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Abstract

The development of therapeutic antibodies heavily relies on
accurate predictions of how antigens will interact with anti-
bodies. Existing computational methods in antibody design
often overlook crucial conformational changes that antigens
undergo during the binding process, significantly impacting
the reliability of the resulting antibodies. To bridge this gap,
we introduce dyAb, a flexible framework that incorporates
AlphaFold2-driven predictions to model pre-binding antigen
structures and specifically addresses the dynamic nature of
antigen conformation changes. Our dyAb model leverages
a unique combination of coarse-grained interface alignment
and fine-grained flow matching techniques to simulate the in-
teraction dynamics and structural evolution of the antigen-
antibody complex, providing a realistic representation of the
binding process. Extensive experiments show that dyAb sig-
nificantly outperforms existing models in antibody design in-
volving changing antigen conformations. These results high-
light dyAb’s potential to streamline the design process for
therapeutic antibodies, promising more efficient development
cycles and improved outcomes in clinical applications.

Code — https://github.com/A4Bio/dyAb

Introduction
Antibodies are pivotal components of the immune system,
equipped to identify and neutralize foreign entities such as
bacteria, viruses, and other pathogens (Raybould et al. 2019;
Kong, Huang, and Liu 2023b; Shi et al. 2022). These Y-
shaped proteins possess two binding arms that latch onto
antigens. Upon binding to an antigen, antibodies mark in-
vaders for destruction by other immune cells, which is a piv-
otal process for the body’s defense mechanism against infec-
tions (Basu et al. 2019). In therapeutic applications, the nat-
ural binding capability of antibodies is harnessed to develop
targeted treatments for a myriad of diseases, ranging from
various types of cancers to autoimmune disorders and infec-
tious diseases (Kuroda et al. 2012; Tiller and Tessier 2015).
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The fundamental role of antibodies in immune surveillance
underscores their importance in vaccination, where exposure
to a specific antigen primes the immune system for future
encounters, offering protection against diseases (Maynard
and Georgiou 2000; Akbar et al. 2022a).

Early efforts on antibody design primarily focused on
generating sequences for the Complementarity-Determining
Regions (CDRs) without modeling the corresponding three-
dimensional structures (Saka et al. 2021; Alley et al. 2019;
Shin et al. 2021). RefineGNN (Jin et al. 2022) enables
the co-design of both the sequences and structures of an-
tibody CDRs. Further advancements were made with Dif-
fAb (Luo et al. 2022), which attempts to generate anti-
bodies with high affinity to given antigen structures, and
MEAN (Kong, Huang, and Liu 2023a), which incorporates
light chain context as a conditional input to generate CDRs.
Moreover, dyMEAN (Kong, Huang, and Liu 2023b) further
proposes an end-to-end full-atom antibody design model.
Despite these developments, a notable flaw persists in these
computational methodologies: they typically do not consider
the dynamic alterations in antigen structures upon antibody
binding. Instead, they take the post-binding structures as the
foundation for design, overlooking the inherent flexibility
and conformational shifts that antigens undergo. This defi-
ciency can lead to predictions that fail to accurately capture
the dynamics of antibody-antigen interactions, potentially
resulting in antibody designs that are less effective in real-
world applications. In essence, existing methods are starting
with the answer, which limits their practical utility.

The introduction of AlphaFold2 (Jumper et al. 2021;
Abramson et al. 2024) marks a paradigm shift to predict
protein structures with unprecedented accuracy and effi-
ciency. AlphaFold2’s predictions have been widely adopted
in various computational biology applications, including
protein folding, protein-protein interactions, and protein de-
sign (Varadi et al. 2022; Hu et al. 2022; Hsu et al. 2022). Its
high-fidelity structural predictions offer a valuable starting
point for modeling the pre-binding conformations of anti-
gens. By employing the predicted antigen structures from
AlphaFold2, we can ensure the reliability of the initial anti-
gen conformation. Figure 1 shows that while the root-mean-
square deviation (RMSD) between AlphaFold2-predicted
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Figure 1: Alignment of predicted and experimental antigen
structures before and after binding. The pre-binding antigen
structures, predicted by AlphaFold2, are depicted in yellow.
The post-binding antigen structures, derived from experi-
mental data of antigen-antibody complexes, are shown in
red. The antibodies are colored in green and blue. The epi-
topes are highlighted with a red box.

structures and experimental post-binding structures of anti-
gens is minimal, significant discrepancies often occur in the
interface regions where antibodies bind. This observation
underscores the critical need to account for the dynamic na-
ture of antigen structures during antibody design.

We introduce dyAb, which leverages AlphaFold2’s pre-
dictions to model pre-binding antigen structures and explic-
itly addresses the dynamic nature of antigen conformation
changes when designing the antibody. dyAb combines a
coarse-grained interface alignment with a fine-grained flow
matching approach to simulate the interaction dynamics and
structural evolution of the antigen-antibody complex, pro-
viding a more realistic representation of the binding pro-
cess. Extensive experiments demonstrate that dyAb signifi-
cantly outperforms existing models in antibody design when
involving changing antigen conformations, promising more
efficient development cycles in applications.

Related Work
Protein Design Several approaches in structure-based
protein design leverage fragment-based and energy-based
features derived from protein structures (Wang et al. 2021;
Hu et al. 2022). StructGNN (Ingraham et al. 2019) intro-
duced a paradigm shift by framing fixed-backbone design
as a structure-to-sequence problem. GVP (Jing et al. 2021)
introduced architectures with translational and rotational
equivariances. GCA (Tan et al. 2023) utilized global atten-
tion to learn geometric representations from residue interac-
tions. AlphaDesign (Gao et al. 2022) established a protein
design benchmark based on AlphaFold DB (Varadi et al.
2022; Jumper et al. 2021). ESM-IF (Hsu et al. 2022) aug-
mented training data by incorporating predicted structures
from AlphaFold2 (Jumper et al. 2021). ProteinMPNN (Dau-
paras et al. 2022) employed expressive structural features
with message-passing neural networks. PiFold (Gao, Tan,
and Li 2023) introduced additional structural features and
generated protein sequences in one shot. Our focus is on an-
tibody design, a specialized area within protein design.

Antibody Design Early approaches used Monte Carlo
simulations to iteratively update sequences and struc-
tures (Pantazes and Maranas 2010; Adolf-Bryfogle et al.
2018; Warszawski et al. 2019; Ruffolo, Gray, and Su-
lam 2021), but these were computationally expensive and
prone to local energy minima. Deep generative models have
since emerged as viable alternatives. Sequence-based meth-
ods (Alley et al. 2019; Saka et al. 2021; Shin et al. 2021;
Akbar et al. 2022b) paved the way, followed by more ad-
vanced techniques like RefineGNN (Jin et al. 2022) for CDR
co-design, DiffAb (Luo et al. 2022) for antigen-specific an-
tibody generation using diffusion models, and CEM (Fu
and Sun 2022) for modeling CDR geometry constraints.
MEAN (Kong, Huang, and Liu 2023a) and dyMEAN (Kong,
Huang, and Liu 2023b) introduced E(3)-equivariant mes-
sage passing and full-atom design models, respectively.
tFold (Wu et al. 2022) leverages protein language models for
antibody-antigen structure prediction, and Kim, Kim, and
Park (2024) proposed a decoupled sequence-structure gen-
eration method. However, these methods do not explicitly
account for dynamic antigen structural changes upon anti-
body binding.

AlphaFold2 Benefits Computational Biology Using Al-
phaFold2’s predicted structures has become a common prac-
tice in various computational biology applications. ESM-
IF (Hsu et al. 2022) augment training data by predict-
ing structures using AlphaFold2 for protein sequence de-
sign. By subsampling the multiple sequence alignments
(MSA) input to AlphaFold2, approaches like those dis-
cussed in Del Alamo et al. (2022) have successfully pre-
dicted alternative conformations. AF-Cluster (Wayment-
Steele et al. 2024) applies sequence similarity clustering
to predict alternative states of metamorphic proteins. Al-
phaFlow combines the structural prediction power of Al-
phaFold2 with flow matching techniques to generate protein
ensembles (Jing, Berger, and Jaakkola 2024).

Background
Antibody-antigen Complex
Proteins are biological molecules consisting of one or more
chains of amino acid residues. These residues are the ba-
sic building blocks of proteins, each represented by one of
20 standard amino acids. In this context, a protein com-
plex can be described as comprising N amino acids, each
denoted as a residue, and collectively forming a sequence
S = {si}Ni=1. The three-dimensional structure of a protein
is captured through the coordinates of its backbone atoms,
specifically denoted as X = {xi}Ni=1, where xi ∈ R3×ci

and ci represents the number of atoms in the i-th residue.
An antibody-antigen complex, a typical type of protein com-
plex, can be defined by the pair C = (S,X ).

Within this complex, the antibody and the antigen play
distinct roles: (i) Antibody, Cab = (Sab,Xab), is Y-shaped
symmetric protein composed of two identical sets of chains,
each set containing a heavy (H) chain and a light (L) chain.
These chains are further divided into several constant do-
mains and a variable domain. The variable domains denoted
as VH and VL for the heavy and light chains respectively,



include regions known as framework regions (FRs) and
complementarity-determining regions (CDRs). (ii) Antigen,
Cag = (Sag,Xag), is a protein that when bound by an anti-
body, forms a complex that can elicit an immune response.
The antibody-antigen complex, C = Cab ∪ Cag , results from
the interaction between the antibody and the antigen.

Problem Statement
In this work, we focus on the challenge of designing anti-
bodies that not only bind to antigens with high affinity but
also incorporate the dynamic nature of antigen structures
during the binding process. Traditional approaches typically
focus on static models of antigen structures, often neglect-
ing the significant conformational changes that antigens un-
dergo upon interaction with antibodies:

F : Cag → Cab ∪ Cag, (1)

These approaches use the post-binding antigen structure as
the basis for antibody design. Recognizing this gap, we pro-
pose a redefined problem statement that considers both the
pre-binding and post-binding states of the antigen structures:

F : C(0)
ag → Cab ∪ C(1)

ag , (2)

Here, C(0)
ag explicitly represents the pre-binding antigen

structure, and C(1)
ag denotes the antigen structure after anti-

body binding. In practice, we focus on the epitope of the
antigen and the variable domains of the antibody and model
them as graphs GE(VE , EE) and GA(VA, EA), respectively.
Here, VE and VA capture intra-residue level features, while
EE and EA represent inter-residue level features. They are
derived from the sequence and structural data S and X . The
connectivity between residues is built using the k-nearest
neighbors (kNN) approach, which calculates the minimum
pairwise distance between all atoms in residues i and j:

d(vi, vj) = min
1≤p≤ci,1≤q≤cj

∥Xi(:, p)−Xj(:, q)∥2, (3)

where Xi(:, p) is the coordinates of the p-th atom in Xi.

Flow Matching
Flow matching (Lipman et al. 2022; Albergo, Boffi, and
Vanden-Eijnden 2023; Liu, Gong et al. 2022) is a genera-
tive modeling paradigm that has been inspired by and fur-
ther extends the notable successes of diffusion models in
image (Ho, Jain, and Abbeel 2020; Song et al. 2021) and
molecule (Jing, Berger, and Jaakkola 2024; Stärk et al. 2023;
Lin et al. 2024) domains. This technique is grounded in the
fundamental objective of learning an ordinary differential
equation (ODE) to transform a prior distribution p0 into a
target data distribution p1 over a defined time interval from
t = 0 to t = 1. Let P denote the space of probability func-
tions over a manifold M equipped with a Riemannian metric
g. The transformation is a probability path pt : [0, 1] → P
on M, interpolating between p0 and p1. At any time t, the
corresponding gradient vector ut(x) at a point x in M lies
in the tangent space TxM.

To approximate this vector field, a flow matching tangent
vector field vt : [0, 1] × M → M is employed, parame-
terized by θ. The objective is to minimize the loss function

LRFM (θ) = Et,pt(x)∥vt(x) − ut(x)∥2g , which quantifies
the discrepancy between the learned vector field and the true
gradient vectors. Given the intractable nature of ut(x), flow
matching leverages a conditional density path pt(x|x1) and
employs a conditional flow matching objective:

LCRFM = Et∼U(0,1),p1(x1),pt(x|x1)∥vt(x)−ut(x|x0,x1)∥2g.
(4)

dyAb
In this work, we introduce dyAb, a framework designed to
address the dynamic nature of antigen-antibody interactions.
Our approach integrates AlphaFold2-driven pre-binding
antigen structures with a unique combination of coarse-
grained interface alignment and fine-grained sequence-
structure flow matching techniques. This section provides
an overview of the proposed dyAb framework and its com-
ponents, as illustrated in Figure 2.

Antigen

Antibody
𝑉!:…Y??????????Q…

𝑉":…SLSASVGETVTS…

Epitope
Interface

Paratope

Align

Coarse-grained alignment

Epitope

Fine-grained flow matching

Interface

Template
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Figure 2: The overview framework of dyAb. The pre-
binding antigen structures are predicted by AlphaFold2 and
used as input to the model. dyAb consists of two main
components: coarse-grained interface alignment and fine-
grained flow matching. The model is trained end-to-end to
predict the post-binding antibody-antigen structures and the
designed antibody sequences.

The fundamental idea behind dyAb stems from the un-
derstanding that the nature of antigen-antibody interactions
varies significantly depending on the spatial proximity be-
tween the two molecules. When an antibody and an antigen
are far apart, their interactions are primarily influenced by
macroscopic forces such as electrostatic attraction and hy-
drophobic effects. These forces are relatively simple and do
not significantly alter the internal structures of the antigen
and antibody. However, as the antibody and antigen come
into closer proximity, the complexity of their interactions
increases dramatically. The binding process becomes domi-
nated by fine, atomic-level forces, including hydrogen bond-
ing, van der Waals forces, and precise steric fits. These in-
teractions necessitate a detailed and accurate modeling ap-
proach to capture the dynamic conformational changes and
ensure high-affinity binding.

Recognizing this transition from macroscopic to micro-
scopic interactions, dyAb employs a two-stage strategy: (i)



coarse-grained interface alignment, which focuses on the
macroscopic interactions, and (ii) fine-grained sequence-
structure flow matching, which captures the microscopic in-
teractions and structural evolution. dyAb provides a compre-
hensive representation of the antigen-antibody binding pro-
cess, enabling the design of high-affinity antibodies that ef-
fectively target antigens.

Coarse-grained Interface Alignment
In the initial stage of coarse-grained interface alignment, the
objective is to establish an initial binding complex for the
antibody and antigen based on the given pre-binding antigen
structure and antibody sequences. At this stage, the antibody
and antigen are relatively far apart, and their interactions are
governed by macroscopic forces such as electrostatic attrac-
tion and hydrophobic effects. We assume that these inter-
actions are simple and do not significantly alter their inter-
nal structures. The key steps of the coarse-grained interface
alignment process are illustrated in Figure 3.

Antibody Structure Template Initialization Following
previous works (Luo et al. 2022; Kong, Huang, and Liu
2023b,a; Tan et al. 2024), we begin with the pre-binding
antigen C(0)

ag = (S(0)
ag ,X (0)

ag ). To initialize the antibody struc-
ture, we leverage the well-conserved framework regions by
utilizing an average backbone template X T

ab based on the
IMGT numbering system (Lefranc et al. 2003), which ac-
curately identifies and aligns conserved residues. Conserved
residues, crucial for maintaining the structural integrity of
the antibody, are directly set according to the positions in the
average backbone template X T

ab. For the remaining residues,
a residue at position k (either between or outside the con-
served residues), its position xk is determined by:

xk = xi +
k − i

j − i
(xj − xi),∀xk ∈ X T

ab, (5)

where xi and xj are the positions of two nearest conserved
residues i and j. For residues situated between the two near-
est conserved residues (i < k < j), the position xk is lin-
early interpolated between xi and xj . For residues located
at the termini of the antibody chains (k < i or k > j), the
position xk is extrapolated based on the same interval de-
fined by the nearest conserved residues. The coordinates of
the backbone atoms in these residues are initialized by the
coordinates of Cα atoms.

Binding Interface Prediction We employ individual
models to predict the full-atom geometry of the antibody and
the interface between the antibody and the antigen, which
can be formulated as:

S ′
ab,X ′

ab = Fθ(Sab,X T
ab,S(0)

ag ,X (0)
ag ),

S ′
itf ,X ′

itf = Fϕ(Sab,X T
ab,S(0)

ag ,X (0)
ag ),

(6)

where Fθ and Fϕ are the models used to predict the anti-
body structure and the binding interface. While the interface
is expected to correspond to the paratope of the antibody, a
key distinction is that X ′

ab is built around the template X T
ab

whereas X ′
itf is built around the epitope of the antigen X (0)

ag .

Interface Alignment To align the antibody to the pre-
dicted interface, we utilize the root-mean-square deviation
(RMSD) alignment approach (Kabsch 1976). This involves
using the Kabsch algorithm to find the optimal rotation and
translation that minimize the RMSD between the two sets of
points:

Q, t = Kabsch(X ′
itf ,X ′

ab),

X (0)
ab = QX ′

ab + t,
(7)

where Q ∈ R3×3 represents the optimal rotation matrix, and
t ∈ R3×1 is the translation vector. This alignment ensures
that the antibody’s paratope is correctly positioned relative
to the antigen’s epitope.

Fine-grained Sequence-Structure Flow Matching
The fine-grained flow matching stage is designed to capture
the detailed atomic-level interactions and dynamic confor-
mational changes that occur during antigen-antibody bind-
ing. As the antigen and antibody come into close proximity,
their interactions become dominated by precise atomic-level
forces. Given this proximity and the refined initial align-
ment, we employ an Euler method-based ODE solver to sim-
ulate the ultimate binding state in Euclidean space (Das et al.
1994; Jing, Berger, and Jaakkola 2024; Stärk et al. 2023).
The initial coarse-grained aligned structure serves as a close
approximation to the ground truth, enabling the use of di-
rect end-state prediction rather than iteratively predicting the
transformation vector field. We show the iterative process of
the structure evolution in Figure 4.

Flow Matching on Structure In this approach, instead of
predicting the vector field ut(x|x0,x1), we directly predict
the end state x1 of the binding process. The loss function is
then modified to:

LStr = Et∼U(0,1),p0∼(x0),p1∼(x1),pt(x|x0,x1)∥v
str
t (x)−x1∥22.

(8)
The state update mechanism, analogous to the Euler method,
is given by:

xt+∆t = xt +∆t(x̂1 − x0), (9)

where x̂1 = vstrt (x) is the predicted end state at time t. It
ensures a smooth and controlled evolution of the state to-
wards the predicted end state, leveraging the stability and
simplicity of the Euler method. The detailed analysis of this
flow matching approach is presented in Appendix.

Flow Matching on Sequence Similarly, for the amino
acid sequence of the antibody CDR regions s ∈ Sab, we
directly model the probability vector of each residue type
at each position. Here, ct represents the probability vec-
tor of a multinomial distribution where st ∼ p(ct). We set
c1 = onehot(si) and c0 = ( 1

20 , ...,
1
20 ). The loss function

for this sequence flow matching is defined as:

LSeq = Et∼U(0,1),p0∼(c0),p1∼(c1),pt(c|c0,c1)∥v
seq
t (x)−c1∥22.

(10)
The sequence probabilities are updated iteratively, refining
the predicted sequence ct at each step to closely match the
desired distribution c1:

ct+∆t = ct +∆t(ĉ1 − c0), (11)
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Figure 4: Fine-grained iterative refinement process of the
antibody-antigen complex. The interfaces of both the anti-
gen and the antibody are iteratively refined.

where ĉ1 = vseqt (c) is the predicted end state at time t.
This iterative refinement process ensures that the sequence
evolves towards the high-affinity state represented by c1.

Model and Loss Function

As shown in Figure 5, we employ the adaptive multi-channel
equivariant network as the backbone network (Kong, Huang,
and Liu 2023a,b; Han et al. 2024; Kong, Huang, and Liu
2024) that inputs the sequence and structure coordinates,
modeling them as graphs GE (epitope), GA (antibody), and
outputs the predicted sequence and structure. This network
is designed to handle the rotational and translational sym-
metries inherent in molecular structures.

The total loss function comprises several components
aimed at optimizing different aspects of the model. These
include sequence and structure flow matching losses as well
as interface alignment losses. The interface alignment loss
LITF = Lsp+Ldist ensures that the predicted interface be-
tween the antibody and antigen is accurate. This loss has two
subcomponents: (i) coordinate loss (Lsp), Measures the dif-
ference between predicted and actual interface coordinates

using the Huber loss (Huber 1992):

Lsp =
1

|Xitf |
∑

i∈Xitf

ℓhuber(xi,x
∗
i ), (12)

where Xitf are the coordinates of the predicted interface and
x∗
i are the ground truth interface coordinates. (ii) distance

loss (Ldist): Measures the distance between the predicted
interface and the epitope of the antigen using the Huber loss:

Ldist =
1

|Xitf ||Xep|
∑

i∈Xitf ,j∈Xep

ℓhuber(d(i, j), d
∗(i, j)),

(13)
where d(i, j) is the predicted distance between atoms i and
j, and d∗(i, j) is the ground truth distance. The epitope co-
ordinates are denoted by Xep.
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Figure 5: The overall model architecture of dyAb.

The overall loss function L is a linear combination of the
sequence flow matching loss LSeq, structure flow matching



loss LStr, and interface alignment loss LITF :

Ltotal = LSeq + LStr + LITF , (14)

This combined loss function ensures that the model accu-
rately predicts both the sequence and structure of the anti-
body while maintaining a realistic and high-affinity binding
interface with the antigen.

Experiments
We conduct comprehensive experiments that take into
account the dynamic nature of antigen conformational
changes. This novel experimental setting aims to emulate
the flexible conditions under which antibodies must func-
tion. While the dataset split is consistent with previous
works (Kong, Huang, and Liu 2023b) for a fair compari-
son, we replace the pre-binding antigen structures with Al-
phaFold2’s predictions and predict the ground-truth antigen-
antibody complexes. We assess the models’ capabilities in
antibody design through three critical tasks: (i) Epitope-
binding CDR-H3 generation, assessing the ability to gener-
ate the highly variable and functionally crucial CDR-H3 re-
gion. (2) Affinity optimization, evaluating the improvements
in binding affinity of the designed antibodies to target anti-
gens. (3) Complex structure prediction, predicting the 3D
structure of the antibody-antigen complex. Moreover, a de-
tailed ablation study of our proposed dyAb model is con-
ducted to validate its effectiveness.

Our primary focus is on comparing the performance of
our proposed dyAb model with dyMEAN (Kong, Huang,
and Liu 2023b), as both are end-to-end models designed
to streamline the antibody design process. Additionally, we
also benchmark dyAb against other CDR generation base-
lines that require a multi-stage pipeline, including antibody
structure prediction with IgFold (Ruffolo, Gray, and Sulam
2021), antibody-antigen docking with HDock (Yan et al.
2017), antibody CDR generation, and side-chain packing
with Rosetta (Das and Baker 2008). The CDR generation
baselines include (i) RosettaAb (Adolf-Bryfogle et al. 2018)
is a traditional computational approach tailored for anti-
body design. (ii) HERN (Jin, Barzilay, and Jaakkola 2022)
employs a hierarchical message passing to predict atomic
forces and use them to refine a binding complex in an it-
erative, equivariant manner. (iii) DiffAb (Luo et al. 2022)
uses a diffusion model to generate antibodies targeting spe-
cific antigen structures. (iv) MEAN (Kong, Huang, and Liu
2023a) employs E(3)-equivariant message passing and at-
tention mechanisms to generate antibodies.

Epitope-binding CDR-H3 Generation
CDR-H3 plays a pivotal role in determining the binding
affinity of antibodies to their target antigens. Due to its
high variability and central role in antigen binding, ac-
curately generating its sequence and structure is a funda-
mental task in antibody design. We train the models on
the Structural Antibody Database (SAbDab) (Dunbar et al.
2014) and evaluate them on the RABD Benchmark (Adolf-
Bryfogle et al. 2018), which contains 60 antibody-antigen
complexes annotated by biological experts. The input to the

model is the pre-binding antigen structure predicted by Al-
phaFold2 and the incomplete antibody sequence. We eval-
uate the models based on six metrics: Amino Acid Recov-
ery (AAR), Complementarity-determining Amino Acid Re-
covery (CAAR), TMscore, Local Distance Difference Test
(lDDT), Root Mean Square Deviation (RMSD), and DockQ.
The detailed experimental settings of this evaluation are pro-
vided in the Appendix.

Method Generation Docking

AAR ↑ TMscore ↑ lDDT ↑CAAR ↑RMSD ↓DockQ ↑
RosettaAb 31.91% 0.6302 0.6107 15.29% 18.44 0.044

HERN 32.04% - - 17.94% 15.47 0.056
DiffAb 24.01% 0.6306 0.6026 18.57% 16.60 0.039
MEAN 37.26% 0.6334 0.6319 23.71% 17.32 0.047

dyMEAN 35.97% 0.4584 0.2657 24.11% 11.67 0.313
dyAb 37.89% 0.9264 0.6957 26.14% 9.86 0.342

Table 1: Results of epitope-binding CDR-H3 design with
dynamic antigens on the RAbD benchmark. The first four
approaches are multi-stage pipelines, while the last two are
end-to-end models.

We summarize the results in Table 1, showing that dyAb
outperforms other methods across various metrics. Com-
pared to dyMEAN, dyAb significantly improves struc-
tural metrics like TMscore, lDDT, and RMSD, highlighting
its effectiveness in modeling antigen-antibody interactions.
Multi-stage methods like RosettaAb, HERN, DiffAb, and
MEAN perform worse in DockQ scores because they gen-
erate CDR-H3 using pre-binding antigen structures, ignor-
ing conformational changes upon binding. This mismatch
leads to lower docking quality. Figure 6 provides examples
of dyAb’s ability to predict antigen conformational changes
and design accurate antibody-antigen structures. More ex-
amples are available in the Appendix.

Affinity Optimization
Affinity optimization is a critical task in antibody design, fo-
cusing on enhancing the binding affinity of a given antibody-
antigen complex. we quantify binding affinity changes us-
ing the metric ∆∆G on the SKEMPI dataset, which rep-
resents the change in free energy upon binding. Consistent
with previous works (Tan et al. 2024; Kong, Huang, and Liu
2023b,a), we employed a ∆∆G predictor (Shan et al. 2022)
and reported the number of average residue changes ∆L in
the optimization process because fewer changes are favored.

We summarize the results in Table 2, which presents the
outcomes for dyAb and dyMEAN under various constraints
on the number of changing residues: 1, 2, 4, 8, and no limit.
As we have adapted dyMEAN to take the antigen conforma-
tional changes into account, both models show good perfor-
mance. However, dyAb consistently outperforms dyMEAN
across all metrics, achieving superior binding affinity im-
provements with fewer residue changes. These results sug-
gest that dyAb optimizes antibody-antigen interactions more
effectively while minimizing structural alterations.
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pre-binding antigen post-binding antigen heavy chain light chain ground truth

Figure 6: Visualization examples of the generated antibody-antigen complex structures.

Method dyMEAN dyAb

∆∆G ↓ ∆L ↓ ∆∆G ↓ ∆L ↓
1 -9.59 0.98 -13.23 0.67
2 -10.34 1.87 -13.93 1.37
4 -10.77 4.79 -13.88 1.60
8 -10.89 6.53 -14.04 3.78
Overall -11.13 6.84 -14.44 3.44

Table 2: Comparison on binding affinity optimization under
different constraints.

Complex Structure Prediction
The accurate prediction of antibody-antigen complex struc-
tures is critical in antibody design. Understanding the pre-
cise 3D arrangement of these complexes allows for insights
into the binding interactions and mechanisms, which are cru-
cial for developing high-affinity antibodies. We trained our
model on the SAbDab dataset and evaluated it on the test set
provided by IgFold (Ruffolo, Gray, and Sulam 2021). Ta-
ble 3 presents the results of complex structure prediction.
The w/ AF2 in the multi-stage pipeline denotes using Al-
phaFold2’s predicted antigen structure, whereas w/ GT in-
dicates using the ground-truth post-binding antigen struc-
ture. It can be seen that dyAb outperforms the other end-to-
end baseline, dyMEAN, in all metrics. Furthermore, dyAb
achieves comparable results to the multi-stage approaches in
TMscore and surpasses them in RMSD and DockQ metrics,
highlighting its robustness in predicting the overall structure
and docking quality. The relatively lower lDDT score for
dyAb may be attributed to the focus on global structural ac-
curacy over local arrangement details.

Ablation Study
We conduct an ablation study and summarize the results in
Table 4. Due to the limited space, we leave the detailed anal-
ysis in Appendix. Our findings underscore the pivotal role of
coarse-grained flow matching in establishing a fundamental
conformation. The absence of this alignment significantly
degrades both generation and docking performance. Addi-
tionally, fine-grained flow matching is crucial for refining
the initial conformation, as its removal results in a substan-
tial decline in structural metrics.

Method Structure Docking

TMscore ↑ lDDT ↑ RMSD ↓ DockQ ↑
IgFold→HDock, w/ AF2 0.6768 0.8376 17.21 0.245
IgFold→HDock, w/ GT 0.9502 0.8362 16.82 0.199
IgFold→HERN, w/ AF2 0.8192 0.8251 13.44 0.367
IgFold→HERN, w/ GT 0.9702 0.8441 9.63 0.429
dyMEAN 0.2450 0.1564 10.39 0.391
dyAb 0.9224 0.6871 9.13 0.446

Table 3: Results of complex structure prediction.

Method Generation
AAR ↑ TMscore ↑ lDDT ↑

dyAb 37.89% 0.9264 0.6957
dyAb w/o coarse-grained 13.44% 0.1403 0.0108

dyAb w/o fine-grained 37.54% 0.5072 0.2941
dyAb w/ sampling step=1 31.53% 0.8932 0.6009

dyAb w/ sampling step=50 32.80% 0.9221 0.6793

Table 4: Ablation study on CDR-H3 generation.

Furthermore, we examine the impact of the sampling step
size in the flow-matching process. Although the default sam-
pling step is set to 10, we also assess performance using
smaller steps of 1 and larger steps of 50. Insufficient sam-
pling with smaller steps and suboptimal performance with
larger steps indicate that the sampling size significantly in-
fluences performance. Nevertheless, the overall performance
across different sampling sizes remains comparable to the
default setting, suggesting that while sampling size is cru-
cial, the chosen default size of 10 is effective.

Conclusion and Limitation
Combining AlphaFold-driven predictions with coarse-
grained interface alignment and fine-grained sequence-
structure flow matching, dyAb models binding processes
with high accuracy. It ensures high-affinity binding and re-
alistic structural evolution, outperforming existing models
in dynamic antigen scenarios and streamlining flexible an-
tibody design. However, dyAb’s capability still needs to be
further examined by wet lab experiments.
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References
Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.;
Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A. J.;
Bambrick, J.; et al. 2024. Accurate structure prediction of
biomolecular interactions with AlphaFold 3. Nature, 1–3.
Adolf-Bryfogle, J.; Kalyuzhniy, O.; Kubitz, M.; Weitzner,
B. D.; Hu, X.; Adachi, Y.; Schief, W. R.; and Dunbrack Jr,
R. L. 2018. RosettaAntibodyDesign (RAbD): A general
framework for computational antibody design. PLoS com-
putational biology, 14(4): e1006112.
Akbar, R.; Bashour, H.; Rawat, P.; Robert, P. A.; Smorod-
ina, E.; Cotet, T.-S.; Flem-Karlsen, K.; Frank, R.; Mehta,
B. B.; Vu, M. H.; et al. 2022a. Progress and challenges for
the machine learning-based design of fit-for-purpose mono-
clonal antibodies. In MAbs, volume 14, 2008790. Taylor &
Francis.
Akbar, R.; Robert, P. A.; Weber, C. R.; Widrich, M.; Frank,
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