
VALIDITY OF THE TOTAL QUASI-STEADY-STATE APPROXIMATION
IN STOCHASTIC BIOCHEMICAL REACTION NETWORKS

A PREPRINT

Yun Min Song
Department of Mathematical Sciences

KAIST
Biomedical Mathematics Group

Pioneer Research Center for
Mathematical and Computational Sciences

Institute for Basic Science
97sym@kaist.ac.kr

Kangmin Lee
Department of Mathematical Sciences

KAIST
Biomedical Mathematics Group

Pioneer Research Center for
Mathematical and Computational Sciences

Institute for Basic Science
lkm0601@kaist.ac.kr

Jae Kyoung Kim∗

Department of Mathematical Sciences
KAIST

Biomedical Mathematics Group
Pioneer Research Center for

Mathematical and Computational Sciences
Institute for Basic Science
jaekkim@kaist.ac.kr

March 4, 2025

ABSTRACT

Stochastic models for biochemical reaction networks are widely used to explore their complex
dynamics but face significant challenges, including difficulties in determining rate constants and high
computational costs. To address these issues, model reduction approaches based on deterministic
quasi-steady-state approximations (QSSA) have been employed, resulting in propensity functions in
the form of deterministic non-elementary reaction functions, such as the Michaelis-Menten equation.
In particular, the total QSSA (tQSSA), known for its accuracy in deterministic frameworks, has
been perceived as universally valid for stochastic model reduction. However, recent studies have
challenged this perception. In this review, we demonstrate that applying tQSSA in stochastic model
reduction can distort dynamics, even in cases where the deterministic tQSSA is rigorously valid. This
highlights the need for caution when using deterministic QSSA in stochastic model reduction to avoid
erroneous conclusions from model simulations.

1 Introduction

Understanding the complex dynamics of biochemical reaction networks, which are fundamental to cellular processes,
relies heavily on mathematical modeling [1]. For systems with homogeneous spatial distributions of molecules,
models based on ordinary differential equations (ODEs) are widely used [2]. These models represent molecular
concentrations as variables and define reaction rates through mass-action kinetics. In contrast, for systems exhibiting
spatial heterogeneity, partial differential equations (PDEs) are employed to incorporate spatial variability [2].

When molecular copy numbers are too low to support a continuous concentration-based description, stochastic effects
become significant [3]. In such cases, stochastic models based on continuous-time Markov chains (CTMCs) provide a
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more appropriate framework [4]. These models, like their deterministic counterparts, generally use mass-action kinetics
to define propensity functions that govern reaction probabilities. However, analytical solutions for the probability
distributions of stochastic models are rarely feasible [5], necessitating simulation approaches such as the Gillespie
algorithm [6]. For systems with pronounced spatial heterogeneity, compartment-based spatial stochastic simulation
algorithms (spatial SSAs) are commonly used to enhance these simulations [7].

Stochastic simulations of mass-action kinetics-based models are powerful tools for studying biochemical systems but
face significant challenges. Accurately determining reaction rate constants remains difficult [8], and systems with
disparate reaction timescales often require repeated simulations of fast reactions to capture the dynamics of slower
processes [9]. To mitigate these challenges, simplification techniques such as the quasi-steady-state approximation
(QSSA) are employed [10, 11, 12, 13]. The QSSA reduces computational complexity by neglecting fast reactions and
approximating fast-scale variables in propensity functions with their stochastic QSSAs, expressed as their moments
conditioned on slow variables. However, stochastic QSSAs are often analytically intractable [5]. Consequently, they
are frequently replaced with deterministic QSSAs derived from deterministic models [14]. This substitution results
in propensity functions that resemble concentration-dependent non-elementary reaction functions, such as Michaelis-
Menten or Hill functions, transformed into count-based forms. This approach has been widely adopted in numerous
studies to explore the stochastic dynamics of biochemical reaction networks. [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

For stochastic model reduction using deterministic QSSA, various forms of deterministic QSSA, including the standard
QSSA (sQSSA) and total QSSA (tQSSA), are available [37, 38, 14]. Among these, the tQSSA has demonstrated
superior performance in accurately capturing the original deterministic dynamics [14]. For example, while the sQSSA,
which leads to the Michaelis-Menten (MM) equations, often distorts the dynamics of the original deterministic system,
the tQSSA has proven to be more accurate across a broader range of conditions in deterministic ODE models [14] and
has improved the fidelity of PDE model simplifications [39]. This enhanced accuracy in deterministic models likely
explains the superior performance of stochastic simulations employing tQSSA-based equations (stochastic tQSSA)
compared to those using other deterministic QSSAs [37, 38, 14, 34]. As a result, the stochastic tQSSA has been widely
regarded as reliable [37, 38, 14, 34, 40, 41, 42, 12, 35, 36, 43], particularly in scenarios where the deterministic tQSSA
is rigorously valid [44], such as in rapid reversible binding processes.

However, recent studies challenge this assumption, revealing that the stochastic tQSSA is not universally valid
[45, 46, 47]. This review critically examines these limitations, showing that stochastic tQSSA can introduce significant
distortions in the dynamics of simple gene regulatory network models, even in cases where the deterministic tQSSA
accurately captures the original dynamics. These distortions are evident in both homogeneous and heterogeneous spatial
contexts, emphasizing the need for caution when applying tQSSA in stochastic simulations.

2 Results

2.1 Deterministic and stochastic tQSSA for gene regulatory network dynamics under spatial homogeneity

To evaluate the validity of the stochastic tQSSA, we first derive the deterministic tQSSA and demonstrate its application
in simplifying the stochastic model for a gene regulation system. In this model, mRNA (M) is transcribed from DNA
(D) at a rate αm and degraded at a rate dm. D reversibly binds to a repressor (P) to form a complex (D:P), which inhibits
mRNA transcription. The binding and unbinding rates are denoted by kf and kb, respectively. Assuming homogeneous
spatial conditions, the deterministic dynamics of the species’ concentrations can be expressed using mass-action-based
ordinary differential equations (ODEs):

dD

dt
= −kfD · P + kbD:P,

dP

dt
= −kfD · P + kbD:P,

dD:P
dt

= kfD · P − kbD:P,

dM

dt
= αmD − dmM.

(1)
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By introducing the variables representing the total DNA (DT = D+D:P ) and repressor (PT = P+D:P ) concentrations
instead of P and D:P , we can rewrite the ODE system as follows:

dD

dt
= −kfD · (PT −DT +D) + kb(DT −D),

dM

dt
= αmD − dmM,

dDT

dt
= 0,

dPT

dt
= 0.

(2)

Here the time derivatives of DT and PT are zero, indicating that these quantities remain constant over time.

Generally, the reactions involving the binding and unbinding between DNA and repressor occur in much faster time
scales than mRNA production (i.e., kf , kb ≫ αm, dm). Then D, regulated by only the fast reversible binding reactions,
evolves in a much faster time scale than the other slow (or fixed) variables (M , DT , and PT ), not regulated by the
fast reactions. Then, in the fast time scale, D quickly converges to its quasi-steady-state (QSS) while the other slow
variables (M , DT , and PT ) remain constant. The approximation of the QSS (QSSA; Dtq) can be obtained by solving
dD/dt = 0:

Dtq(DT , PT ) =
1

2

{
(DT − PT −Kd) +

√
(DT − PT −Kd)2 + 4DTKd

}
, (3)

where Kd = kb/kf is the dissociation constant. The derived QSSA is called the total QSSA (tQSSA) as it is a function
in terms of the total variables (i.e., DT , and PT ). Then we can derive the reduced model by replacing D by the tQSSA
(Dtq)

dM

dt
= αmDtq(DT , PT )− dmM,

dDT

dt
= 0,

dPT

dt
= 0.

(4)

This reduction is mathematically justified by Tikhonov’s theorem [44].

When the molecule copy numbers of the species are low, the stochastic dynamics of their interactions, which cannot be
described by deterministic models, can no longer be ignored. To model these stochastic dynamics, the system can be
described by a CTMC of the molecule copy numbers nX = X · Ω, where X represents the species D, P , D:P , or M ,
and Ω is the system volume. The propensity functions for the reactions that alter the copy numbers follow a mass-action
form (Table 1).

Table 1: Propensity functions of the full gene regulation model under spatial homogeneity.

Reactions Propensities

D + P −−→ D:P kf

Ω nD · nP

D:P −−→ D + P kbnD:P
D −−→ D + M αmnD

M −−→ ∅ dmnM

Simulating this model using the Gillespie algorithm allows analysis of stochastic dynamics. However, the computational
cost of such stochastic simulations is high, hampering the analysis of dynamics and parameter estimation that require
numerous simulations. Thus, simplifying the stochastic model is highly favorable. To simplify the stochastic model,
one can consider the stochastic counterpart of the deterministic reduced model (Eq. (4)), where all fast reactions are
eliminated and the fast variable nD in the propensity functions is substituted by the tQSSA equation (Table 2). In this
process, all concentration-dimension variables are scaled by Ω to convert them into count-dimension variables:

Here,
nDtq

(nDT
, nPT

) = Dtq · Ω

=
1

2

{
(nDT

− nPT
−Kd · Ω) +

√
(nDT

− nPT
−Kd · Ω)2 + 4nDT

KdΩ
}
,

(5)
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Table 2: Propensity functions of the reduced gene regulation model under spatial homogeneity.

Reactions Propensities
∅ −−→ M αmnDtq

(nDT
, nPT

)
M −−→ ∅ dmnM

where nDT
= nD + nD:P and nPT

= nP + nD:P . The derived equation approximating the stochastic QSS (Eq. (5)) is
commonly referred to as the stochastic tQSSA. By eliminating the fast reactions from the full stochastic model (Table 1;
the first two reactions), the reduced model (Table 2) requires significantly fewer reactions for simulation over the same
time frame. As a result, the reduced model achieves substantially lower computational costs compared to the full model.

2.2 Stochastic tQSSA can distort gene regulation network dynamics under spatial homogeneity

Under the assumption of rapid reversible binding (i.e., kf , kb ≫ αm, dm), the deterministic tQSSA (Eq. (3)) accurately
captures the deterministic QSS of D [44, 48, 49, 50]. Consequently, when simulating the deterministic full (Eq. (1))
and reduced (Eq. (4)) models under conditions of binding and unbinding rates much higher than the other reaction rates,
the reduced model accurately replicates the slow dynamics of the full model (Fig. 1a). Such valid reduction by using the
deterministic tQSSA has led to expectations in previous studies that the reduced model by using the stochastic tQSSA
(Table 2) would similarly replicate the slow dynamics of the stochastic full model (Table 1) [37, 38, 14, 34, 40, 41, 42,
12, 35, 36, 43]. Indeed, for most cases where the deterministic tQSSA is valid, the stochastic reduced model effectively
captures the slow dynamics of the stochastic full model (Fig. 1b).

However, a recent study revealed that the stochastic tQSSA equation (Eq. (5)) substantially overestimates the stochastic
QSS under specific conditions: when nDT

KdΩ < 10 and nDT
≈ nPT

, even with rapid reversible binding [46]. The
first condition arises in scenarios of tight molecular binding (i.e., small Kd) combined with low molecular copy numbers
(nDT

) and small system volumes (Ω), where stochastic effects dominate and the system deviates from deterministic
behavior. The second condition occurs when the binding species have comparable copy numbers. Notably, this invalid
condition for the stochastic tQSSA is independent of the deterministic tQSSA’s validity. Thus, under the condition, the
deterministic tQSSA remains valid (Fig. 1c). In contrast, the stochastic reduced model exhibits significant discrepancies
compared to the stochastic full model (Fig. 1d). Specifically, the stochastic tQSSA equation (Eq. (5)) overestimates the
stochastic QSS, resulting in an inflated production rate and a distorted stationary distribution of M.

These results highlight that while tQSSA-based reductions are effective in many scenarios, they are not universally
applicable. Furthermore, the validity conditions for applying the tQSSA in stochastic systems are stricter than those
for deterministic systems, requiring careful consideration in stochastic modeling. In such cases, an alternative QSSA,
introduced in a previous study [46] and referred to as the stochastic low-state QSSA (lQSSA), offers a valid approach
for stochastic model reduction.

2.3 Deterministic and stochastic tQSSA for gene regulatory network dynamics under spatial heterogeneity

Next, we derive the deterministic tQSSA and demonstrate its application in simplifying the stochastic model in a
spatially heterogeneous context. Building on the gene regulation model from the previous section, we introduce
diffusion for P and M in a bounded one-dimensional domain. D and D:P are assumed not to diffuse as the DNA remains
localized within the nucleus. This system can be described by partial differential equations (PDEs) based on mass-action
kinetics:

∂D

∂t
= −kfD · P + kbD:P,

∂P

∂t
= δP∆P − kfD · P + kbD:P,

∂D:P
∂t

= kfD · P − kbD:P,

∂M

∂t
= δM∆M + αmD − dmM,

(6)
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Figure 1: Stochastic tQSSA can distort dynamics even when the deterministic tQSSA is valid under spatial homogeneity.
(a) When the binding (kf/Ω = 1 s−1) and unbinding (kb = 100 s−1) rates are much faster than the other reactions
(αm = 0.1 s−1 and dm = 0.001 s−1), M simulated with the deterministic full model (Eq. 1, red solid line) and the
reduced model (Eq. 4, blue dashed line) precisely match. (b) Under the same conditions, nM simulated with the
stochastic full model (Table 1, red solid line) and the reduced model (Table 2, blue dashed line) also match closely, as
various prior studies expected. Here, the lines with shaded regions represent the mean ± standard deviation, and the
histograms depict the stationary distribution of 104 trajectories. (c-d) However, when the amounts of the rapidly binding
species are similar (nDT

= nPT
= 10) and the binding becomes tight (kf/Ω = 100 s−1, kb = 1 s−1), the deterministic

full and reduced models still precisely match (c), but the stochastic reduced model fails to replicate the dynamics of the
full model (d). Here, Ω = 1 (arbitrary unit), and the initial condition is [D,P,D:P,M ] = [10, 10, 0, 0].

where δX denotes the diffusion coefficient of the corresponding species (X = P,M ). Similar to the corresponding
ODE model (Eq. 1), the full model can be rewritten by introducing DT = D +D:P and PT = P +D:P :

∂D

∂t
= −kfD · (PT −DT +D) + kb(DT −D),

∂M

∂t
= δM∆M + αmD − dmM,

∂PT

∂t
= δP∆(PT −DT +D),

∂DT

∂t
= 0.

(7)

Notably, unlike the corresponding ODE model (Eq. 1), the PT is time-variant.

If the diffusion coefficients are large or comparable to the reaction rate constants of the fast reversible binding reactions
(i.e., kf and kb), the spatial heterogeneity is quickly resolved, so that the PDE model (Eq. 6) becomes nearly equivalent
to the corresponding ODE model (Eq. 1). Thus, we assume that diffusion coefficients are comparable or much smaller
than the slow reaction rate constants (i.e., αm and dm). Under this condition, we can assume that D quickly converges
to the QSS while the other variables remain constants, where the QSSA of D is equivalent to that obtained from the

5
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ODE model (i.e., Dtq (Eq. 3)). Thus, the full PDE model can be simplified using the tQSSA [51, 52, 47]:
∂M

∂t
= δM∆M + αmDtq − dmM,

∂PT

∂t
= δP∆(PT −DT +Dtq),

∂DT

∂t
= 0.

(8)

For simulations involving low molecular copy numbers, a compartment-based Gillespie algorithm can be employed
[7, 47]. In this approach, the one-dimensional spatial domain is discretized into n compartments, with reactions
occurring independently within each compartment (Table 3). The reaction propensities in the i-th compartment are
determined by the copy numbers of the reactants within that compartment (nX,i;X = D,P,D:P,M ). Assuming
the length of the bounded domain is L, the length of each compartment is h = L/n. Additionally, species diffusion
between adjacent compartments is modeled as inter-compartmental conversion reactions. For instance, the diffusion of
P from the i-th compartment to the (i+ 1)-th compartment is represented by the conversion reaction Pi −−→ Pi+1. At
the boundary compartments (the first and n-th compartments), diffusion is restricted to the adjacent compartments (the
second and (n− 1)-th compartments, respectively). Since the length of each compartment is h, the conversion reaction
rate constant across compartments is δ̃X = δX/h2, where X = P,M [7, 47].

Table 3: Propensity functions of the full gene regulation model under spatial heterogeneity.

Reactions Propensities

Di + Pi −−→ D:Pi, i = 1, ..., n
kf

Ωi
nD,i · nP,i

D:Pi −−→ Di + Pi, i = 1, ..., n kbnD:P,i

Di −−→ Di + Mi, i = 1, ..., n αmnD,i

Mi −−→ ∅, i = 1, ..., n dmnM,i

Pi −−→ Pi+1, i = 1, ..., (n− 1) δ̃PnP,i

Pi −−→ Pi – 1, i = 2, ..., n δ̃PnP,i

Mi −−→ Mi+1, i = 1, ..., (n− 1) δ̃MnM,i

Mi −−→ Mi – 1, i = 2, ..., n δ̃MnM,i

Similar to the spatially homogeneous case, we can consider the stochastic counterpart of the reduced PDE model as a
reduced model of the full spatial stochastic system [47] (Table 4). In this reduced model, all fast reactions are removed,
and the fast variable nD,i in the propensity functions is replaced by the stochastic tQSSA for each compartment:

nDtq,i(nDT ,i, nPT ,i)

=
1

2

{
(nDT ,i − nPT ,i −Kd · Ωi) +

√
(nDT ,i − nPT ,i −Kd · Ωi)2 + 4nDT

KdΩi

}
,

(9)

where nDT ,i = nD,i + nD:P,i, nPT ,i = nP,i + nD:P,i, and Ωi is the compartment volume. Simulating this reduced
model is significantly more efficient than the full model due to the elimination of all fast reactions, as in the spatially
homogeneous case.

Table 4: Propensity functions of the reduced gene regulation model under spatial heterogeneity.

Reactions Propensities
∅ −−→ Mi αMnDtq

(nDT ,i, nPT ,i)
Mi −−→ ∅ dmnM,i

PTi −−→ PTi+1, i = 1, ..., (n− 1) δ̃P (nPT ,i − nDtq
(nDT ,i, nPT ,i)

PTi −−→ PTi – 1, i = 2, ..., n δ̃P (nPT ,i − nDtq (nDT ,i, nPT ,i)

Mi −−→ Mi+1, i = 1, ..., (n− 1) δ̃MnM,i

Mi −−→ Mi – 1, i = 2, ..., n δ̃MnM,i

2.4 Stochastic tQSSA can distort gene regulation network dynamics under spacial heterogeneity

When the rapid reversible binding is much faster than the other reactions and diffusion (kf , kb ≫ αm, dm, δM , δP ), the
time scale of D and the other variables are well separated in the full PDE model (Eq. (7)). Thus, the deterministic tQSSA

6
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(Eq. (3)) is expected to accurately captures the deterministic QSS of D, even under spacial heterogeneity [51, 52, 47].
Indeed, when simulating the deterministic full (Eq. (6)) and reduced models (Eq. (8)) with binding and unbinding rates
much faster than other reactions and diffusion, the reduced model accurately reproduces the dynamics of M in the
full model (Fig. 2a). In this simulation, the models assumed a one-dimensional spatial domain of length L = 10 µm,
with D localized in the central 10/31 µm region, and Neumann boundary conditions. The valid reductions using the
deterministic tQSSA in such cases has led to the expectation that it would also hold in the stochastic context. Indeed, for
various scenarios meeting the deterministic tQSSA validity conditions, the stochastic reduced model (Table 4) accurately
captures the slow dynamics of the full model (Table 3) (Fig. 2b). In this simulation, the number of compartments was
31 and the D was localized only in the single center compartment.
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Figure 2: Stochastic tQSSA can distort dynamics even when deterministic tQSSA is valid under spatial heterogeneity.
(a) When the binding (kf/Ωi = 1 s−1) and unbinding (kb = 100 s−1) rates are much faster than the other reactions
(αm = 0.5 s−1, dm = 0.0005 s−1) and diffusion (δM = δP = 0.002 µm2/s), M at t = 5000 and the spatial mean M
trajectory (M ; inset) simulated with the deterministic full model (Eq. 6, red solid line) and the reduced model (Eq. 8,
blue dashed line) are in precise alignment. (b) Under the same conditions, nM,i at t = 5000 and the spatial total nM,i

trajectory (nM ; inset) simulated with the stochastic full model (Table 3, red solid line) and the reduced model (Table 4,
blue dashed line) also show close agreement. Here, nM,i were plotted at the center of the corresponding compartment
on the x-axis and then interpolated. The lines with shaded regions represent the mean ± standard deviation, and the
histograms illustrate the stationary distribution from 103 trajectories. (c-d) However, when binding becomes tight
(kf/Ωi = 500 s−1, kb = 10 s−1), the deterministic full and reduced models still match precisely (c), but the stochastic
reduced model fails to replicate the dynamics of the full model (d). Notably, while the spatial total amounts of the
reversibly binding species are not comparable (nPT

= 31 and nDT
= 2), their local amounts become comparable

(nPT ,16 ≈ 1 and nDT ,16 = 2), causing local violations of the stochastic tQSSA. Here, L = 10 µm, n = 31, and
Ωi = 1 (arbitrary unit). The initial conditions are D(x, 0) = 2I{5−h/2<x<5+h/2}(x), P (x, 0) = I{0<x<10}(x), and
D:P (x, 0) = M(x, 0) = 0.

However, as shown in a previous section, the stochastic tQSSA is not universally valid, even under conditions of rapid
reversible binding [46]. Moreover, unlike the spatially homogeneous case, the validity of the stochastic tQSSA in
spatially heterogeneous systems must be evaluated locally [47]. Specifically, while the total amounts of the two binding
species across the entire spatial domain (i.e., nDT

and nPT
where nX =

∑n
i=1 nX,i) may differ significantly, their

local amount can be comparable in certain compartments (i.e., nDT ,i and nPT ,i). Furthermore, these compartments
typically have smaller volumes (Ωi) and lower copy numbers (nDT ,i) compared to the whole system. Consequently, the
invalid condition of the stochastic tQSSA may be satisfied locally (i.e., nDT ,iKdΩi < 10 and nDT ,i ≈ nPT ,i), even if

7
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it is not met in the corresponding spatially homogeneous system. Indeed, when the rapid reversible binding becomes
tight, the deterministic reduced model remains valid (Fig. 2c), but the stochastic reduced model fails to capture the
dynamics of the original system (Fig. 2d). Specifically, even if the total counts of D and P across the spatial domain
differ significantly in the system (nDT

= 2, nPT
= 31), one of the 31 compartments, where D is localized, experiences

comparable species counts (nDT ,i = 2, nPT ,i ≈ 1). This local violation of the stochastic tQSSA validity condition
leads to an overestimation of the production rate of M, ultimately distorting the original system’s dynamics.

These results emphasize that, similar to the spatially homogeneous case, tQSSA-based stochastic model reductions
are not universally applicable, with stricter validity conditions than in deterministic models. Moreover, caution is
particularly necessary under spatial heterogeneity, as it can lead to local violations of validity conditions that are
otherwise satisfied in spatially homogeneous systems. For such cases, especially in compartments where the stochastic
tQSSA validity condition is locally violated, the usage of the alternative QSSA (lQSSA) is required [46, 47].

3 Discussion

In this review, we examined the limitations of the stochastic tQSSA, which has been widely regarded as an efficient and
accurate tool for stochastic simulations [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36]. Specifically, we demonstrated that applying the stochastic tQSSA can significantly distort dynamics, even when
the deterministic tQSSA accurately captures the original system’s behavior (i.e., fast binding and unbinding reactions).
This underscores that the stochastic tQSSA has stricter validity conditions than its deterministic counterpart, warranting
cautious application.

The invalidity condition of the stochastic tQSSA, identified in a previous study [46] as tight binding between species
with comparable counts, seems relatively narrow. This may explain why earlier studies often observed good agreement
between the stochastic tQSSA and the original dynamics. However, the tight binding condition (nDT

KdΩ < 10),
which defines this invalidity, is plausible in real biological systems [46]. Moreover, as systems evolve, they may
transiently enter invalid regimes, characterized by comparable amounts of reversibly binding species [46]. Additionally,
spatial heterogeneity can locally violate the validity condition even when the corresponding spatially homogeneous
system remains valid, as demonstrated in our Results section and previous work [47]. Therefore, although the invalidity
condition appears narrow, it requires cautious application.

In such scenarios, the stochastic low-state QSSA (lQSSA), proposed in earlier work [46], serves as a viable alternative.
The stochastic lQSSA is valid under conditions of tight binding (nDT

KdΩ < 10) and can thus address scenarios where
the stochastic tQSSA becomes invalid. Consequently, the adaptive application of the stochastic tQSSA and lQSSA
enables a universally valid reduction of stochastic models under rapid reversible binding conditions [46]. Importantly,
in spatially heterogeneous systems, the stochastic tQSSA and lQSSA should be applied on a compartmental basis,
determined by local validity criteria (i.e., nDT ,iKdΩi < 10).

If the time scales of the variables in a system are not fully separated (e.g., reversible binding is not significantly faster
than other reactions), even the deterministic tQSSA may fail to accurately capture the system’s dynamics [53]. To
address such situations, recent studies have developed an effective time-delay scheme (ETS) [53] and its extensions
[54]. This scheme rigorously estimates the time-delay effects in molecular complex formation during reversible binding,
which are negligible when the QSSA approach is valid. These studies demonstrated that ETS can accurately replicate
the original deterministic dynamics even in cases where tQSSA is invalid. They also applied ETS to a simple stochastic
system, assuming only one DNA binding site. Future work could explore whether this scheme remains applicable under
spatial heterogeneity or in stochastic models where interacting species with copy numbers greater than one undergo
reversible binding. There may be scenarios where ETS fails due to fundamental differences between deterministic and
stochastic models, which would warrant further investigation.
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