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ABSTRACT
In this paper, we adapt a two species agent-based cancer model that describes the interaction between cancer cells
and healthy cells on a uniform grid to include the interaction with a third species – namely immune cells. We run
six different scenarios to explore the competition between cancer and immune cells and the initial concentration
of the immune cells on cancer dynamics. We then use coupled equation learning to construct a population-based
reaction model for each scenario. We show how they can be unified into a single surrogate population-based reaction
model, whose underlying three coupled ordinary differential equations are much easier to analyse than the original
agent-based model. As an example, by finding the single steady state of the cancer concentration, we are able to find
a linear relationship between this concentration and the initial concentration of the immune cells. This then enables us
to estimate suitable values for the competition and initial concentration to reduce the cancer substantially without
performing additional complex and expensive simulations from an agent-based stochastic model. The work shows
the importance of performing equation learning from agent-based stochastic data for gaining key insights about the
behaviour of complex cellular dynamics.

Keywords agent-based modelling, equation learning, cancer and immune cell dynamics, sindy

1 Introduction

In [1], we developed an agent-based model to explore interactions between cancerous cells and healthy cells in the presence of
proteins in the extracellular matrix (ECM). This setting is sometimes called the tumour microenvironment (TME). The model
represents a two-dimensional tissue section comprising healthy cells, cancer cells and ECM proteins. The domain consists of an
inner and outer region on a uniform 100× 100 grid. The outer region represents the invasive margin of the tissue. The boundary
of the domain represents the surrounding ECM membrane and is fully fenced with no gaps at time zero. We assume that healthy
cells are located only in the inner region, and their movement is negligible as adhesion molecules keep these healthy cells in their
intended locations [2]. The ECM proteins are randomly placed in the domain and do not move. Initially, the domain represents
healthy tissue, and then a single healthy cell turns into a cancerous cell that spreads throughout the tissue due to a series of
mutations. Cancer cells cannot occupy a grid position filled by an ECM protein.
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The model records the healthy cell and cancer cell densities as a function of time, along with the number of cancer cells
that exit the domain due to the breaking down of the surrounding fence. The agent-based model simulates these cell-cell and
cell-ECM interactions according to a set of interaction rules underpinned by the eight hallmarks of cancer [3], [4], which allows a
link between tumour heterogeneity and cellular response. The model allows a much richer set of interactions than the standard
approach via unimolecular and bimolecular reactions that underpin the Law of Mass Action ordinary differential equation. These
include, for example, a cell stickiness value, a jump radius, the maximum number of healthy cell divisions, a cell and division
age, and a competition rate between healthy and cancer cells, to name a few - see [1] for more details. An example of cancer
progression within the agent-based model was given in Figure 7 in [1], and we present it here – in which healthy cells, cancer cells
and ECM proteins (obstacles) are represented as blue, red and black nodes.

Figure 1: Cancer progression in the agent-based model: blue and red nodes represent healthy and cancer cells, respectively. Black
nodes represent ECM proteins (obstacles) in the domain. Starting with one cancer cell, the cancer cell population increases, and
the healthy cell population decreases with time.

Outputs from the model show that cell-cell and cell-ECM interactions affect cancer cell dynamics and that low initial healthy
cell and ECM protein densities promote cancer progression, cell motility and invasion, while high ECM breakdown probabilities
of cancer cells on the ECM can also promote cancer invasion.

Even though reaction models following the Law of Mass Action cannot describe the full range of behaviours possible in
stochastic ABMs, they form a useful abstraction that is much easier to analyse than an ABM. In this paper, we pursue two
objectives. First, we extend the two-species ABM into a three-species model that incorporates treatment strategies involving
immune cells (T-cells) (Section 2.1). We then apply equation learning techniques [5, 6, 7] to automatically construct a surrogate
reaction system for six different parametrisations of the three-species ABM (Sections 2.2 to 2.4). In contrast to the stochastic ABM
formulation and other kinds of (neural) surrogate models, these are interpretable by humans and can be analysed mathematically.
Finally, we show how to use this simplified representation of the ABM to determine the steady-state behaviour of the model
without performing costly evaluations, and to make predictions of the efficacy of treatment strategies (Section 3).

2 Material and Methods

2.1 An augmented agent-based model with immune cells

In this paper, we will adapt the two-species agent-based model in [1] to a three-species model in which the third species represents
T-cells (immune cells) that can destroy cancer cells. In Chapter 4 of [8], Weerasinghe considers an initial exploration of the
dynamics in which intervention by immune cells represents an immunotherapy treatment. to study the effects of immunotherapy
treatments; to those belong ODE-based models ([9], [10], [11]), as well as agent-based models ([12], [13],[14]).

In the agent-based model in Chapter 4, immune cells are placed in the outer region of the domain. The immune cells are
immobile. Each immune cell has a competition rate. When a cancer cell or group of cancer cells (due to the stickiness of the cells)
reaches a grid position occupied by an immune cell, they compete with one another, and the weaker cell dies. The competition
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Figure 2: Cell distribution of the TME when immune cells are introduced to the environment. Blue nodes, red nodes, purple nodes
and black nodes represent healthy cells, cancer cells, immune cells and ECM proteins, respectively.

value on [0, 1] of a cancer cell CT is fixed, while the competitiveness rate of an immune cell, CI , can be fixed or be uniformly
drawn from the interval [a, 1]. The cancer cell will die if CT < CI . In [8], values of a = 0, 0.5 and 0.75 are considered.

Three different strategies are considered for introducing immune cells into the agent-based model ([8]): a one-off strategy, a
repeated injection at fixed times, or injection when some percentage (such as 25%) of immune cells are lost. These are denoted as
strategies 1, 2, and 3. Immune cells are initially injected when a certain number of cancer cells are detected (such as 500). Figure 2
(Fig 4.3 in [8]) shows an initial progression of the cancer displaying healthy, cancer, immune cells and ECM proteins (blue, red,
purple, black). Figure (Fig 4.5 in [8]) compares the dynamics for the three strategies when a = 0. Introducing immune cells keeps
the healthy cell density at a higher value than without immune cells, and strategy two seems the most effective. Figure (Fig 4.14 in
[8]) compares the dynamics with a = 0, 0.5, 0.7, and a higher value of a seems to improve the effectiveness of strategies one and
three. The immune cell model uses the same parameter values as in the two-species model (so that the initial healthy cell density
is 0.324, the ECM protein density is 0.1, and the ECM breakdown probability is 0.5). The additional aspects involve the initial
immune cell density and the nature of the competition between the immune cells and the cancer cells.

We will simulate the immune cell agent-based model with just a single injection of the immune cells and a fixed competition
value between immune cells and cancer cells (cf. Section 2.4). This will simplify the use of equation learning to build a three-
dimensional system of ordinary differential equations based on a library of interactions between the three species for a number
of scenarios based on different initial conditions for the immune cells and a fixed competition value between immune cells and
cancer cells.

The key elements of the agent-based cancer model, with regard to a two species interaction between cancer cells and healthy
cells, were described in [1]. In that paper, careful consideration was given to issues such as the Tumour Microenvironment and
the extracellular matrix (ECM). We do not repeat that discussion here, but the model still forms the basis of this three-species
model in which we can also consider the interactions with immune cells. We note that healthy cells, immune cells and the fixed
number of ECM proteins are static, with only cancer cells moving. Every cancer cell and healthy cell has a stickiness value,
and the jump radius of a cancer cell is the number of positions a cell can move at a time. Healthy cells (that have an associated
age) have a probability of dividing when mature enough and can divide at most a fixed number of times. A key parameter is the
fixed competition value between immune cells and cancer cells, so that when a cancer cell reaches a position that an immune cell
occupies, both compete and only the more powerful cell remains, based on the generation of a random number that is compared
with the competition value. When cancer cells divide, a daughter cell is placed as close to the mother cell as possible. When
cancer cells reach the boundary of the domain, there is a probability of degrading the surrounding fence structure that can enable
cancer cells to exit the domain, allowing for the possibility of metastasis.

2.2 Building a system of ODEs using Equation Learning

In [6], we adapted the approach of Brunton and Kutz [5], [15] based on their sparse identification of nonlinear dynamics (SINDy)
to discover an underlying ODE of our two species agent-based stochastic model [8] describing the interaction of healthy cells
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(H) and cancer cells (C). An issue with the standard SINDy approach is that the ODE that is constructed is done component
by component, and so the ensuing system of ODEs has system components decoupled from one another. However, in [6], the
equation learning is based on a library of chemical reactions describing the evolution of the population counts of species Si

(here, H and C). Reactions take the form liSi
k−→ riSi with k being the rate constant, ri, li ∈ N the stoichiometric coefficients,

and ν, νi = ri − li the stoichiometric (change) vector. Under the Law of Mass Action, the rate constants are multiplied by the
concentrations of the reactants. With this assumption, a library of functions can be constructed with the stoichiometric vectors
coupling the components. The ODE that is built in this way can be interpreted as a set of reactions and respects the interactions
inherent in the agent-based model. We built a library of chemical reactions based on C and H with 8 unimolecular reactions and 9
bimolecular reactions. The library of 17 possible reactions is
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with associated rate constants k1, · · · , k17. For example, the vector number 3 corresponds to the reaction C
k3−→ H and vector 12

to 2C
k12−−→ H .

The approach to find the non-negative rate constants is described extensively in [6], but essentially we build data vectors C̃ and
H̃ (computed as means over 500 simulations on a fixed time mesh). We then compute approximations to the derivatives C̃ ′ and
H̃ ′ and solve a least squares problem

min


∣∣∣∣∣∣
∣∣∣∣∣∣
(

C̃ ′

H̃ ′

)⊤

− θ(C̃, H̃)K

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

 ,

where θ(C̃, H̃) is the library of chemical reactions evaluated at the data vectors and K = (k1, · · · , k17)⊤ is the vector of
non-negative rate constants that is to be found. This can be solved by a non-negative least squares algorithm such as lsqnonneg
in MATLAB. Once these rate constants have been found, we can use the Law of Mass Action to write out the ODE system. Now,
the Law of Mass Action with m reactions can be described by an ODE

y′ =

m∑
j=1

νjaj(y), (1)

with stoichiometric vectors νj and propensity functions aj(y).
In the case of the above library, the corresponding ODE after applying Equation 1 is

c′ = (k5 − k1 − k3)c+ (k4 + k8)h− (k9 +
1

2
k11 + k12)c

2 +
1

2
k14h

2

−(k15 + k17)ch

h′ = (k7 − k2 − k4)h+ (k3 + k6)c− (k10 +
1

2
k13 + k14)h

2 +
1

2
k12c

2

−(k15 + k16)ch.

We note from the library that there is a natural coupling between the two components from reactions 3, 4, 12, 14 and 15.
Within the agent-based model [6], the authors took a time step of 2/135 over a time-interval of 26 2

3 that implies 1800 steps.
They also chose H̃(0) = 0.324 and C̃(0) = 0.0001. Better matches to the data seemed to be obtained when just sampling from
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180 steps. Whether we used all 1800 data points or sampled every 10 steps, the non-negative least squares algorithm determined
that k1, k2, k3, k4, k6, k8, k11, k13 and k16 were all zero, leaving only 8 reactions in the library [6].

It should be noted that this choice of reactions to be placed in the library can lead to issues of linear dependence between certain
reactions - for example, C + C → 0 and C + C → C. In this case, lsqnonneg flags a highly ill-conditioned system but still
converges to a solution in which C + C → 0 appears in the final set, but C + C → C is removed.

2.3 Equation learning formulation for the augmented ABM

If we now consider the three-dimensional agent-based model with cancer cells, C, healthy cells, H , and immune cells, I , and let
all the unimolecular and bimolecular reactions occur (with only two reactants on the left-hand side) then there are 27 unimolecular
reactions and 33 bimolecular reactions – so a total of 60 reactions. Different from [6], we avoid some collinearities without loss of
generality by only considering reactions with a stoichiometric change of at most one per species, that is, νi ≤ 1 for i ∈ {C,H, I}.
We can write these reactions as below.
Unimolecular (27):

C,H, I → 0; C → H, I; H → C, I; I → C,H

C → C + C, C +H, C + I,H + I; H → H + C,H +H,H + I, C + I; I → I + C, I + I, I +H,C +H

0 → C,H, I, C +H,C + I,H + I

Bimolecular (33):
C + C → C,C +H,C + I

C +H → 0, C,H, I, C + C,C + I,H +H,H + I

C + I → 0, C,H, I, C + C,C +H, I +H, I + I

H +H → H,H + C,H + I

H + I → 0, C,H, I,H + C,H + I,H +H, I + I

I + I → I, I + C, I +H

Further, from the definition of the ABM we can infer that immune cells only interact with cancer cells. Incorporating this prior
knowledge, we may work with a reduced library of 49 reactions, where reactions of the form I + I → ∗ and H + I → ∗ are
removed (with the ∗ signifying “any” combination of products).
For the three-species ABM, the least squares problem is

min


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 C̃ ′

H̃ ′

Ĩ ′

− θ(C̃, H̃, Ĩ)K

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

 , (2)

where K is a vector of length 60 (49).
We let the approach learn which of the 60 (49) reactions appear in terms of two key parameters – namely Ĩ(0) and the fixed

competition parameter between cancer cells and immune cells. Note that Ĩ(0) is considered as a parameter of the model rather
than an initial condition, as it is varied as part of the treatment strategies and may even be time-dependent.

2.4 Learning equations for the augmented agent-based model

Solving Equation 2 requires two main ingredients: time-series data C̃, H̃, Ĩ on the amount of C, H , and I , as well as the derivatives
C̃ ′, H̃ ′, and Ĩ ′. In our case, the former is obtained by simulating the three-species ABM for 20 time-units and taking the mean
concentrations over 100 stochastic replications (cf. Figure 3). The measurement step is set to 0.01 time units, resulting in (mean)
time-series data for C, H, and I with 2000 measurements each. The derivatives can be determined by numerical differentiation
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with central differences. However, the solution to Equation 2 is very sensitive to the accuracy of these derivatives, as they form the
target vector. We also compare this to a numerical differentiation scheme employing Kalman-filtered derivatives1.
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Figure 3: Timeseries data resulting from simulation of different combinations of initial immune cell percentage Ĩ(0) and
competition rate CI . Each plot shows the mean over 100 stochastic replications, measured every 0.01 time units, resulting in 2000
data points until time 20. This data is used as a basis for learning the reaction model.

Further, as was demonstrated in [6], the number of measurements in C̃, H̃ , and Ĩ can considerably influence the solution of
Equation 2. Thus, we also vary the sampling interval, using only every 10th, 20th, 40th, or 50th data point.

Finally, there are typically a lot of different solutions to the inverse problem of determining a model (structure and parameters)
from data. Thus, without additional information, it is generally impossible to determine a single “correct” result. For example, as
also found in [6] and discussed in Section 2.2, collinearities pose a problem: The reactions 2k−→ C and k−→ 2C have the exact same
effect (considering ODE semantics), so choosing among them is impossible without additional knowledge. This also impacts
the ability of linear solvers to find an adequate solution, as the equation system Equation 2 becomes ill-conditioned. Thus, it is
helpful to incorporate prior knowledge. To avoid collinearities of reactions as shown above, then for the three species ABM we
only consider reactions with stoichiometry one (requiring νi ≤ 1 for the change of each species i), leading to 60 reactions (cf.
Section 2.3). We call this the complete library for our problem formulation. Additionally, we can exclude interactions of immune
cells with healthy cells and among immune cells themselves, which leads to a constrained library of 49 reactions.

2.4.1 A single reaction model reflecting ABM parameters

We solve Equation 2 using the nnls optimizer from the Python package scipy [16] for the data obtained from the different
combinations for the initial percentage of immune cells (Ĩ(0) ∈ {0.05, 0.2, 0.1}) and the competition value between cancer and
immune cells (CI ∈ {0.5, 0.75}). The result of the equation learning is then a set of six models, one per parameter combination in
dom(Ĩ(0))× dom(CI). We hypothesize that these six models share a large part of their reactions, as they are based on data from
the same ABM. A final model is then determined by taking the union over the sets of reactions included in all six scenarios. If our
hypothesis holds, this union model should contain much less than the 60 (complete library) or 49 (constrained library) reactions
in the library. Taking the union instead of the intersection acknowledges the fact that, in some scenarios, the rate constant of a
specific reaction might be (very close to) zero, while it is important in many others. Further, there should be a relation between
the two varied parameters of the ABM and the rate constants and reactions included in the union model. Exploiting this relation

1see https://github.com/hugohadfield/kalmangrad
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should enable approximating a wide variety of behaviours of the ABM and drawing conclusions on the ABM’s properties from
analysing the union model.

A union model’s fidelity to the ABM can be tested a priori, without knowledge of this relation, by trying to fit it to the six
scenarios again. For this, we again use Equation 2, but limit the library to the reactions contained in the union model. We integrate
the calibrated models using LSODA and regard the mean over the root mean squared errors (RMSEs) with respect to the six time
series as the union model’s accuracy. This measure allows us to compare different values for the hyperparameters involved in
equation learning.

2.4.2 Hyperparameter scan

As we outlined above, learning reaction models involves some choices that can strongly influence the resulting model. These
include the selection of reactions in the library (complete/constrained), the method used for numerical differentiation of the time
series data (central differences on filtered/unfiltered data), and the measurement interval (considering only every n-th point from
the data with n ∈ {10, 20, 40, 50}). We determine a union model as outlined above for every one of the above 16 combinations
of hyperparameters, selecting the model with the smallest RMSE as the final result. The complete results of this analysis are
visualized in Figures 4 and 5. The former shows the coefficient values obtained for each reaction in our complete library when
varying the sampling frequency n of the data (y-axis) and the filtering for differentiation (x-axis). Each subplot depicts the library
of reactions on the x-axis and the ABM parameter configurations on the y-axis. Figure 5 shows the same for the case of the
constrained library. Some interesting observations can be made regarding the choice of hyperparameters. When using filtered
gradients (right columns in the figures), the magnitude of some coefficients decreases with increasing value of n, such as for the
reaction 2H → H in Figure 4. On the other hand, when using unfiltered gradients, this effect cannot be observed. Looking at
the behaviour over ABM parameter configurations (vertical streaks), we can observe that, indeed, there is a relation of ABM
parameter configurations to the coefficients of many reactions. For example, in Figure 4, bottom left, the coefficient of the reaction
2I → I is always higher for CI = 0.5 than for CI = 0.75. Further, it seems to increase when I(0) increases (this can be seen by
considering every second cell from bottom to top). Such patterns can be observed for many of the other reactions in both, the
complete and constrained, cases.

I(0) = 0.2, CI = 0.5
I(0) = 0.2, CI = 0.75
I(0) = 0.1, CI = 0.5

I(0) = 0.1, CI = 0.75
I(0) = 0.05, CI = 0.5

I(0) = 0.05, CI = 0.75

AB
M

 p
ar

am
s.

using every 10th datapoint; unfiltered gradients using every 10th datapoint; filtered gradients

I(0) = 0.2, CI = 0.5
I(0) = 0.2, CI = 0.75
I(0) = 0.1, CI = 0.5

I(0) = 0.1, CI = 0.75
I(0) = 0.05, CI = 0.5

I(0) = 0.05, CI = 0.75

AB
M

 p
ar

am
s.

using every 20th datapoint; unfiltered gradients using every 20th datapoint; filtered gradients

I(0) = 0.2, CI = 0.5
I(0) = 0.2, CI = 0.75
I(0) = 0.1, CI = 0.5

I(0) = 0.1, CI = 0.75
I(0) = 0.05, CI = 0.5

I(0) = 0.05, CI = 0.75

AB
M

 p
ar

am
s.

using every 40th datapoint; unfiltered gradients using every 40th datapoint; filtered gradients

C
H

C
I

C
2C

C
C

+
H

C
C

+
I

C
H

+
I

C H
C

H
I

H
C

+
H

H
C

+
I

H
2H

H
H

+
I

H I
C

I
H

I
C

+
H

I
C

+
I

I
H

+
I

I
2I I

2C
C

2C
C

+
H

2C
C

+
I

C
+

H
C

C
+

H
H

C
+

H
I

C
+

H
2C

C
+

H
C

+
I

C
+

H
2H

C
+

H
H

+
I

C
+

H
C

+
I

C
C

+
I

H
C

+
I

I
C

+
I

2C
C

+
I

C
+

H
C

+
I

H
+

I
C

+
I

2I
C

+
I

2H
H

2H
C

+
H

2H
H

+
I

H
+

I
C

H
+

I
H

H
+

I
I

H
+

I
C

+
H

H
+

I
C

+
I

H
+

I
2H

H
+

I
2I

H
+

I
2I

I
2I

C
+

I
2I

H
+

I C H I
C

+
H

C
+

I
H

+
I

Reactions

I(0) = 0.2, CI = 0.5
I(0) = 0.2, CI = 0.75
I(0) = 0.1, CI = 0.5

I(0) = 0.1, CI = 0.75
I(0) = 0.05, CI = 0.5

I(0) = 0.05, CI = 0.75

AB
M

 p
ar

am
s.

using every 50th datapoint; unfiltered gradients

C
H

C
I

C
2C

C
C

+
H

C
C

+
I

C
H

+
I

C H
C

H
I

H
C

+
H

H
C

+
I

H
2H

H
H

+
I

H I
C

I
H

I
C

+
H

I
C

+
I

I
H

+
I

I
2I I

2C
C

2C
C

+
H

2C
C

+
I

C
+

H
C

C
+

H
H

C
+

H
I

C
+

H
2C

C
+

H
C

+
I

C
+

H
2H

C
+

H
H

+
I

C
+

H
C

+
I

C
C

+
I

H
C

+
I

I
C

+
I

2C
C

+
I

C
+

H
C

+
I

H
+

I
C

+
I

2I
C

+
I

2H
H

2H
C

+
H

2H
H

+
I

H
+

I
C

H
+

I
H

H
+

I
I

H
+

I
C

+
H

H
+

I
C

+
I

H
+

I
2H

H
+

I
2I

H
+

I
2I

I
2I

C
+

I
2I

H
+

I C H I
C

+
H

C
+

I
H

+
I

Reactions

using every 50th datapoint; filtered gradients

0

5

10

15

20

25

coefficient value

Gradient Method

Sa
m

pl
in

g 
Fr

eq
ue

nc
y

Coefficient values derived with full library

Figure 4: Coefficients determined for datasets produced by different combinations of the competition rate c and initial immune
cell populations. Left column: central gradients. Right column: filtered gradients using kalmangrad. Top to bottom: using every
10th, 20th, 40th, and 50th data point.

7



Learning Equations for Analysing an Agent-Based Cancer Model Burrage et al.

I(0) = 0.2, CI = 0.5
I(0) = 0.2, CI = 0.75
I(0) = 0.1, CI = 0.5

I(0) = 0.1, CI = 0.75
I(0) = 0.05, CI = 0.5

I(0) = 0.05, CI = 0.75

AB
M

 p
ar

am
s.

using every 10th datapoint; unfiltered gradients using every 10th datapoint; filtered gradients

I(0) = 0.2, CI = 0.5
I(0) = 0.2, CI = 0.75
I(0) = 0.1, CI = 0.5

I(0) = 0.1, CI = 0.75
I(0) = 0.05, CI = 0.5

I(0) = 0.05, CI = 0.75

AB
M

 p
ar

am
s.

using every 20th datapoint; unfiltered gradients using every 20th datapoint; filtered gradients

I(0) = 0.2, CI = 0.5
I(0) = 0.2, CI = 0.75
I(0) = 0.1, CI = 0.5

I(0) = 0.1, CI = 0.75
I(0) = 0.05, CI = 0.5

I(0) = 0.05, CI = 0.75

AB
M

 p
ar

am
s.

using every 40th datapoint; unfiltered gradients using every 40th datapoint; filtered gradients

C
H

C
I

C
2C

C
C

+
H

C
C

+
I

C
H

+
I

C H
C

H
I

H
C

+
H

H
C

+
I

H
2H

H
H

+
I

H I
C

I
H

I
C

+
H

I
C

+
I

I
H

+
I

I
2I I

2C
C

2C
C

+
H

2C
C

+
I

C
+

H
C

C
+

H
H

C
+

H
I

C
+

H
2C

C
+

H
C

+
I

C
+

H
2H

C
+

H
H

+
I

C
+

H
C

+
I

C
C

+
I

H
C

+
I

I
C

+
I

2C
C

+
I

C
+

H
C

+
I

H
+

I
C

+
I

2I
C

+
I

2H
H

2H
C

+
H

2H
H

+
I C H I

C
+

H
C

+
I

H
+

I

Reactions

I(0) = 0.2, CI = 0.5
I(0) = 0.2, CI = 0.75
I(0) = 0.1, CI = 0.5

I(0) = 0.1, CI = 0.75
I(0) = 0.05, CI = 0.5

I(0) = 0.05, CI = 0.75

AB
M

 p
ar

am
s.

using every 50th datapoint; unfiltered gradients

C
H

C
I

C
2C

C
C

+
H

C
C

+
I

C
H

+
I

C H
C

H
I

H
C

+
H

H
C

+
I

H
2H

H
H

+
I

H I
C

I
H

I
C

+
H

I
C

+
I

I
H

+
I

I
2I I

2C
C

2C
C

+
H

2C
C

+
I

C
+

H
C

C
+

H
H

C
+

H
I

C
+

H
2C

C
+

H
C

+
I

C
+

H
2H

C
+

H
H

+
I

C
+

H
C

+
I

C
C

+
I

H
C

+
I

I
C

+
I

2C
C

+
I

C
+

H
C

+
I

H
+

I
C

+
I

2I
C

+
I

2H
H

2H
C

+
H

2H
H

+
I C H I

C
+

H
C

+
I

H
+

I

Reactions

using every 50th datapoint; filtered gradients

0

2

4

6

8

coefficient value

Gradient Method

Sa
m

pl
in

g 
Fr

eq
ue

nc
y

Coefficient values derived with constrained library

Figure 5: Same as Fig. 4, but with a library where immune cells (I) are only allowed to interact with cancer cells (C).

constrained? n Gradient method No. reactions Mean RMSE (data) Mean RMSE (derivatives)

True 10 unfiltered 12 5.45E-03 1.08E-01
True 10 filtered 12 6.46E-03 9.48E-02
True 20 unfiltered 12 5.72E-03 7.64E-02
True 20 filtered 12 7.69E-03 5.96E-02
True 40 unfiltered 12 6.00E-03 5.31E-02
True 40 filtered 12 9.93E-03 3.76E-02
True 50 unfiltered 12 6.01E-03 4.67E-02
True 50 filtered 11 1.08E-02 3.47E-02
False 10 unfiltered 14 5.06E-03 8.48E-02
False 10 filtered 14 6.11E-03 7.66E-02
False 20 unfiltered 14 5.31E-03 6.00E-02
False 20 filtered 14 7.41E-03 5.05E-02
False 40 unfiltered 14 5.59E-03 4.17E-02
False 40 filtered 13 9.64E-03 3.53E-02
False 50 unfiltered 14 5.63E-03 3.65E-02
False 50 filtered 13 1.07E-02 3.35E-02

Table 1: Results of the hyperparameter scan. Resulting number of reactions, r2 score (with respect to numerically determined
gradients), and mean over RMSEs (with respect to fitting the union model to the ABM trajectories).

3 Results

3.1 Equations for the three-species agent-based model

Table 1 summarizes the results of the hyperparameter scan. With the constrained library, where immune cells are not allowed to
interact with healthy cells or themselves, the smallest mean over RMSEs (≈ 5.45× 10−3) was obtained when using unfiltered
central difference gradients over every 10th data point, leading to 12 reactions. In the unconstrained case, a slightly lower mean
over RMSEs (≈ 5.06× 10−3) could be obtained using the same hyperparameters, leading to 14 reactions. We choose to continue
with the model based on the constrained library, for being more parsimonious and also recognizing our prior knowledge about
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possible reactions while achieving a very similar accuracy as the unconstrained model. In Figure 5, this combination is shown on
the top left. The reactions of our chosen union model are:

C
k0−→ C + C, H

k1−→ H +H, I
k2−→ C,

I
k3−→ C + I, C + C

k4−→ C, C + C
k5−→ C +H,

C + C
k6−→ C + I, C +H

k7−→ H +H, C +H
k8−→ H + I,

C +H
k9−→ , C + I

k10−−→ C + C, H +H
k11−−→ H.

(3)

With the Law of Mass Action, we obtain the following differential equation system

c′ = k0c+ (k2 + k3)i−
1

2
(k4 + k5 + k6)c

2 + (−k7 − k9)ch+ k10ci

h′ = k1h+
1

2
k5c

2 + (k7 − k9)ch− 1

2
k11h

2

i′ = − k2i+
1

2
k6c

2 + k8ch− k10ci.

(4)

A coupling of the derivatives can be observed over the coefficients k2, k5, k6, k7, k9, and k10.
Figure 6 shows the difference between the original data and fitting this best model (adjusting k0, . . . , k11) to the six scenarios. It

can be seen that the 12 learned reactions above can very accurately be fitted to the different ABM parametrisations and reproduce
the ABM’s results. We can now use the coupled equations from Equation 4 as a surrogate to analyse properties of the ABM, such
as the equilibrium states.
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Figure 6: Accuracy when fitting the learned model Equation 3 to the different ABM scenarios. It is evident, that the model is able
to very accurately approximate the ABM. Further, a relationship between the parameters CI , I(0) and the rate constants can be
observed.
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3.2 Equilibrium analysis of the equation-learning ODEs

In this subsection, we study the equilibrium of the 6 ODEs constructed from the scenario data. We note from Equation 4 that each
ODE takes the form (with the 13 coefficients θ1, . . . , θ5;ϕ1, . . . , ϕ4;λ1, . . . , λ4 determined)

C ′ = θ1C + θ2I + θ3C
2 + θ4CH + θ5CI (5)

H ′ = ϕ1H + ϕ2C
2 + ϕ3CH + ϕ4H

2 (6)

I ′ = λ1I + λ2C
2 + λ3CH + λ4CI. (7)

We solve the right hand side of each equation to 0. Studying each in turn, (7) can be written as

I (λ1 + λ4C) = −C(λ3H + λ2C) (8)

or
I = −Cp/q, p = λ3H + λ2C, q = λ1 + λ4C. (9)

Now (5) and (9) lead to
C (θ1 + θ3C + θ4H) = C

p

q
(θ2 + θ5C)

and with C ̸= 0 yields
q (θ1 + θ3C + θ4H) = p (θ2 + θ5C). (10)

Finally (6) is just
ϕ1H + ϕ2C

2 + ϕ3CH + ϕ4H
2 = 0 (11)

so (9), (10) and (11) give
(λ1 + λ4C)(θ1 + θ3C + θ4H) = (λ3H + λ2C) (θ2 + θ5C)

or
(λ1 + λ4C)(θ1 + θ3C)− λ2C(θ2 + θ5C) = H (λ3(θ2 + θ5C)− θ4(λ1 + λ4C)) . (12)

Write (12) as

H =
R

S
(13)

R = λ1θ1 + C(λ1θ3 + λ4θ1 − λ2θ2) + C2(λ4θ3 − λ2θ5)

S = λ3θ2 − λ1θ4 + C(λ3θ5 − λ4θ4).

}
(14)

Substitute (13) into (11), then

ϕ1
R

S
+ ϕ2C

2 + ϕ3C
R

S
+ ϕ4

R2

S2
= 0

or
ϕ1RS + ϕ2C

2S2 + ϕ3CRS + ϕ4R
2 = 0. (15)

Writing (and comparing coefficients with (14))

R = α1 + α2C + α3C
2

S = β1 + β2C

and substituting into (15) gives a fourth degree polynomial in C:

E4C
4 + E3C

3 + E2C
2 + E1C + E0 = 0. (16)

10



Learning Equations for Analysing an Agent-Based Cancer Model Burrage et al.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

I0, initial concentration of Immune Cells

0.65

0.7

0.75

0.8

0.85

C
a
n
c
e
r 

C
e
lls

Cancer cells vs I0, for competition rate 0.5 (+) and 0.75 (x)

Figure 7: Relationship between I(0) and cancer cell density for each of the competition values

We will solve (16) for C, (13) for H , (8) for I . It can be shown that

E4 = ϕ4α
2
3 + ϕ3α3β2 + ϕ2β

2
2

E3 = ϕ1α3β2 + 2ϕ2β1β2 + ϕ3(α3β1 + α2β2) + 2ϕ4α2α3

E2 = ϕ1(α3β1 + α2β2) + ϕ2β
2
1 + ϕ3(α1β2 + α2β1) + ϕ4(2α1α3 + α2

2)

E1 = ϕ1(α1β2 + α2β1) + ϕ3α1β1 + 2ϕ4α1α2

E0 = ϕ1α1β1 + ϕ4α
2
1.

Some analysis (not given here) shows that there is only one positive zero for C given by (16) for each of the six scenarios. The
results are given in the following table.

ODE CI Ĩ(0) C̃ H̃ Ĩ
1 0.5 0.2 0.7313 0.0787 0.0771
2 0.5 0.1 0.8117 0.0571 0.0293
3 0.5 0.05 0.8364 0.0536 0.0108
4 0.75 0.2 0.6763 0.0798 0.0946
5 0.75 0.1 0.7838 0.0558 0.0371
6 0.75 0.05 0.8319 0.0506 0.0170

Table 2: Cell densities at equilibrium.

4 Discussion

4.1 Insights from the agent-based model and the learned equations

We adapted the two-species agent-based model describing the interaction between cancer and healthy cells developed in [1] to
a three-species model that included immune cells. The aim of this was to probe the role of immunotherapy in cancers, such as
multiple myeloma, based on a simple but effective dimensional stochastic spatial model. This was first developed in [8]. Our
model is different from that in that there is a single injection of immune cells into the spatial model, and there is a constant
competition parameter between cancer cells and immune cells.
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We use equation learning to construct a three-dimensional ODE model, thus removing space and stochasticity from the study.
The main focus is then to probe the role of immune cells in dealing with the proliferation of cancer cells.

We have only simulated six scenarios and studied the six learned ODEs, as described in the previous section, in terms of a key
characteristic, namely their steady-state behaviour. Figure 7 shows that for the two competition values of 0.5 and 0.75, we get
more or less a linear relationship between the steady-state concentration of the cancer cells and the initial concentration of the
immune cells Ĩ(0). Thus, for a given value of CI we would expect as we increase Ĩ(0) that we would still maintain this linear
relationship. This suggests that we do not need to run more expensive simulations of the agent-based model in order to learn
additional features of the steady-state behaviours. Furthermore, comparisons of the concentrations of C, H , and I at T = 20 for
each of the six learned ODEs and the steady state values suggest that we do not need to run the agent-based model over very long
time intervals to find steady-state values.

Figure 7 suggests that for a small value of the initial immune concentration Ĩ(0), there is little effect of the competition value
on the cancer cell concentration – recall that a higher value of CI (the competition value between cancer and immune cells),
the more effective are the immune cells in suppressing the concentration of the cancer cells. Figure 7 also suggests that as we
increase Ĩ(0), the competition value plays an important role in suppressing the cancer cells. Furthermore, Figure 7 also shows that
if we want to reduce the cancer cell concentration at steady-state, then engineering the immune cells so that they have a higher
competition value and increasing the initial concentration of immune cells both play important roles.

In order to explore further the linear relationship between C and Ĩ(0) for both competition values CI = 0.5, 0.75 we find the
linear least squares solution in both cases. These are

C = 0.8766− 0.7154 Ĩ(0)

C = 0.8857− 1.0427 Ĩ(0).

We can then ask, for example, what value of Ĩ(0) gives a value of C = 0.2 at equilibrium. It turns out to be

Ĩ(0) = 0.9457, CI = 0.5

Ĩ(0) = 0.6576, CI = 0.75.

Of course, we can use this approach to study immunotherapy scenarios based on reducing the cancer to manageable levels over
certain periods of time.

4.2 Related Work

ABMs have become an established approach in cancer research [17, 18]. Modelling individuals and their interactions flexibly
supports incorporating detailed biological mechanisms (also spatially and temporally constrained) at the micro level and studying
emergent properties at the macro level. Many multiscale models exist that combine cellular behaviour with intra-cellular behaviour,
such as signalling pathways [18, 17].

In a recent review of mechanistic learning in oncology [19], which contrasts knowledge-based and data-driven modelling,
various approaches of their combination are listed, including equation learning. It is noted that “despite remarkable success in
physics, symbolic regression applications in oncology are still scarce”. One approach is [20]. It uses a combination of sparse
regression (SINDy) and dynamic mode decomposition (DMC) to estimate a system of ODEs from in vitro CAR T-cell glioma
therapy data. The starting point is in-vitro data with high temporal resolution instead of an agent-based simulation model. Also,
instead of deriving one model (in our case, a union of learned models) to capture all observed dynamics, in [20], three different
models are derived based on the different experimental settings of the in-vitro experiments. Our work thus adds to the currently
very small body of literature on applying equation learning in oncology. We have shown that equation learning may not only be
used to analyse data, but also to simplify the analysis of existing (agent-based) models.

When looking more broadly at the application field of cell biology, the situation is slightly different. Discovering ODEs for
biochemical systems from data is discussed in [21]. The authors automatically discover parsimonious models by systematically
fitting models of increasing complexity. Several approaches [22, 6] are based on applying the seminal Sparse Identification of
Nonlinear Dynamics (SINDy) [5] to derive ODEs.
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Other approaches are based on the specification of biochemical systems as a set of reactions. One way to achieve this is by
learning ODEs constrained by a specific coupling [7, 23, 6], as used here. Other approaches include stochastic heuristic search [24]
and the chemical reaction neural network (CRNN) [25]. All methods mentioned above only consider the deterministic semantics
of reaction models. When stochastic data is available, it can also be used to infer CRNs that allow for a stochastic interpretation,
such as [26, 27].

The goal of these approaches is to learn entire simulation models based on data. Ideally, the data stem from in-vitro or in-vivo
experiments. However, simulation can be used to generate synthetic data for machine learning in general (thus closing possible
gaps in existing data) [28], and for evaluating equation learning in particular, as it allows us to directly compare the learned model
with the ground truth with the simulation model generating the data [23].

We show that the approach [6] can generate an ODE model that reproduces the data of the more complex agent-based tumour
model. As a next step, the equation model helps us derive properties of the simulation model and reduce the computational costs
in experimenting with this original simulation model. The learned equations can be viewed as a surrogate [29] for the real model.
However, unlike surrogate models, which are typically black box models such as artificial neural networks [29], the derived
equation models can be interpreted by humans. In addition, the entire tooling for analysing ODEs is available to assess diverse
properties and behaviours of the equations approximating the agent-based simulation model, which we showed exemplarily based
on a steady-state analysis.

4.3 Conclusions

We have seen that we can get deep insights by learning an ODE system from just a few agent-based modelling scenarios (here, six)
and studying a key characteristic, such as equilibrium behaviour. The linear relationship between cancer concentrations and the
initial concentration of the immune cells enables us to make a simple analysis on the values of the competition and the initial
immune concentration in order to reduce the cancer concentrations to an acceptable size, with a reasonably high value of CI

needed in order for Ĩ(0) to be not too large. From a clinical perspective there may be restrictions on how this might be managed,
and so other strategies for immune cell injection could be considered based around optimal control strategies, such as bang-bang
control ([30]).

Cancer cell density is an important metric in understanding the progression of a number of cancer-based diseases. In multiple
myeloma, for example, mutated cancerous plasma cells can crowd the bone marrow, and significantly hinder the production of
red blood cells, white blood cells and platelets. These cancerous cells can also escape the bone marrow, travel through the blood
system and degrade many other body components. The agent-based model we have constructed can be considered as a very simple,
but still realistic, proxy of the treatment of cancer crowding through immune cell injection in a multiple myeloma setting, and
demonstrates that deep insights can be obtained through the equation-learning of ODEs from a simple stochastic agent-based
model.
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