infection within the host, offering insights into the equilibrium states, stability, and
bifurcation phenomena. Through rigorous mathematical analysis, we explored both
the infection-free and infection equilibria, providing a detailed understanding of how
these equilibria govern the long-term behavior of the system.

The infection-free equilibrium represents the scenario where the virus is eradicated,
and our results demonstrated that this equilibrium is both locally and globally stable
when the basic reproduction number R0 is less than one. This implies that under
appropriate conditions, the virus cannot persist in the host population. Conversely,
when R0 exceeds one, the system tends toward the infection equilibrium, which we
found to be locally asymptotically stable. This indicates that in cases where the virus
establishes itself, the infection will persist over time unless effective interventions
are implemented.
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Moreover, we identified a transcritical bifurcation at the critical threshold R0 = 1.
This bifurcation signifies a qualitative change in the system’s dynamics, where the
stability of the infection-free equilibrium is lost, and the infection equilibrium
becomes stable. This critical point plays a crucial role in determining the system’s
response to changes in parameters, highlighting the importance of maintaining
control over the reproduction number to prevent disease outbreaks.

In addition to the equilibrium and stability analysis, we performed a sensitivity
analysis, showed that µ5 and ϱ increase R0, while β and b decrease it.

Overall, our model provides valuable insights into the interactions between HIV,
quiescent cells, and the immune system, shedding light on the factors that influence
the persistence or eradication of the virus. The identification of the bifurcation point
and the sensitivity analysis provide useful information for designing interventions
aimed at controlling the infection.

In conclusion, this research has broadened our understanding of HIV infection
dynamics by incorporating quiescent cells and immune response mechanisms into
the model. Our findings reveal critical thresholds and parameter sensitivities that
can guide the development of more effective treatment strategies.
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Appendix

ξ3 − ξl (ξ5 − ξ1ξ4)
ξ3 − ξ1 · ξ2

=((
(α5 + µ1 + σ)α2

2 +
(
(α5 + µ1)2 + 2σ(α5 + µ1) + σ2 + α6µ4 − ρσ

)
α2

+ (µ1 + σ)
(
α2

5 + (µ1 + σ)α5 − ρσ
))

α3
1 +
(
(α5 + µ1 + σ)α3

2

+
(
2α2

5 + 4µ1α5 + 3µ4α5 + 2µ2
1 + 2σ2 + α3α4 + α6µ4 + 3µ1µ4 + (4α5 + 4µ1 + 3µ4 − ρ)σ

)
α2

2

+
(
α3

5 + 4µ1α2
5 + 3µ4α2

5 + 4µ2
1α5 − α6µ4α5 + 6µ1µ4α5 + µ3

1 + σ3 + 2α6µ2
4

+ (4α5 + 3(µ1 + µ4) − 2ρ)σ2 + 3µ2
1µ4 − α6µ1µ4 +

(
4α2

5 + 8µ1α5 + 6µ4α5 + 3µ2
1 − α6µ4

+ 6µ1µ4 − (α5 + 2µ1 + 3µ4)ρ
)
σ + 2α3α4(α5 + µ1 + σ)

)
α2 + α5µ3

1 + (α5 − ρ)σ3 + 2α2
5µ2

1

− α2
6µ2

4 +
(
2α2

5 + 3(µ1 + µ4)α5 − ρα5 − 2µ1ρ − µ4(α6 + 3ρ)
)
σ2 + α3

5µ1 + 3α5µ2
1µ4

− α6µ2
1µ4 − α2

5α6µ4 + 3α2
5µ1µ4 − 2α5α6µ1µ4 +

(
α3

5 + 4µ1α2
5 + 3µ4α2

5 + 3µ2
1α5

− 2α6µ4α5 + 6µ1µ4α5 − 2α6µ1µ4 + α6µ4ρ − µ1(α5 + µ1 + 3µ4)ρ
)
σ + α3α4

(
(µ1 + σ)2 + α6µ4

+ α5(2µ1 + µ4 + 2σ)
))

α2
1 +
(
(α3α4 + (α5 + µ1 + σ)(α5 + µ1 + 2µ4 + σ))α3

2

+
(
α3

5 + 4(µ1 + µ4 + σ)α2
5 +
(
4µ2

1 + 8(µ4 + σ)µ1 + 3µ2
4 + 4σ2 + 8µ4σ − 2ρσ

)
α5

+ µ3
1 + σ3 + α6µ2

4 + 3µ1µ2
4 + (3µ1 + 4µ4 − 2ρ)σ2 + 4µ2

1µ4 +
(
3µ2

1 + 8µ4µ1 + 3µ2
4−

2(µ1 + µ4)ρ
)
σ + α3α4(2α5 + µ1 + µ4 + σ)

)
α2

2 +
(
2(µ1 + µ4 + σ)α3

5 +
(
4µ2

1 + 8(µ4 + σ)µ1

+ 3µ2
4 + 4σ2 − α6µ4 + 8µ4σ − ρσ

)
α2

5 +
(
2µ3

1 + (8µ4 + 6σ)µ2
1 +
(
6µ2

4 − 2α6µ4 + 16σµ4

+ 6σ2 − 4ρσ
)
µ1 − α6µ4(µ4 + 2σ) + 2σ

(
3µ2

4 − ρµ4 + 4σµ4 + σ2 − 2ρσ
))

α5 + 2(µ4 − ρ)σ3

+ α2
3α2

4 +
(
ρ2 − 4(µ1 + µ4)ρ − α6µ4 + 3µ4(2µ1 + µ4)

)
σ2 + µ4

(
µ2

1(2µ1 + 3µ4)

− α6
(
µ2

1 + µ4µ1 − µ2
4
))

−
(

− 6µ1µ4(µ1 + µ4) +
(
2µ2

1 + 4µ4µ1 + 3µ2
4
)
ρ

+ α6µ4(2µ1 + µ4 + ρ)
)
σ + α3α4

(
2α2

5 + 4µ1α5 + 3µ4α5 + µ2
1 + σ2 − α6µ4 + 2µ1µ4

+ 2(2α5 + µ1 + µ4 + ρ)σ
))

α2 +
(
α2

5 + 2µ4α5 + ρ2 − α6µ4 − 2(α5 + µ4)ρ
)
σ3

+
(
α3

5 + (3µ1 + 4µ4 − ρ)α2
5 + µ4(−α6 + 6µ1 + 3µ4)α5 − 2(2µ1 + µ4)ρα5 − α6µ4(3µ1 + µ4 + ρ)

+ ρ
(

− 3µ2
4 − 4µ1µ4 + µ1ρ

))
σ2 + (α5 + µ1)

((
µ2

1 + 2µ4µ1 − α6µ4
)
α2

5

+ µ4
(
2µ2

1 + 3µ4µ1 − α6µ4
)
α5 − α6µ1µ4(µ1 + µ4)

)
+
(
2(µ1 + µ4)α3

5

+
(
3µ2

1 + 8µ4µ1 − ρµ1 + 3µ2
4 − α6µ4

)
α2

5 − 2(α6 − 3µ1)µ4(µ1 + µ4)α5

+ (α6µ4 − 2µ1(µ1 + µ4))ρα5 − µ4
(
µ1(2µ1 + 3µ4)ρ + α6

(
3µ2

1 + 2µ4µ1 + ρµ1 − µ4ρ
)))

σ

+ α2
3α2

4(µ1 + µ4 + σ) + α3α4
(
σ3 + (3µ1 + µ4 + 2ρ)σ2 − α6µ4σ + µ1(3µ1 + 2(µ4 + ρ))σ

+ (µ1 + µ4)
(
µ2

1 − α6µ4
)

+ α2
5(2µ1 + µ4 + 2σ) + α5

(
2µ2

1 + (3µ4 + 4σ)µ1 + 2σ2

+ µ4(α6 + 2µ4) + 3µ4σ
)))

α1 + (α3α4α5 + (α5 + µ4)(α5 − ρ)(µ4 − ρ))σ3

+
(
α3α4α5(α5 + 3µ1 + µ4 + 2ρ) + (α5 + µ4)

(
µ1ρ2 −

(
α2

5 + 2µ1α5 + µ4(2µ1 + µ4)
)
ρ

+ α5µ4(α5 + 3µ1 + µ4)
))

σ2 + α5(α3α4 + µ1(α5 + µ1))(µ1 + µ4)(α3α4 + µ4(α5 + µ4))

+
(
α5(α3α4 + µ4(α5 + µ4))(α3α4 + α5(2µ1 + µ4) + µ1(3µ1 + 2µ4)) − µ1

(
(α5 + µ4)

(
α2

5

+ µ1α5 + µ4(µ1 + µ4)
)

− 2α3α4α5
)
ρ
)
σ + α3

2(α3α4α5 + (α5 + µ4)(α5 + µ1 + σ)(µ1 + µ4 + σ))
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+ α2
2
(
α3α4α5(α5 + µ1 + µ4 + σ) + (α5 + µ4)

(
σ3 + (2α5 + 3µ1 + 2µ4 − 2ρ)σ2

+
(
α2

5 + 4µ1α5 + 3µ4α5 + 3µ2
1 + µ2

4 + 4µ1µ4 − (α5 + 2µ1 + µ4)ρ
)
σ

+ (α5 + µ1)(µ1 + µ4)(α5 + µ1 + µ4)
))

+ α2
(
α2

3α5α2
4 + α3α5

(
σ2 + 2(α5 + µ1 + µ4 + ρ)σ

+ (µ1 + µ4)(2α5 + µ1 + µ4)
)
α4 + (α5 + µ4)

(
(α5 + µ4 − 2ρ)σ3 +

(
α2

5 + 3µ1α5 + 3µ4α5 + µ2
4

+ ρ2 + 3µ1µ4 − 2(α5 + 2µ1 + µ4)ρ
)
σ2 +

(
(2(µ1 + µ4) − ρ)α2

5 +
(
3µ2

1 + 6µ4µ1 − 2ρµ1 + 2µ2
4
)
α5

+ µ1µ4(3µ1 + 2µ4) −
(
2µ2

1 + 2µ4µ1 + µ2
4
)
ρ
)
σ + (α5 + µ1)(µ1 + µ4)(µ1µ4

+ α5(µ1 + µ4))
)))/(

(α2 + α5 + µ1 + σ)α2
1 +
(
α2

2 + 2(α5 + µ1 + µ4 + σ)α2 + α2
5 + α3α4

− α6µ4 + 2α5(µ1 + µ4 + σ) + (µ1 + σ)(µ1 + 2µ4 + σ)
)
α1 + α5µ2

1 + α5µ2
4 + µ1µ2

4

+ (α5 + µ4 − ρ)σ2 + α3α4α5 + α2
5µ1 + α2

5µ4 + µ2
1µ4 + 2α5µ1µ4 + (α5 + µ4)(α5 + 2µ1 + µ4)σ

− µ1ρσ + α2
2(α5 + µ1 + µ4 + σ) + α2

(
(α5 + µ1 + µ4)2 + 2σ(α5 + µ1 + µ4) + σ2 − ρσ

))
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