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Abstract

Electroencephalography (EEG) is widely used in neuroscience and clinical
research for analyzing brain activity. While deep learning models such as EEG-
Net have shown success in decoding EEG signals, they often struggle with data
complexity, inter-subject variability, and noise robustness. Recent advancements
in quantum machine learning (QML) offer new opportunities to enhance EEG
analysis by leveraging quantum computing’s unique properties. In this study, we
extend the previously proposed Quantum-EEGNet (QEEGNet), a hybrid neural
network incorporating quantum layers into EEGNet, to investigate its generaliza-
tion ability across multiple EEG datasets. Our evaluation spans a diverse set of
cognitive and motor task datasets, assessing QEEGNet’s performance in different
learning scenarios. Experimental results reveal that while QEEGNet demon-
strates competitive performance and maintains robustness in certain datasets,
its improvements over traditional deep learning methods remain inconsistent.
These findings suggest that hybrid quantum-classical architectures require fur-
ther optimization to fully leverage quantum advantages in EEG processing.
Despite these limitations, our study provides new insights into the applicability
of QML in EEG research and highlights challenges that must be addressed for
future advancements.

Keywords: EEG, Electroencephalography, Deep Learning, Quantum Machine
Learning, Quantum Algorithm, Brain-Computer Interface, Bio-signal Processing
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1 Introduction

Electroencephalography (EEG) plays a fundamental role in neuroscience and clinical
applications, enabling non-invasive monitoring and analysis of brain activity [1]. While
deep learning models such as EEGNet [2] have demonstrated substantial progress in
decoding EEG signals, they often encounter limitations when faced with the high
dimensionality, variability, and noise inherent in EEG data. These challenges motivate
the exploration of novel computational paradigms that can enhance EEG representa-
tion and classification. Emerging research has demonstrated the potential of EEG in
diverse applications beyond traditional medical diagnostics. For instance, EEG signals
have been successfully integrated into real-time robotic control systems, as seen in [3].
Furthermore, EEG has been utilized in multimodal frameworks, such as [4], where
EEG signals serve as a guiding input for generating images, pushing the boundaries of
EEG’s creative applications. Similarly, [5] has explored EEG-based visual recognition
tasks by leveraging contrastive learning to align EEG and visual representations. In
clinical neuroscience, EEG has also been explored as a predictive tool for psychiatric
treatment responses [6]. These studies highlight EEG’s versatility in various AI-driven
applications and the increasing demand for advanced models capable of capturing
intricate brain activity patterns.

Quantum machine learning (QML) has emerged as a promising field that leverages
quantum computing’s unique properties [7], such as superposition and entangle-
ment, to potentially improve learning efficiency and model expressivity [8–10]. Recent
advancements in variational quantum circuits (VQCs) have demonstrated their
capability in deep reinforcement learning [11], long short-term memory (LSTM) archi-
tectures [12], and transfer learning [13]. These developments suggest that QML-based
models can potentially enhance learning in complex, high-dimensional spaces by lever-
aging quantum-native representations. Moreover, studies have investigated the role of
quantum measurement in optimizing quantum neural networks [14], shedding light on
techniques to improve the trainability and interpretability of hybrid quantum-classical
models. Another notable work introduces Quantum-Train Agents for programming
variational quantum circuits, further advancing QML methodologies [15]. Notably,
[16] has investigated the potential of quantum-enhanced contrastive learning in fus-
ing EEG and image representations, illustrating that QML can be leveraged beyond
unimodal EEG analysis. In our prior work [17], Quantum-EEGNet (QEEGNet) was
introduced as a hybrid neural network that integrates quantum layers within the
classical EEGNet framework. Initial findings indicated that QEEGNet could cap-
ture intricate patterns in EEG signals and demonstrated competitive performance on
benchmark EEG datasets, such as BCI Competition IV 2a [18]. However, its effec-
tiveness across broader datasets and real-world scenarios remains an open question.
In this study, we extend our previous work by systematically evaluating QEEGNet on
multiple public EEG datasets encompassing a range of cognitive and motor tasks. This
investigation aims to assess its generalization ability and robustness beyond a single
benchmark dataset. Specifically, we explore whether QEEGNet’s quantum-enhanced
representation can provide advantages in EEG decoding tasks involving different lev-
els of data complexity, noise, and inter-subject variability. Our results indicate that
while QEEGNet exhibits promising trends in certain datasets, its performance does
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not always surpass traditional deep learning approaches. This underscores the need
for further optimization of quantum-classical hybrid architectures and a deeper under-
standing of how quantum layers interact with EEG feature extraction. Nonetheless,
our findings contribute to the growing body of research on QML applications in neu-
roscience, highlighting both the opportunities and challenges of integrating quantum
computing into EEG analysis.

By expanding the scope of evaluation, this work provides insights into the potential
and limitations of quantum-enhanced EEG models. We discuss key factors influencing
QEEGNet’s performance, propose directions for improving hybrid architectures, and
outline future research pathways toward practical applications of quantum computing
in EEG-based brain-computer interfaces and clinical diagnostics. The whole structure
is shown in Figure 1. Our contributions in this paper are as follows:

• Building upon our previous work, we propose QEEGNet, a quantum machine
learning model specifically designed for EEG analysis.

• We conduct extensive evaluations across multiple commonly used EEG datasets,
performing both cross-task and cross-dataset validation to assess the model’s
generalizability.

• We provide a detailed computational complexity analysis comparing QEEGNet with
the traditional EEGNet, highlighting the trade-offs between quantum-enhanced
feature representation and computational efficiency.

2 Methodology

In this section, we present the methodology behind Quantum-EEGNet (QEEGNet),
a novel hybrid neural network that integrates quantum computing principles with
classical deep learning architectures to enhance EEG data encoding and classification,
is shown in Fig. 4. Our approach builds upon the well-established EEGNet framework,
incorporating quantum layers to leverage the computational advantages of quantum
mechanics, such as superposition and entanglement. The overall model structure is
designed to capture the intricate spatial and temporal dependencies present in EEG
signals more effectively than purely classical architectures.

2.1 Classical Feature Extraction

EEGNet serves as the backbone of QEEGNet, initially processing raw EEG signals
to extract relevant spatial and temporal features. The input EEG data, represented
as a multichannel time-series matrix X ∈ RC×T , where C is the number of channels
and T is the number of time steps, undergoes a series of convolutional operations to
model spatial and temporal dependencies. The first stage applies depthwise separable
convolutions, given by:

Y = (X ∗Wd) ∗Wp, (1)

where Wd represents the depthwise convolution kernel applied per channel, and Wp

denotes the pointwise convolution kernel used for cross-channel feature fusion.
Batch normalization follows to stabilize activations, ensuring improved gradient

flow and faster convergence. The activation function utilized is the Exponential Linear
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Fig. 1 Hybrid Quantum-Classical Framework for EEG Processing in QEEGNet. The framework
integrates a classical neural network with a variational quantum circuit to process electroencephalog-
raphy (EEG) data. EEG features are first extracted and transformed by a classical neural network,
parameterized by W . The resulting feature representations are then encoded into a quantum state and
processed using a quantum neural network with trainable parameters Θ. The quantum measurement
outcomes are fed back into a classical computer, updating both quantum and classical parameters
iteratively. This hybrid approach leverages quantum computing to enhance feature representation
learning for EEG-based applications.

Unit (ELU) [19], defined as:

ELU(x) =

{
x, x > 0

α(ex − 1), x ≤ 0,
(2)

where α controls the saturation rate for negative inputs. By stacking multiple con-
volutional layers with ELU activations and pooling operations, the network efficiently
compresses EEG representations while preserving discriminative features.

2.2 Quantum Encoding Layer

In the Quantum-Classical Hybrid Neural Network (HNN) architecture, a Classical
Neural Network is combined with a Variational Quantum Circuit (VQC) which is
shown in Figure 2, enabling classical data to undergo feature extraction before being
transformed into quantum states, leveraging the advantages of quantum computation
for further processing. The model is defined as:

fHNN : Rd → R, fHNN =M ◦ V ◦ U ◦ C (3)
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Fig. 2 Structure of the Variational Quantum Circuit (VQC). The input x⃗ represents EEG features
encoded by a classical neural network before being processed by the quantum circuit. The circuit
consists of an encoding layer U(C(x⃗)), variational layers Vi(θ⃗i), and measurement operations to
extract quantum outputs.

where C : Rd → Rd′
is the classical neural network, mapping input data x ∈ Rd

to a lower-dimensional embedding space with d > d′. A quantum embedding unitary
U : Rd′ → U(H) is defined to transform an embedded classical input C(x) into a
quantum state by |ψ⟩ 7→ U(C(x)) |ψ⟩. Subsequently, we define a variational quantum
circuit V : U(H) → U(H) with tunable parameters θ to generate a corresponding
quantum transformation V (θ). A final step of VQC is to perform a measurement on
the resulting quantum state with a selected observable M : H → R. The computation
process above combined yields,

fHNN(x) = ⟨ψ0|U†(C(x))V †(θ)HV (θ)U(C(x))|ψ0⟩ (4)

where V † and U† denote the Hermitian conjugates of the encoding and variational
quantum circuit, respectively.

The classical embedding C(x) is implemented by a classical neural network of
multiple layers,

C(x) = σ(WLσ(WL−1 . . . σ(W1x+ b1) · · ·+ bL−1) + bL) (5)

where Wi ∈ Rdi×di−1 and bi ∈ Rdi are the weight matrices and biases of the neural
network, and σ is a non-linear activation function (e.g., ReLU or Sigmoid). The output
C(x) ∈ Rd′

serves as an input to the quantum circuit.
The variational quantum circuit consists of a sequence of parameterized unitary

operations V (θ) = VL(θL) · · ·V1(θ1) with Vℓ(θℓ) = e−
i
2 θℓσℓ for ℓ = 1, . . . , L, and σℓ is

one of the Pauli matrices,

σx =

(
0 −1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (6)

5



Fig. 3 The VQC (QNN) layer in this work.

depending on ℓ. The measurement is performed by a selected Hermitian observable H
such that M(|ψ⟩) = ⟨ψ|H|ψ⟩ ∈ R. A typical choice is the Pauli matrix in Eq. (6).

The optimization over tunable parameters θ is performed by minimizing the loss
function:

L(θ) = 1

N

N∑
i=1

(
fHNN(x

(i); θ)− y(i)
)2

(7)

This hybrid model integrates the feature learning capabilities of classical neural
networks with the nonlinear mapping properties of quantum transformations, enabling
superior feature extraction and modeling performance in specific problem domains.

Once EEG features are extracted by the classical neural network, they are trans-
formed into quantum representations through a series of quantum encoding operations.
Each extracted feature vector z = (z1, . . . , zd′) ∈ Rd′

is mapped onto a quantum state
via a parameterized rotation operation like Figure 3.

The encoding U utilizes a rotation-Y (RY) gate:

RY (z) = exp
(
−iz σy

2

)
, (8)

where σy is the Pauli-Y matrix in Eq. (6). With this transformation, classical data is
embedded into quantum states of a Hilbert space for richer representations.

To introduce interdependencies among qubits, entanglement is established via a
ring-structured application of controlled-NOT (CNOT) gates. The CNOT operation,
acting on a control qubit qc and a target qubit qt, is defined by the unitary matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (9)
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Applying this gate across neighboring qubits ensures that quantum correlations
between EEG features are preserved, effectively capturing complex dependencies that
may be lost in purely classical representations. A ring entanglement pattern arranges
CNOT gates in a way that each qubit is entangled with its adjacent neighbor, while the
final qubit is also entangled with the first qubit, creating a closed-loop structure.
This setup ensures entanglement propagates across the entire qubit system. In each
layer l within nlayers, the qubits are entangled following this cyclic pattern of CNOT
operations:

CNOT(qi, q(i+1) mod nqubits
) for i = 0, 1, . . . , nqubits − 1. (10)

This configuration establishes a continuous chain of entanglement, facilitating
quantum information transfer across all qubits.

Furthermore, trainable quantum layers refine these representations through addi-
tional rotation operations, where each trainable weight wl,i is applied as a rotation:

RY (wl,i) = exp
(
−iwl,i

σy
2

)
. (11)

This enables the model to learn optimal transformations specific to EEG encoding,
allowing quantum circuits to act as feature refiners beyond conventional classical
networks.

2.3 Measurement and Classification

After quantum transformations U(x) and V (θ), qubit states are measured to extract
classical information for downstream classification. Here, we choose a Pauli-Z matrix
σz in Eq. (6) so that the final VQC output in Eq. (4) yields ⟨σz⟩ = (y1, . . . , yn).

The above measurement is then converted into classical probabilities via

P (y = j|x) = exp(yj)∑
k exp(yk)

, (j = 1, . . . , n) (12)

to form a vector for classification. The results are passed into a fully connected neural
network layer, where the softmax function computes the final output, producing a
probability distribution over output classes for accurate EEG-based categorization.

2.4 Computational Complexity Analysis of EEGNet and
QEEGNet

EEGNet primarily consists of convolutional layers, pooling layers, and fully connected
layers. Given an input EEG signal with C channels and T time steps, EEGNet applies
depthwise separable convolution, which has a computational complexity of

O(C · T ·K + C ·M · T ), (13)

where K represents the kernel size and M is the number of output features. The first
term accounts for depthwise convolution applied independently to each channel, while
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Fig. 4 A schematic comparison between EEGNet and the proposed Quantum-EEGNet (QEEGNet).
In this illustration, Conv represents convolution operations, BN stands for batch normalization, and
ELU refers to the exponential linear unit activation function.

the second term represents the pointwise convolution operation. The overall complex-
ity remains linear with respect to C and T , making EEGNet computationally efficient
for EEG signal processing. QEEGNet builds upon EEGNet by introducing a quantum
encoding layer, which maps extracted EEG features onto a quantum Hilbert space
using parameterized quantum circuits. The encoding step involves applying rotation-Y
(RY) gates to transform classical inputs into quantum states. This quantum encoding
has a computational complexity of O(n), where n is the number of qubits, typically
equal to the number of EEG features. After encoding, QEEGNet introduces entangle-
ment between qubits using controlled-NOT (CNOT) gates. The complexity of applying
CNOT gates in a ring topology scales as O(n), as each qubit interacts with a fixed
number of neighbors. The measurement operation is linear with respect to the num-
ber of qubits, adding an additional O(n) complexity to the model. Overall, QEEGNet
introduces a modest increase in computational complexity compared to EEGNet. The
total complexity of QEEGNet can be expressed as

O(C · T ·K + C ·M · T + n), (14)

where the additional O(n) term accounts for quantum operations. Since n typically
corresponds to the number of extracted EEG features, this increase is not significant
in practical scenarios. Thus, QEEGNet enhances feature representation while main-
taining computational efficiency comparable to EEGNet. The integration of quantum
layers provides richer feature embeddings, potentially improving EEG classification
accuracy without introducing prohibitive computational overhead.
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3 Experiment Results

3.1 Datasets

We tested our QEEGNet’s performance using four datasets from different sources and
downstream tasks. A simple comparison of the datasets is shown in Table 1.

Table 1 Datasets for QEEGNet downstream tasks. MI
notes Motor Imagery and ERN notes Error-Related
Negativity.

Datasets Paradigms Subjects Classes
BCIC-2A MI 9 4
BCIC-2B MI 9 2
KaggleERN ERN 26 2
PhysioP300 P300 9 2

3.1.1 BCIC-IV-2a Dataset

We utilize the BCIC-IV-2a dataset [20] from the Brain-Computer Interface Competi-
tion IV, which provides time-asynchronous EEG data. As one of the most widely used
public EEG datasets, it was introduced during BCI Competition IV in 2008 [18]. The
dataset comprises EEG recordings from nine subjects performing a four-class motor
imagery task, which was conducted on two separate days. In each trial, participants
were instructed to imagine one of four movements—right hand, left hand, feet, or
tongue—for four seconds following a cue. Each session contains 288 trials, with 72 tri-
als per movement type. The EEG data was captured using 22 electrodes positioned
around the central region of the scalp at a sampling rate of 250 Hz. To preprocess the
signals, we down-sampled the data to 128 Hz, applied a band-pass filter (4–38 Hz),
and segmented the EEG recordings from 0.5 to 4 seconds post-cue, yielding 438 time
points per trial.

3.1.2 BCIC-IV-2b Dataset

This dataset [21] consists of EEG recordings from nine right-handed subjects partici-
pating in a motor imagery experiment. Each subject completed five sessions, with two
training sessions conducted without feedback and three additional sessions incorpo-
rating feedback mechanisms. EEG data was acquired from three bipolar channels (C3,
Cz, C4) at a sampling rate of 250 Hz, while EOG recordings were included to assist in
artifact reduction. The experimental protocol required subjects to mentally simulate
left or right hand movements in response to visual cues. Each session comprised mul-
tiple runs and trials, beginning with an EOG artifact recording phase to evaluate the
impact of eye movements on EEG signals. This was followed by the motor imagery
task, where participants engaged in motor imagination without physical execution.
This dataset serves as a valuable resource for motor imagery and brain-computer
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interface (BCI) research, particularly in areas related to signal processing, artifact
handling, and EEG-based classification models.

3.1.3 KaggleERN (The BCI Challenge@NER 2015) Dataset

The Kaggle error-related negativity dataset (KaggleERN) [22] originates from a study
involving 26 subjects who participated in a P300 Speller task using 56 EEG electrodes.
This brain-computer interface (BCI) paradigm is designed to detect errors during a
spelling task based on EEG signals, which were sampled at 600 Hz and referenced
to the nose. The P300-Speller leverages the P300 response, an event-related poten-
tial (ERP) triggered by rare and attended stimuli, to identify the target letter from
a matrix of 36 characters (letters and numbers) displayed on a computer screen. In
this experiment [22], participants were instructed to spell words by focusing on a tar-
get letter while ignoring irrelevant flashes. The objective was to determine whether
the selected letter was incorrect by analyzing EEG signals recorded after feedback
was provided. Regardless of whether the feedback was correct or incorrect, partici-
pants proceeded to the next target letter in the sequence. The study incorporated two
experimental conditions: a fast mode, where each character was flashed four times,
leading to a higher likelihood of errors, and a slower mode, where each character was
flashed eight times, reducing error rates. Each subject completed five copy spelling
sessions. The first four sessions involved spelling twelve 5-letter words, while the fifth
session required spelling twenty 5-letter words. This dataset is particularly valuable
for research on error detection in BCI systems, as well as studies on EEG-based
classification, event-related potentials, and adaptive spelling interfaces.

3.1.4 PhysioP300 Dataset

The PhysioP300 dataset [23] is a publicly available EEG dataset designed for brain-
computer interface (BCI) research based on P300 event-related potentials (ERPs).
It includes data from nine subjects, each participating in a P300 matrix spelling
paradigm. The dataset contains two target categories, typically corresponding to tar-
get and non-target stimuli, allowing for classification of brain responses to attended
versus unattended visual cues. The experimental design follows the classical P300
matrix speller paradigm, where subjects focus on specific target characters within a
6×6 character matrix, while their brain responses to flashing stimuli are recorded. EEG
signals were collected using a high-density EEG system, covering multiple electrodes
to capture the spatial distribution of the P300 component. The stimuli were cate-
gorized into target and non-target types, with target stimuli inducing distinct P300
ERP peaks in the EEG signals. In terms of data characteristics, the dataset provides
high-quality annotations, including precise event timing and target labels, facilitat-
ing temporal alignment and classification tasks. The P300 component, an exogenous
evoked potential, typically appears 250–500 milliseconds after stimulus onset, with an
amplitude of approximately 3–10 µV . Its spatial distribution is primarily concentrated
in the parietal region, particularly around the Pz electrode. The dataset is well-suited
for developing and validating P300-based BCI decoding algorithms, commonly used
in classification tasks to distinguish between target and non-target stimuli. It also
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serves as a valuable resource for neurosignal processing algorithm validation, particu-
larly in evaluating the performance of machine learning models for ERP classification.
Additionally, cross-dataset studies frequently integrate PhysioP300 with other ERP
datasets for transfer learning and meta-analysis.

3.2 Experiment Details

For the BCIC-IV-2a dataset, we utilized the first session of each subject as the training
set, reserving one-fifth of it for validation same as [17]. All the datasets we used default
train-test splits.

The data splitting strategy in the BCIC-IV-2a and BCIC-IV-2b dataset follows a
cross-subject paradigm designed to evaluate model generalization across different sub-
jects. The process begins by designating a target subject’s data as the test set, which
comprises all recordings from both their sessions. For the training and validation sets,
the code aggregates data from all other subjects, carefully excluding the target sub-
ject to maintain proper evaluation isolation. Each contributing subject’s session data
undergoes a stratified split, where 90% of the trials are allocated to the training set
and 10% to the validation set, ensuring consistent class distribution across splits. This
stratified approach helps maintain balanced representation of different task conditions
in both training and validation phases. The data can optionally undergo several pre-
processing steps, including Ensemble Agreement processing, temporal interpolation
to a specified length, and channel selection. This cross-subject validation approach
is particularly valuable for assessing how well the model can adapt to new, unseen
subjects, which is crucial for real-world BCI applications where model generalization
across different individuals is essential.

The KaggleERN dataset employs a structured 4-fold cross-validation approach,
where each fold maintains a consistent set of test subjects while rotating differ-
ent training subject combinations. Unlike the BCIC2A/2B datasets that use a
single-subject validation paradigm, KaggleERN utilizes a predefined set of subjects
([1,3,4,5,8,9,10,15,19,25]) as the constant test group across all folds. The training data
for each fold is drawn from different combinations of the remaining subjects, with
each subject contributing data from five experimental sessions. The data processing
pipeline reads EEG signals and event markers from CSV files, with separate handling
for training and test datasets through dedicated functions. These functions process
the raw data by applying temporal windowing from -0.7 to 2 seconds around events,
selecting relevant EEG channels, and performing data normalization. This structured
approach ensures consistent evaluation across folds while maintaining a clear sepa-
ration between training and testing subjects, facilitating robust assessment of the
model’s generalization capabilities across different individuals.

The PhysioP300 dataset employs a Leave-One-Subject-Out (LOSO) cross-
validation approach for evaluating model performance. The dataset comprises record-
ings from seven subjects (3,4,5,6,7,9,11), and the validation process iterates through
each subject. In each iteration, one subject’s data is held out as the validation set
while the remaining subjects’ data form the training set. This LOSO approach ensures
a robust evaluation of the model’s ability to generalize across different subjects, as
it tests the model’s performance on completely unseen subjects during training. The
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strategy is particularly valuable for assessing the practical applicability of the model in
real-world scenarios where it needs to work with new users without additional training.

All the models that achieved the lowest validation loss within 100 epochs was
subsequently evaluated on the second session of the same subject. All the models
are trained with 4 qubits and 2 quantum layers expect BCIC-IV-2a used the same
settings in [17]. All models were implemented using PyTorch and PennyLane, with
a quantum simulator serving as the backend. Training was conducted with a batch
size of 32, running for 100 epochs using the AdamW optimizer with a learning rate of
10−3. The model with the highest validation accuracy was selected for final predictions
on the test dataset. The training process for QEEGNet took approximately 20 hours
per subject when running on CPUs, using a Google Cloud Platform a2-ultragpu-1g
machine equipped with 170 GB of RAM.

3.3 Results

The experimental results compare the performance of EEGNet and QEEGNet across
multiple tasks and datasets, including BCIC-IV-2a, BCIC-IV-2b, KaggleERN, and
PhysioP300, evaluating key metrics such as accuracy, F1-score, precision, and recall.
The details are shown in Table 2 and Table 3.

For the BCIC-IV-2a dataset, QEEGNet demonstrates a slight improvement over
EEGNet in both validation and test accuracy. With a validation accuracy of 42.1%
compared to EEGNet’s 39.86%, and a test accuracy of 38.1% versus 37.7%, QEEG-
Net shows a modest but consistent enhancement in classification performance. These
results suggest that QEEGNet’s quantum-inspired modifications contribute to better
generalization.

On the BCIC-IV-2b dataset, EEGNet achieves a marginally higher accuracy
(73.21%) than QEEGNet (72.62%), indicating that for this dataset, the conventional
architecture of EEGNet may still hold advantages. However, QEEGNet slightly sur-
passes EEGNet in F1-score (70.68% vs. 70.61%), suggesting that it maintains a
balanced trade-off between precision and recall. For precision, EEGNet outperforms
QEEGNet (75.63% vs. 73.32%), indicating fewer false positives. However, QEEGNet
achieves better recall (71.89% vs. 69.94%), which suggests improved sensitivity to
correctly identifying relevant signals.

On the KaggleERN dataset, QEEGNet consistently outperforms EEGNet across
almost all metrics. It achieves a higher accuracy of 70.65% compared to EEGNet’s
70.19%, showing improved classification performance. Notably, QEEGNet also sur-
passes EEGNet in F1-score (82.98% vs. 81.79%), and recall (99.33% vs. 94.59%). The
significant boost in recall highlights QEEGNet’s ability to detect a larger proportion
of relevant cases while maintaining a balanced precision.

For the PhysioP300 dataset, QEEGNet also exhibits superior performance. It
achieves a test accuracy of 64.86% compared to EEGNet’s 64.37%. Similarly, QEEG-
Net outperforms EEGNet in F1-score (60.66% vs. 59.90%) and recall (60.03% vs.
58.42%), confirming its effectiveness in detecting true positive cases. While EEGNet
slightly surpasses QEEGNet in precision (64.21% vs. 62.32%) the same as in Kag-
gleERN dataset, the overall trend suggests that QEEGNet maintains a strong balance
between precision and recall, leading to better generalization.
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Table 2 Comparison of EEGNet and QEEGNet on
BCIC-IV-2a, the settings are the same as [17].

Model Validation Accuracy Test Accuracy
EEGNet 39.86%±0.138 37.7%±0.126
QEEGNet 42.1%±0.142 38.1%±0.127

Table 3 Comparison of EEGNet and QEEGNet on Various Datasets.

Metric/Datasets Model BCIC-IV-2b KaggleERN PhysioP300

Accuracy
EEGNet 73.21%±0.088 70.19%±0.010 64.37%±0.049
QEEGNet 72.62%±0.089 70.65%±0.004 64.86%±0.052

F1-score
EEGNet 70.61%±0.141 81.79%±0.012 59.90%±0.103
QEEGNet 70.68%±0.136 82.98%±0.003 60.66%±0.082

Precision
EEGNet 75.63%±0.076 72.12%±0.009 64.21%±0.046
QEEGNet 73.32%±0.086 70.94%±0.001 62.32%±0.055

Recall
EEGNet 69.94%±0.215 94.59%±0.045 58.42%±0.164
QEEGNet 71.89%±0.197 99.33%±0.009 60.03%±0.119

3.3.1 Embedding Analysis

To further evaluate the representational capability of EEGNet and QEEGNet, we
visualize the learned feature embeddings using t-SNE [24] and UMAP [25] for Subject
9 in the PhysioP300 dataset. Figure 5 illustrates the projected feature spaces, where
blue points represent target responses and red points represent non-target responses.

The t-SNE and UMAP visualizations for EEGNet (Figure 4a) indicate a moder-
ate degree of separation between target and non-target samples, but the distributions
exhibit considerable overlap. This suggests that EEGNet’s feature representations do
not fully disentangle the two classes, potentially leading to misclassifications. In con-
trast, QEEGNet’s feature space (Figure 4b) shows a more distinct separation between
target and non-target samples, particularly in the UMAP projection. The improved
clustering structure in QEEGNet suggests that its learned embeddings capture more
discriminative information, allowing for better differentiation of EEG responses.

The enhanced separability observed in QEEGNet’s embedding space implies that
it learns a more structured and class-specific representation of the EEG signals. This
aligns with the improved classification performance observed in the previous results,
further supporting the hypothesis that QEEGNet’s quantum-inspired architecture
facilitates more effective feature extraction. The clearer distinction between target
and non-target samples suggests that QEEGNet has a greater potential for robust
classification in EEG-based tasks.

In summary, QEEGNet demonstrates competitive and, in many cases, superior
performance compared to EEGNet, particularly in recall and F1-score. While EEGNet
retains advantages in precision in some datasets, QEEGNet’s improvements in accu-
racy and recall indicate that its quantum-inspired components contribute positively
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(a) Feature space visualization of EEGNet for Subject 9 in PhysioP300 dataset using t-SNE and UMAP.

(b) Feature space visualization of QEEGNet for Subject 9 in PhysioP300 dataset using t-SNE and UMAP.

Fig. 5 Comparison of feature space visualization of EEGNet and QEEGNet for Subject 9 in the
PhysioP300 dataset using t-SNE and UMAP. (a) EEGNet visualization, showing the learned feature
separability between target (blue) and non-target (red) samples. (b) QEEGNet visualization, demon-
strating improved clustering of target and non-target samples compared to EEGNet. The clearer
separation in QEEGNet’s feature space suggests its enhanced ability to distinguish P300 responses,
highlighting its potential for more robust classification.

to EEG classification tasks. The results suggest that QEEGNet is particularly benefi-
cial in scenarios where sensitivity to relevant signals is crucial, making it a promising
alternative to conventional EEG decoding models.

4 Conclusion

This study explores the potential of integrating quantum machine learning into EEG
signal processing through QEEGNet, a hybrid model that extends EEGNet with quan-
tum layers. Our experiments across multiple datasets indicate that while QEEGNet
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demonstrates improvements in classification performance, particularly in recall and
feature space separability, its overall gains over conventional neural networks remain
moderate for the tested datasets. This suggests that the quantum-enhanced model does
not yet universally outperform classical deep learning approaches in EEG decoding.

Despite these limitations, one key advantage of QEEGNet lies in its ability to
achieve performance gains with only a linear increase in computational complex-
ity. Unlike many quantum models that introduce significant computational overhead,
QEEGNet maintains efficiency, making it a viable approach for practical applications.
This finding highlights that quantum-inspired modifications can enhance EEG feature
extraction at a relatively low computational cost, which is a promising direction for
future research.

As an early-stage attempt at applying quantum computing to EEG classifica-
tion, this study provides valuable insights into the feasibility and challenges of hybrid
quantum-classical architectures. While further optimization is needed to fully lever-
age quantum advantages, our results suggest that QEEGNet represents a meaningful
step toward incorporating quantum machine learning into neurotechnology and brain-
computer interfaces. Future work should explore refined quantum circuit designs,
better integration with classical networks, and larger-scale evaluations to further
validate the potential of quantum-enhanced EEG analysis.
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