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Abstract 
​
Comparing specific types of organisms as they are found across environmental conditions has 
helped inform how genes and gene products of these organisms relate to phenotypes and 
adaptation. In this study, we examine metatranscriptomic data as found for oceanic fungi across 
different oceanic sampling sites. A specific set of three genes was chosen for evaluation based on 
conserved orthology, known association with core physiological processes in fungi, and level of 
abundance within oceanic metatranscriptomic data. We report upon a potential association of 
genetic variance with environmental conditions of iron, salt and phosphate in oceanic waters 
based on heatmap visualization and PERMANOVA analysis.  
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1. Introduction 

Researching oceanic microorganisms has been in the past challenging due to expensive ship time 
and prior approaches involving the need to acquire samples aseptically, in conjunction with the 
measurement of environmental parameters associated with specific depths and water columns of 
sampling (Fell, 2012). Recent advances have led to initiatives such as the Tara Oceans project 
using metagenomic- and metatranscriptomic-based methods for studying the prevalence and 
diversity of oceanic microorganisms. The Tara Oceans project provides short read sequencing 
data of fungi and other microorganisms along with environmental metadata from different 
sampling sites across Earth’s various oceans (Villar et al., 2018). This provides a powerful and 
novel opportunity to directly compare variation in genetic sequence from metagenomic and 
metatranscriptomic samplings across the broad-ranging oceanic environment. This can aid 
discovery with both patterns of species-level diversity across the ocean and how genetic features 
may differ in their association with respect to varying physical and chemical conditions across 
the oceanic environment. 
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Aquatic fungi such as aquatic yeast were initially reported in the 19th century and are 
widespread (Kutty & Philip, 2014; Braun, 1856). Marine yeasts are found in environments 
ranging from the oceans, salt lakes, deep sea sediments, and marshes. Early research on marine 
yeasts reported on the general occurrence and distribution of yeasts in the ocean. Subsequent 
research studies have charted the taxonomy of marine fungal diversity by characterizing new 
species and other more broad taxa, with attention given to these varieties’ ecological roles within 
the marine environments. Major reports on marine fungi include those by Hagler (1987), Fell 
(2012), Kriss (1967) and Morris (1968). Our study is oriented upon how marine fungi in 
particular can be studied through the use of metatranscriptomic data from different ocean 
sampling locations. In this study, we used distance matrix (heatmap) visualizations and 
PERMANOVA analyses of abundance to identify the potential association of different fungal 
genetic sequences with different physical and chemical conditions of the oceanic environment.  

 

2. Methodology 

2.1. Collecting Representative Protein Sequences for Analysis 
 
This study first gathered together protein sequences of kinases found for yeasts along with 
associated annotations and aspects of their features. Data for these yeast kinases were obtained 
using the Yeast Kinase and Phosphatase Interactome (KPI) Resource (https://yeastkinome.org/, 
retrieved 04/08/2021; Breitkreutz et al, 2010). This KPI database contains Saccharomyces 
cerevisiae kinase and phosphatase interactome data and was screened for those kinases that were: 
1) annotated with direct evidence concerning phosphorylation, and 2) expected to be conserved 
across fungal diversity through involvement in the core physiological process of cell cycling. 
Protein sequences corresponding to each of the following five kinase genes from the genome of 
S. cerevisiae strain ATCC 204508 / S288c were as follows, listed by gene name and 
corresponding NCBI accession number: CBK1 (QHB11221.1), KIN1 (KZV12362.1), KIN2 
(CAA97659.1), CDC28 (CAA85119.1), and DBF20 (KZV07624.1). These sequences were then 
retrieved from the NCBI Protein database (https://www.ncbi.nlm.nih.gov/protein, retrieved 
04/08/2021) (Geer et al., 2010).  
 
2.2. Metatranscriptomic Data 
 
The MATOU database of the Tara Oceans project is a metatranscriptomic data collection that 
provides more than 116 million distinct genetic sequences that are assigned MATOU IDs (i.e., 
Marine Atlas of Tara Oceans Unigenes) (Hingamp, 2018). Each MATOU ID represents a distinct 
transcribed gene sequences. Gene sequences from the MATOU database have an average (N50) 
length of 635 bases and have a mainly eukaryotic association. Protein sequences were inferred 
from metatranscriptomic data based on features in MATOU and alignments provided through 
homology searching in MATOU (https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/; 
08/29/2023). We collected homology hits through homology searches of CBK1, CDC28, KIN1, 
KIN2 and DFB20 protein sequences from the S. cerevisiae strain ATCC 204508 / S288c. 
 
BLASTP was used for homology searches on each of the five representative S. cerevisiae protein 
sequences with the expectation score threshold set to 10-10. This was due to the large size of the 
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database, but this exact threshold setting was not very consequential for how other more 
permissive expectation score thresholds (e.g., 10-5) yielded identical sets of alignment hits. 
Homology search results included downloadable files for protein alignments, homologs of 
sequences in a FASTA format, data on genetic sequence variant (i.e., MATOU “Unigene”; 
distinct transcribed gene sequence) abundance and associated environmental data. The three 
representative S. cerevisiae protein sequences having 500 or more homologous genetic variants 
identified and classified as being from kingdom fungi were retained for further analysis: CBK1, 
KIN1 and KIN2. 
 
2.3. Data Modeling and Processing 
 
An automated workflow was constructed with R version 4.4.2 (R Core Team, 2019). The files 
abundance_matrix.csv and environmental_parameters.csv were generated from the Tara Oceans 
website for each homolog hit search. For the environmental_parameters.csv file, there are 55 
columns for environmental data that chart some of the physical and chemical characteristics of 
each sampling environment (e.g., NO2, carbon total, chlorophyll c3 level, temperature, etc). The 
OGA_ID (Ocean Gene Atlas identifier; e.g., TARA_038_DCM_0.8-5) encompassed one or more 
Sample IDs (unique label of the specific sampling instance; e.g., TARA_A100000393) for each 
sampling location. Sample IDs (row #2 in the original abundance file) were used to join 
environmental data records (per row names in the environmental_parameters.csv file) to column 
names in the abundance data file (abundance_matrix.csv). 
 
2.4. Partitioning of the Environmental Data 
 
Based on a goal to examine those basic environmental variables known to impact core 
physiological processes, the environmental variables that were initially selected for study were 
iron, oxygen, phosphate, salinity, and temperature. For salt, the values for each partition were 
<35 PSU for low and >36 PSU for high. Temperature values were partitioned as <15°C for low 
and >25°C for high. Iron values were partitioned as low and high, with low values as <0.006 
umol/L, and high values as >0.006 umol/L. Phosphate values were partitioned as <0.25 umol/L 
for low and >0.5 umol/L for high. Oxygen values for low were <160 umol/kg and  >270 umol/kg 
for high. Frequency counts across these partitioned levels were then tabulated for each MATOU 
ID (genetic sequence variant). The abundance file was filtered for homologs specific to the fungi 
kingdom based on files generated from each homology search on the MATOU database linked 
with taxonomy information in the abundance file. We used these to evaluate alignments of 
reference sequences to matching genetic sequence variants as based on MATOU IDs indicated 
from the MATOU database (e.g., MATOU-v1_41411079). Due to having a greater genetic 
variant abundances, salt, phosphate and iron were retained for further analysis. 
 
2.5. Heat Maps of Environmental Conditions and Genetic Sequence Abundance 

Heat maps were generated to visualize the abundance of MATOU ID genetic sequence variants 
that were homologous to each of the cell cycle genes as found across the different environmental 
conditions evaluated in the study. R packages used for the heat map visualization are pheatmap 
(version 1.0.12) and dendsort (version 0.3.4). The pheatmap function was used to plot clustered 
heat maps for the analysis (Kolde, 2019). The dendsort function organized the nodes on the 
dendrogram showing how MATOU IDs clustered together relative to similarity across 



environmental conditions (Sakai et al., 2014). Heat maps of environmental condition associations 
with abundances for different genetic sequences were colorized based on association of the 
abundance of each MATOU ID genetic sequence variant across each of the environmental 
condition associations (x). Scaling was column-based with respect to the heatmap layout, and 
based on subtracting from x the mean abundance for each MATOU ID across the full set 
environmental condition associations (i.e., number of instances for that MATOU ID occurring) 
divided by the standard deviation. 

2.6. PERMANOVA 

PERMANOVA was used to analyze for significance between the ten environmental conditions 
and the variants for each of the three cell cycle genes, CBK1, KIN1 and KIN2, with respect to 
their predictive association with the phyla. The P-value threshold was 0.05 for significance 
(P<0.05). PERMANOVA testing was conducted in RStudio using the adonis2 function in the 
vegan R package (Dixon, 2009) and was performed using 999 permutations. PERMANOVA 
tests were done on each of these genes using unscaled abundance counts for each genetic variant 
(MATOU ID), and the taxonomic association of each genetic variant: Ascomycota, 
Basidiomycota and other fungi. The Mahalanobis distance method was used based on its utility 
for examining organismal lineage relationships to environmental variables (De Maesschalck et 
al., 2000). 

 

3. Results 

Clustered heat maps were generated to initially visualize how environmental conditions associate 
with the abundance of MATOU ID genetic sequence variants distinctive for the two most 
represented fungal phyla, Ascomycota and Basidiomycota, along with association in a category 
termed as Other Fungi (Figures 1-4). This analysis was performed on each of three different 
fungal genes associated with cell cycling: CBK1, KIN1 and KIN2. For each gene, the different 
phylum-level associations for genetic variants show some complexity where, for instance, 
different genetic variants of different phyla can be found at relatively similar levels across the 
environmental partitions being measured. In other words, genetic variants of a particular phylum 
did not all uniquely group together around one set of environmental partition values compared to 
genetic variants of another phylum. 
 
PERMANOVA was then used to further investigate the significance of environmental 
association with these levels of abundance. Each of the three genes yielded common outcomes of 
significance for how abundance levels among these genes’ variants among environmental 
conditions predict phylum-level association (P<0.05). For the three fungal genes, the significant 
association of environmental conditions with phylum-association identified for both the CBK1 
and KIN2 genes were intersection between low phosphate and high phosphate levels, and KIN1 
did not result in significance (see Tables 1-3). 
 
 
 



Table 1. PERMANOVA for phylum-level association of CBK1 genetic sequence variants across 
environmental conditions (P<0.05). 
 

Environmental Parameter Df Sum of 
Squares 

R2 F Pr(>F) 

Low Salt 1 2.43 0.00666 1.2274            0.296 

High Salt 1 0.17 0.00046 0.0855            0.925 

Low Iron 1 2.68 0.00737 1.3581            0.266 

High Iron 1 1.12 0.00309 0.5683            0.571 

Low Phosphate 1 2.13 0.00585 1.0771            0.338 

High Phosphate 1 0.64 0.00175 0.3223            0.732 

Low Salt:HighSalt 1 1.52 0.00418 0.7697            0.450 

Low Iron:High Iron 1 5.27 0.01447 2.6656            0.065 

Low Phosphate:High Phosphate 1 6.12 0.01681 3.0950            0.046* 

 
 
Table 2. PERMANOVA for phylum-level association of KIN1 genetic sequence variants across 
environmental conditions (P<0.05). 
 

Environmental Parameter Df Sum of 
Squares 

R2 F Pr(>F) 

Low Salt 1 0.612 0.00612 0.2877 0.778 

High Salt 1 0.740 0.00740 0.3478 0.659 

Low Iron 1 0.421 0.00421 0.1977 0.828 

High Iron 1 2.152 0.02052 1.0113 0.360 

Low Phosphate 1 3.802 0.03802 1.7862 0.171 

High Phosphate 1 2.075 0.02075 0.9751 0.415 

Low Salt:HighSalt 1 0.485 0.00485 0.2277 0.806 

Low Iron:High Iron 1 0.601 0.00601 0.2824 0.743 

Low Phosphate:High Phosphate 1 1.850 0.01850 0.8693 0.419 



Table 3. PERMANOVA for phylum-level association of KIN2 genetic sequence variants across 
environmental conditions (P<0.05). 
 

Environmental Parameter Df Sum of 
Squares 

R2 F Pr(>F) 

Low Salt 1 0.343 0.00591 0.1950        0.823 

High Salt 1 2.582 0.04452 1.4683        0.425 

Low Iron 1 0.668 0.01152 0.3800        0.729 

High Iron 1 0.852 0.01468 0.4842        0.621 

Low Phosphate 1 2.830 0.04880 1.6093        0.213 

High Phosphate 1 4.295 0.07404 2.4419        0.092  

Low Salt:HighSalt 1 1.534 0.02645 0.8722        0.416 

Low Iron:High Iron 1 2.330 0.04017 1.3250        0.278 

Low Phosphate:High Phosphate 1 7.393 0.12747 4.2040         0.020* 

 
 
4. Discussion  
 
Visual analysis indicates some interdependence of genetic variant sequences with environmental 
conditions for each of the three cell cycle genes, and there was contrasted clustering between 
high versus low partitionings of environmental conditions for iron, salt and phosphate. This was 
found to be statistically significant for both CBK1 and KIN2 genes for how phylum-level 
associations of genetic sequence variant abundance occur for low phosphate versus high 
phosphate conditions. Although KIN1 and KIN2 are similar genes, they have previously been 
reported to have some differential response to stress in Arabidopsis thalania (Kurkela & 
Borg-Franck, 1992). 
 
Determining the chemical nature and concentrations of dissolved substances may be challenging 
due to the range of low to high concentrations found for different ions, and even more prevalent 
ions like sodium and potassium are difficult to determine accurately. Differentiating between 
substances with similar chemical properties, such as phosphate, arsenic, calcium, strontium, 
chloride, bromide, and iodide, has also been reported as being problematic (Uçak & Aydın, 2022; 
Sverdrup, 1946). The physical and chemical environment is not constant. Salinity, for example, 
changes depending on precipitation, erosion, and sunlight. Salinity can range from 5% near some 
coasts to 45% in saltier waters. An example of variation between larger areas of oceanic waters is 
with the Black Sea being at about 2% salinity while the Red Sea is at about 4.5% salinity 
(Keener-Chavis & Sautter, 2002). 
 



In general, the level of fluctuation associated with physical and chemical conditions of oceanic 
waters at specific locations would by itself be an essential area for further study. Further 
application of our method would potentially involve prospective studies increasing the depth of 
metatranscriptomic sequencing for genetic variant identification and studies of both fungal and 
non-fungal microorganisms. Greater monitoring of associated environmental conditions across 
time within the ecosystem being studied would help to evaluate further the association between 
genetic variation and local ranges of environmental conditions. These approaches, along with a 
greater amount of data sampling to ensure that enough data are collected, would support a robust, 
accurate finding. Ensuring that, for instance, a threshold of abundance is identified for each 
represented lineage and set of environmental conditions along with further potential treatment of 
zero counts are active areas of current research into what may be expected from 
PERMANOVA-based studies of microbiomes (Clarke et al., 2006). Further progression of this 
research could overall provide unique and relevant insights on how adaptive change inferred 
from genetic variation may relate to altered cellular pathway functionality. The methodological 
and analytical framework of this investigation may go beyond analyses of environmental 
variation in the ocean, and provide insight on other similar instances of altered cellular pathway 
functionality or phenotype in living organisms in other environments where there is some 
orthologous genetic composition across these organisms. 
 

4. Conclusion 
 
This work overall demonstrates how to analyze a large complex set of assorted and sporadic data 
on genetic variation and associated environmental conditions. This work further shows how 
levels of phosphate in ocean waters may control for different types of oceanic fungi with varying 
genetic backgrounds. 
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Figure 1. Clustered heat map for CBK1 genetic sequence variant abundances across six 
environmental conditions. Relative abundance is scaled based on the number of standard 
deviations away from the mean abundance across the six environmental conditions for each 
CBK1 genetic sequence variant. Phylum-level associations are also shown. 
 
 
 
 

 
 
 



 
Figure 2. Clustered heat map for KIN1 genetic sequence variant abundances across six 
environmental conditions. Relative abundance is scaled based on the number of standard 
deviations away from the mean abundance across the six environmental conditions for each 
KIN1 genetic sequence variant. Phylum-level associations are also shown. 
 
 
 
 
 
 



 
Figure 3. Clustered heat map for KIN2 genetic sequence variant abundances across six 
environmental conditions. Relative abundance is scaled based on the number of standard 
deviations away from the mean abundance across the six environmental conditions for each 
KIN2 genetic sequence variant. Phylum-level associations are also shown. 
 
 



 
 
Figure 4. Clustered heat map for genetic sequence variants of the three genes CBK1, KIN1 and 
KIN2 based on abundance across six environmental conditions. Relative abundance is scaled 
based on the number of standard deviations away from the mean abundance across the six 
environmental conditions for each specific genetic sequence variant. Phylum-level associations 
are also shown. 
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