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Recent generative learning models applied to protein multiple sequence alignment (MSA) datasets
include simple and interpretable physics-based Potts covariation models and other machine learning
models such as MSA-Transformer (MSA-T). The best models accurately reproduce MSA statistics
induced by the biophysical constraints within proteins, raising the question of which functional forms
best model the underlying physics. The Potts model is usually specified by an effective potential
including pairwise residue-residue interaction terms, but it has been suggested that MSA-T can
capture the effects induced by effective potentials which include more than pairwise interactions
and implicitly account for phylogenetic structure in the MSA. Here we compare the ability of the
Potts model and MSA-T to reconstruct higher-order sequence statistics reflecting complex biological
sequence constraints. We find that the model performance depends greatly on the treatment of
phylogenetic relationships between the sequences, which can induce non-biophysical mutational
covariation in MSAs. When using explicit corrections for phylogenetic dependencies, we find the
Potts model outperforms MSA-T in detecting epistatic interactions of biophysical origin.

Introduction - Machine learning models have made
great strides in predicting the functional and structural
properties of proteins based on large protein sequence
datasets, including the subclass of generative protein
sequence models (GPSM) that learn an underlying se-
quence probability distribution P (S) from a Multiple Se-
quence Alignment (MSA) to generate new synthetic pro-
tein sequences S. To function well, GPSMs must capture
amino acid patterns in the MSA that implicitly encode
information about physical constraints on proteins, en-
abling the design and detection of hidden protein prop-
erties from sequence data[1, 7]. This raises the question
of the GPSM functional form that best describes protein
biophysics and how to measure this. Here we examine
two leading GPSMs in recent focus, the Potts model[2–8]
and the MSA Transformer (MSA-T)[9, 10]. We suggest
that certain statistical characteristics of individual pro-
tein families provide the most reliable metrics to measure
GPSM performance if they exclude the biasing effects of
phylogenetic relationships between sequences, which do
not originate from the fundamental biophysical proper-
ties of the protein family. We find that the Potts model
better captures such a statistic, the higher-order MSA
statistics which arise due to the potentially large epistatic
networks within proteins, when the impact of phyloge-
netic relationships is carefully accounted for.

Effect of Phlyogenetic relationships on GPSM evalua-

tion - Mutational covariation in protein sequences pro-
vides a highly informative statistical signal that accurate
GPSMs must capture. These arise from multiple factors
including: 1) High-fitness sequence motifs and epistasis
(mutational cooperativity) underlying biophysical func-

Figure 1. Phylogenetic relationships between sequences in an
MSA result in a spurious mutational correlation due to com-
mon ancestry, for R/V and Q/T combinations at the illus-
trated column-pair. Sequence pairs greater than an identity
cut-off (diverging to the left of the gray dotted line) approx-
imate i.i.d. samples, so that identity filtering to retain 3 se-
quences labeled in blue gives an unbiased sample showing no
correlation with equal frequency of R/V, Q/V and Q/T com-
binations.

tion lead to compensatory mutation pairing patterns be-
tween residues. 2) Phylogentic relationships due to re-
cent speciation or gene duplication can distort covaria-
tion patterns, causing “excess” counts of patterns from
evolutionarily related sequence clusters as illustrated in
Fig. 1, and 3) Statistical noise due to the limited number
of available distinct natural sequences used during model
inference introduces finite-sampling statistical variation
in estimated covariation and in GPSM accuracy. The
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latter two can be considered nuisance factors in uncov-
ering the underlying biophysics driving the first factor
of fitness-induced covariation. These covariation signals
are measured from MSAs of individual protein families,
which consist of homologous proteins with shared func-
tion and overall structure.

Despite their quite different architectures and com-
plexity, the Potts model and MSA-T exhibit funda-
mental commonalities in their design to account for
these patterns[11]. The Potts model is an interpretable,
physics-inspired machine learning model fit to a sin-
gle protein family, inspired by spin-glasses. A Potts
model for protein family F has probability distribution
P (S | θF ) ∝ exp(−

∑
i<j J

ij
sisj

) for sequences S to evolve,
with characters si at position i , and pairwise “coupling”
parameters θF = {J ij

αβ} measuring the favorability of
having residues α, β at positions i, j in a sequence. It
models complex higher-order correlations through net-
works of pairwise interactions. In contrast, MSA-T is
a deep learning [12] masked language neural network
attention model [13] trained on MSAs of all available
protein families[14] with about 104 times more param-
eters, recently used for protein structure and evolution
analyses[15–21]. The Potts model has been found to have
superior generative accuracy to some other GPSMs in-
cluding Variational Auto-Encoders and site-independent
models [22], but a generative method subsequently devel-
oped for MSA-T has been reported to better reproduce
higher-order statistics [23], though its parameters lack
clear physical interpretation and the reasons for this re-
sult are unclear.

GPSMs must distinguish the causes of covariation[24].
In the case of the Potts model an identity filtering proce-
dure is critical. The Potts model is trained to reproduce
the site-statistics of a training MSA from the protein fam-
ily, assuming each sequence is an independent and iden-
tically distributed (i.i.d.) sample. To be i.i.d, the se-
quences can be envisioned to have evolved from a distant
ancestral sequence under a common fitness function and
mutational process encoded in P (S | θF ), and enough
time must have passed for any statistical correlation with
each other to be effectively nil due to mutational satura-
tion. Phylogenetic relationships violate the independence
assumption, as clusters of orthologs and other closely evo-
lutionarily related sequences are explicitly non-i.i.d.. In
standard Potts methodology the related sequences are
filtered to eliminate phylogenetic redundancy.

In contrast, MSA-T accounts for phylogenetic relation-
ships through a column-wise attention layer[10, 20], and
is not explicitly trained on MSA statistics but rather on a
masked prediction task insensitive to phylogenetic struc-
ture, in predicting character states in input MSAs from
all protein families at once which were randomly masked.
A method has been proposed to use this in a generative
fashion for a single protein family by repeatedly masking
and resampling an input MSA of that family to produce
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Figure 2. Overview of statistical tests carried out using the
Potts model and MSA-T, to isolate different forms of statis-
tical error. Boxes represent MSAs with different amounts of
sequences shown for the RR-domain family, which are then
filtered, split, or used to train and generate from the GPSMs
(arrows). Our tests measure the statistical difference between
the “evaluation” MSAs and the corresponding “reference”
MSAs.

novel sequences[23]. The MSA-T probability distribution
for this generative method is P (S | θ,MF , p) for gener-
ating sequence S, and depends the model’s pre-trained
parameters θ, an input MSA MF for a protein family F ,
and a masking frequency parameter p.
One goal of this study is to control for how phyloge-

netic clusters affects GPSM performance. After filter-
ing, the i.i.d. MSA will have covariation signals that
exclude biases due to clustering and so are presumably
biophysical in origin, and should be reproducible in ar-
bitrary subsets of the MSA. This provides a foundation
for determining which GPSMs best capture biophysical
constraints.
Statistical methodology - We perform tests of GPSM

performance with and without accounting for phylogeny
as outlined in Figure 2. We generate sequences from
MSA-T using the default method of Ref. [23] using pre-
computed parameters θ, and train the Potts model using
the high-accuracy Mi3-GPU method[25]. We also test a
very simple GPSM, the Independent model, with distri-
bution P (S) =

∏
i f

i
si
where f i

α are single-site frequencies
for amino-acid α at position i found in the training MSA,
which is unable to accurately capture even the pairwise
amino-acid frequencies f ij

αβ of the training MSA. We train
the GPSMs on various MSA data described in subse-
quent sections, generate new synthetic datasets from each
GPSM, and then evaluate GPSM performance by com-
parison of the generated “evaluation” MSA to a “refer-
ence” MSA using a metric, r20, which measures higher-
order covariation and provides a more stringent test of
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GPSM accuracy than pairwise covariation statistics or
point-mutant effects[22]. The training, reference, and
evaluation MSAs have the same number of sequences.
These tests are designed to isolate the effects of fitness,
phylogeny and statistical noise, and to control statisti-
cal errors including model specification, out-of-sample,
and estimation errors[22], such as by splitting each MSA
dataset into training and reference MSAs to ensure that
no sequences used to train the model are used in its eval-
uation. We examine two protein families: RR Domain
(PF000720), which was previously studied to test MSA-
T predictions of higher-order sequence statistics[23], and
protein-kinase (PF00069)[22]. The details of the method-
ology are provided in the “End Matter”.

The r20 metric measures how well the GPSM predicts
the frequency of non-contiguous amino acid “words” of
length n as described in detail previously[22]. In sum-
mary, for each order n, 3000 randomly chosen sets of po-
sitions of size n are evaluated. For each set of positions,
the top 20 most common “words” at these positions in
the reference MSA are found, and the frequency of these
words are also computed in both the reference MSA and
in the GPSM-generated evaluation MSA. The r20 met-
ric is the Pearson correlation between the 20 reference
and 20 evaluation frequencies, averaged over the 3000
sets. Focusing on only the top 20 most frequent words
restricts the computation to statistically reliable values.
This metric measures the ability of the GPSM to model
complex chains and networks of interactions within pro-
teins.

To perform identify filtering of MSAs we iteratively
find pairs of sequences in the MSA are more than 50%
similar and randomly drop one of the two, because in
most protein families distantly related sequences have
10%-50% identity, while > 50% suggests recent ances-
try and non-i.i.d. sequences. This largely eliminates the
influence of phylogenetic clusters on MSA statistics so
that most covariation in the training MSA is biophysi-
cally induced. For RR-domain, we have 73K sequences,
which become filtered to 12.9K sequences, then split into
6K reference and training. For protein-kinase, we have
292K sequence which become filtered to 20K sequences.
We also performed our analyses using MSAs filtered at
60% and 90% cutoffs to test if the results were sensitive
to cutoff, finding qualitatively they were not.

The Potts model outperforms MSA-T after Phyloge-

netic Pre-processing- We first tested the performance of
the model after filtering the training and reference MSAs,
corresponding to the middle section of Figure 2. In Fig-
ures 3(a) (RR domain) and 3(b) (kinase), we show that
the Potts model outperforms MSA-T in this test.

The r20 metric is lower at higher-orders because of
greater finite sampling error when measuring the smaller
frequencies at these orders, and not because of reduced
model accuracy[22]. The maximum attainable r20 metric
for a well-specified model subject only to finite-sampling
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Figure 3. “Natural” GPSM performance test in which the
training and reference MSAs are natural sequences filtered by
sequence identity to eliminate phylogenetic redundancy, and
evaluated using the r20 metric for (a) RR-domain (MSAs of
6K) (b) Kinase Protein (MSAs of 10K).
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Figure 4. “Synthetic” GPSM performance test for the RR
Domain in which large (6M) training and reference MSAs
are produced by an initial GPSM, which is a Potts model
in (a),(c), and MSA-T in (b),(d). The r20 metric is used in
(a),(b), and a cc-r20 metric in (c) and (d) .

limitations in model evaluation can be found by measur-
ing r20 between the training MSA and reference MSA.
The Potts model results closely match this null model
value, unlike MSA-T.

The filtered natural MSAs have limited numbers of
sequences (12.9K for RR-doamin) which causes signifi-
cant finite-sampling error at high-orders of marginal. To
bypass this limitation we conducted a “synthetic” test
with large training and reference MSAs of 6M sequences.
Here, we first trained an initial Potts model on filtered
natural MSA and generated two synthetic 6MMSAs from
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it to serve as reference and training MSAs in the next
step. A new Potts, MSA-T, and Independent model were
trained on this synthetic i.i.d. training dataset. The re-
sult shown in Figure 4a supports that the Potts model
outperforms MSA-T when the input sequences are i.i.d.

even at higher-orders of marginal which are better probed
in this test. Interestingly, MSA-T performed worse than
a site-independent model for low orders but slightly out-
performed it at higher-orders in the case of a synthetic
Potts process. This synthetic test might not accurately
represent how GPSMs would perform on natural datasets
because the reference MSA was generated by the Potts
model itself, and the re-fit Potts model should have zero
specification error by construction. To address this we
performed another test in which the training and refer-
ence MSAs were generated by MSA-T from the natural
dataset, showing in Figure 4(b) that the Potts model
still outperforms MSA-T. If MSA-T captures biophysi-
cal constraints in natural MSAs which the Potts model
cannot, we would instead expect lower Potts model per-
formance. Interestingly, MSA-T is unable to reproduce
the HOMs when trained on its own generated MSAs, as
the r20 metric at higher-order are lower than both the
null expectation and the Potts result. We investigated
this by testing the alternative generation algorithms pre-
sented in Ref. [23], as well as changing the acceptance
rate p and other variations, but always found qualita-
tively similar results suggesting a general limitation of
MSA-T.

An even more stringent test of the GPSMs is to mea-
sure a “connected correlation r20” (cc-r20) metric which
compares connected correlations, which are higher-order
generalizations of the pairwise amino-acid covariation
values Cij

αβ = f
ij
αβ − f i

αf
j
β[22]. A site-independent model

should have zero connected correlation at all orders. In
Figures 4(c) and 4(d), MSA-T scores significantly worse
using cc-r20 than the Potts model. Interestingly, in
4(d), where synthetic data was generated by MSA-T, the
Potts model does not match the null expectation, possi-
bly indicating MSA-T introduces statistical patterns be-
yond pairwise interactions. However, in natural sequence
tests (Fig 3), the Potts model matched the null expecta-
tion, suggesting such patterns may not exist in natural
datasets. MSA-T also tends to generate less variation
than the Potts model, explaining why the null result is
larger in Figure 4(c) compared to 4(d).

The Potts model outperforms MSA-T when trained us-

ing phylogenetically redundant MSAs - In [23], it was
suggested that MSA-T may have an advantage by being
insensitive to phylogenetic structure due to its column-
wise attention layers, avoiding the need for identity-
filtering which has high computational complexityO(N2)
for MSA depth N . In [23], MSA-T was trained and
evaluated on randomly divided MSAs without identity
filtering, and the results showed that it outperformed
the Potts model, according to r20 tested against the un-
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Figure 5. Tests of the impact of identity filtering, for the
RR-domain family (a) Models using 30K unfiltered natural
sequences for both training and evaluation. (b) The Potts
and Independent models trained on 6K filtered natural se-
quences; MSA-T was trained on 30K unfiltered sequences.
The reference MSA is 30K unfiltered. (c) r20 value for all
models, evaluated against 6K filtered natural sequences.

filtered reference MSA, which we reproduced in Figure
5(b). However the Potts model used in that test implic-
itly performed identity filtering as an internal step. While
this can be reasonable if treating the Potts software as
a black-box GPSM, it should be expected that a model
trained on a filtered MSA will have a lower r20 when
evaluated with unfiltered reference MSA. This suggests
to test performance when the Potts model is both trained
and evaluated on unfiltered MSAs. We find the Potts
model outperforms MSA-T in this case (Figure 5(a)),
suggesting that the Potts model is able to model the com-
ponent of correlations caused by phylogenetic clusters, to
some degree. We expect that such correlations are not
biophysical in origin, so that while intriguing this test
is inappropriate for testing which GPSM best captures
biophysical constraints.

Instead, we suggest that using filtered MSAs for model
evaluation will give the best measure a GPSM’s ability
to capture the underlying biophysical fitness function,
as this will minimize the effects of phylogenetic cluster-
ing which introduce sequence correlations driven by non-
selective parameters like speciation rates and experimen-
tal sampling bias, as discussed above. In Figure 5(c)
we compare multiple GPSMs using a filtered reference
MSA, and in particular compare MSA-T performance us-
ing either filtered and unfiltered training MSAs. MSA-T
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shows similar performance either way, suggesting it im-
plicitly corrects for phylogenetic structure in the train-
ing MSA, if present. However, when the Potts model
is trained using a filtered MSA it generally outperforms
MSA-T and closely matches the null expectation for a
well-specified model. This supports the conclusion that
the Potts model more accurately captures features of the
underlying biophysical fitness function, as measured by
r20, than MSA-T.

Discussion - The impact of phylogenetic relation-
ships on GPSMs and protein covariation analysis has
been recognized since early Potts studies[26–29]. Var-
ious methods have been proposed to address its con-
founding effects, such as the “Average Product Correc-
tion” (APC)[30, 31] and identity-weighting [2], or, in
profile-HMMs used by HMMER[32] which are a form
of GPSMs, by weighting like the Henikoff scheme[33].
Spectral decomposition of the pairwise covariation ma-
trix [34], central to Potts inference, shows its low eigen-
modes are influenced by phylogeny while high eigen-
modes capture biophysical mutational couplings due to
epistasis, and that Potts inference is insensitive to low
eigenmodes. This insensitivity has also been found em-
pirically when predicting biophysical “contacts” in pro-
teins [35]. This suggests the Potts model may accurately
model biophysical interactions even if identity filtering
does not completely account for phylogenetic cluster-
ing. MSA-T is also designed to account for phylogeny
through column attention heads, and it has been found
that some attention heads effectively detect sequence
relationships[10, 20].

These results are consistent with previous studies com-
paring the ability of Potts models and other GPSMs to
capture other aspects of protein data including contacts
in observed 3d structures of proteins[36, 37], experimen-
tal fitnesses or fitness changes upon mutation[15, 38]
which find the architecturally simple Potts model per-
forms favorably. For instance, a previous comparison
found that the Potts model outperforms MSA-T for con-
tact prediction if the input data has phylogenetic struc-
ture removed[10].

We hypothesize the Potts model outperforms MSA-T
in capturing biophysical constraints because: (1) it
is trained on a specific protein family while MSA-T
is trained on all families; (2) it is directly trained
to reproduce pairwise sequence statistics, whereas
MSA-T is trained for a masked learning task and so
its predictions of marginals are unsupervised; and (3)
the Potts model generates sequences with the same
diversity as the training MSA, while MSA-T has a free
parameter (“replacement rate”) making unclear which
value to choose[23]. These findings imply the Potts
model best captures functional and structural protein
constraints despite its architectural simplicity, and
highlight the importance of carefully decomposing the
origins of covariation, not only when training GPSMs

but also during evaluation and in their practical use in
understanding the biophysical properties of proteins.
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END MATTER: EXTENDED METHODS

Natural MSA dataset preparation

For the RR domain and protein-kinase families, we
constructed MSAs using HHblits[39] to search the Uni-
clust database version 2023 02 [41]. For RR Domain, we
used the PF00072 seed MSA from Pfam database [40];
for Kinase, we used PF00069 with pseudogenes removed
as performed in[22], resulting in 73,062 raw sequences for
RR Domain and 291,731 raw sequences for Kinase.

Natural MSA Preprocessing

We used identity filtering with a 50% identity thresh-
old, resulting in MSAs of 12,906 sequences for RR domain
and 20,000 sequences for kinase. The RR domain was
split into 6,000 sequence training and reference MSAs,
and the Kinase into 10,000 sequence training and refer-
ence MSAs.
When dividing unfiltered natural MSAs into training

and reference sets, there can be statistical dependencies
that may lead to underestimating out-of-sample error
and overestimating r20. To address this, we filter the
MSA at a 50% identity threshold before splitting into
training and reference halves. We then assign each un-
filtered sequence in the original natural MSA to either
training or reference set, depending on most similar se-
quence, ensuring closely related sequences are grouped
together. This procedure minimally affects r20.

Model Training

For MSA-T, We tested both “standard” and “alterna-
tive” sequence generation methods from [23], with some
modifications.
In the standard method, we divided the input MSA

into 600 sequence batches and iteratively performed the
masked MSA prediction task for 200 rounds per batch
with a masking rate of p = 0.1 and default options,
using the “greedy” sampling strategy. Sequences with
uninitialized characters (< cls >) were discarded, and
new sequences were regenerated to consist only of amino
acid characters or gaps. Although convergence measures
plateaued after 200 rounds, as noted in [23], continued
iteration led to an accumulation of “gap” characters, es-
pecially at the sequence ends, which pronounced more
at higher p values. We attribute this artifact in MSA-T
predictions to missing terminal sequences in the train-

ing data, due to shotgun sequencing, bioinformatics mis-
annotation, or evolutionary length variation in protein
termini. To address this effect biasing the higher-order
correlations, we modified the iterative masking procedure
so that gap characters were never masked and never gen-
erated at masked positions, preserving the input MSA’s
gap characters. We computed bivariate marginals of in-
put MSA with a pseudocount as described in Ref. [25] of
scale 1/N, where N is the input MSA depth. For train-
ing of the Potts model, we used the Mi3-GPU inference
software[25].

In the “alternative” generation procedure, each se-
quence is iterated separately with 599 randomly drawn
sequences from the input MSA, using the “logits” masked
sampling strategy. We modified this to preserve gap
structure and fix issues where masked positions were
treated as unmasked.

Higher-Order Marginal (HOM)

We use the HOM r20 package[22] to calculate the pre-
cision of the model in reconstructing the higher-order
marginals (HOMs) of MSA. We calculate the r20 value
[22] for each HOM of the second to eighth order using
3000 randomly selected column sets of natural and eval-
uation MSAs. We compute the 20 most frequent amino
acid subsequences for each position in training and eval-
uation MSAs, then calculate the Pearson correlation (r)
between these frequencies. The average r, called the
r20 metric, indicates how well the generated MSA re-
constructs the sequence statistics and higher-order mu-
tational patterns of the natural MSA.

Synthetic MSA Generation and Analysis

We generate “synthetic” evaluation MSA datasets us-
ing models generatively. First, with the protein-kinase
Potts model fit to the 12.9K filtered MSA of the RR Do-
main, we created 6M “synthetic training” MSAs and two
sets of 6M “synthetic reference” MSAs using Mi3GPU
using MCMC[25]. We then trained new Potts, MSA
Transformer, and Independent models on the 6M syn-
thetic training MSA and generated synthetic “evalua-
tion” MSAs containing 6M sequences for all models. We
repeated a similar process for the MSA Transformer using
the same input. This approach addresses finite sampling
limitations by generating MSAs with any desired number
of sequences.


