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Abstract This chapter investigates some mechanisms behind pattern formation
driven by competitive-only or repelling interactions, and explores how these patterns
are influenced by different types of particle movement. Despite competition and
repulsion are both anti-crowding interactions, collective effects may lead to clusters
of individuals, which can arrange periodically. Through the analysis of two models,
it provides insights into the similarities and differences in the patterns formed and
underlines the role of movement in shaping the spatial distribution of biological
populations.

1 Introduction

Collections of interacting particles are widely used to study complex systems, as they
provide insights into diverse collective behaviors observed in various fields, such
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as the flocking of animals [1], spatial patterns in ecosystems, embryos and colloids
[2, 3, 4, 5], cell migration [6], and phase transitions in active matter [7]. Interactions
among particles in these models occur via forces and/or dynamical rules which can
be of physical, biological, or social origins, and can operate either locally, involving
a few individuals, or over a finite distance, influencing many individuals and leading
to long-range aggregates [8, 9].

The formation of these particle aggregates or clusters, that may appear forming
global periodically ordered patterns, is particularly significant for biological popula-
tions like vegetation systems and cell populations [8, 9]. The spatial self-organisation
has important ecological implications, producing feedbacks with biological function-
alities that are fundamental for the biodiversity maintenance, population survival and
the interactions with environmental factors [10]. A complete knowledge of the con-
ditions that lead to these spatial structures and their feedback on the system dynamics
is thus essential for the understanding of complex living systems.

In recent years, the authors have explored different models of pattern formation
driven only by anti-crowding interactions through repelling forces and intraspecific
competition (throughout this chapter we will refer to the both types of interactions as
competing), and examined how these patterns are affected by particles’ movement.
Traditionally patterns in natural systems have been interpreted in terms of variations
of the Turing mechanism [11], involving a combination of short-range attraction
(facilitation) to start aggregation, and long-range repulsion (competition) to limit it
spatially [8]. However, the pioneer works by Likos and colleagues demonstrated that
repulsive-only interactions in colloidal solutions and polymers could form cluster
crystals, where clusters of particles organize into a crystalline structure [2, 12]. In
biological contexts, it has been shown that competitive-only mechanisms (spatially
non-local) can give rise to vegetation pattern formation [13], and species clustering
in ecological niche space can occur despite competitive exclusion [14, 15].

This chapter presents results and discussions on two phenomena: pattern forma-
tion through anti-crowding interactions (which prevent individuals from getting too
close to each other), and the role of movement on the spatial structure. Two different
models of motile interacting individuals are discussed: one where particles repel each
other via forces deriving from a soft potential, and another based on a birth-death
model with competition rules. These models are studied using two complemen-
tary approaches: i) describing the particle dynamics, mainly based on off-lattice
numerical simulations, and ii) a continuum mathematical description using partial
differential equations for the number density of particles. Despite their differences,
both models form the same type of patterns (cluster crystals) and, most importantly,
under similar properties for the interaction. However, the underlying physical and/or
biological mechanisms are completely different. The chapter also examines the influ-
ence of the type of movement of the organisms on the spatial structures. It has been
noted that movement patterns of some living organisms are consistent with Lévy
flight behavior [16, 17, 18], which has been argued to be advantageous over standard
Brownian motion in certain foraging strategies [19]. This advantage primarily stems
from the occurrence of occasional long jumps. These findings (and many others)
highlight the importance of the type of movement when studying the spatial self-
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organization of biological populations. However, the impact of Lévy-type diffusion
on the properties of organism aggregates has not been extensively studied. Moreover,
the importance of self-propelled motion (by which particles move consuming inter-
nal energy) is key to understand living systems [20]. We will briefly present some
results concerning cluster formation with active (repelling) and Lévy particles.

The structure of this chapter is as follows. In Section 2 we present a comparative
study of the pattern formation dynamics in the two discrete particle models. In
Section 3 we analyze the impact of the type of motion on the spatial structures.
Finally, Section 4 provides a summary and discussion.

2 Mechanisms of pattern formation for repelling/competing
individuals

Here we present a comparative study of the pattern formation dynamics in two
types of interacting particle systems. The first system consists of Brownian particles
interacting via a repulsive soft potential [21]. The second one is a set of Brownianly
moving particles, with no forces among them but with a birth-death dynamics
[22, 23]. For both models, we provide their mean-field density equation description to
highlight the similarities in the interaction and diffusion conditions required to obtain
spatial periodic patterns, and discuss the different physical mechanisms leading to
these patterns.

2.1 A system of moving individuals with repulsive forces

Let us consider a system of 𝑁 Brownian particles in contact with a thermal bath,
in the overdamped limit, contained in a periodic two-dimensional domain. They
interact through a soft-core (i.e. a potential not divergent at x = 0) repulsive two-
body potential. The motion of the particles is given by

¤x𝑖 = −
𝑁∑︁
𝑗=1

∇𝑉 (x𝑖 − x 𝑗 ) +
√

2𝐷 𝝃𝑖 (𝑡) , (1)

where the diffusion coefficient is 𝐷 = 𝑘𝐵𝑇/𝛾, with 𝛾 the friction coefficient, 𝑇 the
temperature of the bath, and Gaussian noise vectors 𝝃𝑖 satisfying〈

𝝃𝑖
〉
= 0 ,

〈
𝝃𝑖 (𝑡)𝝃 𝑗 (𝑡′)

〉
= I𝛿𝑖 𝑗𝛿(𝑡 − 𝑡′) . (2)

For the interaction potential we consider the generalized exponential model of expo-
nent 𝛼 (GEM-𝛼), parameterized with exponent 𝛼, widely used in many applications
[12, 15]:
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𝑉 (x) = 𝜖 exp
(
−
��� x
𝑅

���𝛼) . (3)

𝜖 is an energy scale and 𝑅 a characteristic interaction range. Numerical simulations
(see Fig. 1) confirm that hexagonal patterns spontaneously appear if 𝛼 > 2 and the
diffusivity is small enough. Patterns do not occur if 𝛼 ≤ 2, independently of the
value of the diffusion coefficient. For any 𝛼, large values of the diffusivities give rise
to a homogenous spatial distribution of particles.

This can be analytically understood by considering the Dean-Kawasaki (DK)
equation [24] describing the system dynamics for the microscopic density of particles
𝜌(x, 𝑡) = ∑𝑁

𝑖=1 𝛿 (x − x𝑖 (𝑡)). In fact, to reproduce the phenomenology presented here
it is enough to consider its deterministic version, i.e. the one obtained by neglecting
stochastic noise terms, which is appropriate for sufficiently large density of particles,
and amounts to a kind of mean-field description:

𝜕𝑡 𝜌(x, 𝑡) = ∇ ·
(
𝜌(x, 𝑡)

∫
𝑑x′∇𝑉 (x − x′)𝜌(x′, 𝑡)

)
+ 𝐷∇2𝜌(x, 𝑡). (4)

The diffusion term results from the random motion of Brownian particles, while
the potential term describes density advection by the local velocity due to repulsive
forces. Note the conservative character of this equation (it is of continuity type) re-
flecting that the total number of particles in the system remains constant. Numerical
simulations confirm that it properly describes the density of the particle system at
large scales [21], in regimes where fluctuations can be neglected. Any constant den-
sity 𝜌0 is a solution of Eq. (4). We perform a linear stability analysis around this homo-
geneous solution by considering a small perturbation 𝜌(𝑥, 𝑡) = 𝜌0+exp (𝜆𝑡 + 𝑖𝒌 · 𝒓),
which gives the following dispersion relation, or growth rate:

Fig. 1 Snapshot of the positions of 𝑁 = 1000 particles at large times, moving according to Eq. (1),
for 𝑅 = 0.1, 𝜖 = 0.033, and 𝐿 = 1. Left plot is for the GEM-3 potential, i.e, 𝛼 = 3 and 𝐷 = 0.02.
The right plot is for GEM-1 (𝛼 = 1) and 𝐷 = 0.005. Modified from [21].
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𝜆(𝑘) = −𝑘2 [
𝐷 + 𝜌0𝑉̂ (𝑘)

]
, (5)

with 𝑉̂ (𝑘) the Fourier transform of the interaction potential (𝑘 = |k|). A positive
value of 𝜆(𝑘) for some 𝑘 reveals a pattern-forming instability in which perturbations
of periodicity 2𝜋/𝑘 will grow on top of the homogeneous density 𝜌0, leading to
pattern formation with that periodicity. Note that a necessary condition for 𝜆(𝑘) > 0
is that the Fourier transform of the potential takes negative values for some values of
𝑘 [23]. This explains why patterns can never be observed with, for example, GEM-
1 or GEM-2 potentials, whose Fourier transforms are always positive. In general,
the Fourier transform of the GEM-𝛼 potential is always positive if 𝛼 ≤ 2. This is
consistent with numerical simulations of the density equation, Eq. (4), which lead
to a homogeneous state for 𝛼 ≤ 2 [21], and analogously for the particle system. For
𝛼 > 2, however, the potential is more box-shaped, leading to Fourier transforms that
may have negative values [15]. Note that for the derivation of Eq. (5) to hold, the
soft character of the potential is crucial since otherwise, i.e., the hard-core case, its
Fourier transform is not properly defined and another methodology is needed [25].
Also, in Eq. (5) we observe that the growth rate 𝜆(𝑘) is always negative for large
values of 𝐷, so that large diffusion coefficient inhibits pattern formation and makes
the spatial distribution of particles homogeneous.

Eq. (5) shows the mathematical conditions for the instability of the homogenous
solution in the continuum density description of the system of particles. A detailed
study performed in [21] indicates that physically the formation of clusters comes from
a balance between the internal repulsion of particles inside a cluster, and the external
repulsion from the particles in neighboring clusters (see Fig. 2), and mediated by the
diffusion of the particles. Thus, when diffusion is small and repulsion from particles
in neighboring clusters dominates the internal repulsion with other particles in the
same cluster, aggregation tends to be enhanced.

Fig. 2 Schematic represen-
tation of balance of forces
between neighboring clus-
ters (green) and neighboring
particles inside a cluster (red).
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2.2 A system of birth-death particles

Let us consider a system of initially 𝑁0 particles performing random Brownian
motion with diffusivity 𝐷 in a two-dimensional square with periodic boundary
conditions. In addition, the particles undergo a birth-death dynamics, so that the
total number of them is not constant, and there are 𝑁 (𝑡) particles in the system at
time 𝑡. The demographic events occur at stochastic Poisson times with the following
rates per particle: i) at rate 𝛽0 one particle is chosen to die, i.e. to disappear from
the system; ii) particle 𝑖 is chosen with rate 𝜆𝑖 to reproduce, with the offspring
being placed at the same location as the parent. The important point is that the
birth rate 𝜆𝑖 diminishes with the number of particles within a radius 𝑅 from the
focal particle 𝑖. This is a kind of competing dynamics since the birth rate of a given
individual decreases with the number of others in its surroundings, which maybe
due to competition for resources or mates. More explicitly, the rate 𝜆𝑖 at which a new
particle is introduced in the system, exactly at the location of the parent particle 𝑖,
is 𝜆𝑖 = 𝜆0 − 𝑔𝑁 𝑖

𝑅
, where 𝜆0 and 𝑔 are constants, and 𝑁 𝑖

𝑅
is the number of particles

around 𝑖 within a radius 𝑅.
We can consider more generally that this neighborhood dependence is weighted

with the distance. The weight is expressed through an influence function that decays
with the distance between the particles and the focal one 𝐺 (x𝑖 − x 𝑗 ), 𝑗 = 1, ..., 𝑁 (𝑡).
In this way, particle 𝑖 will give rise to the birth of a new particle at its position with
a probability rate 𝜆𝑖 = 𝜆0 − 𝑔

∑
𝑗≠𝑖 𝐺 (x𝑖 − x 𝑗 ). The previous case is recovered for a

top-hat function 𝐺 (x), i.e. a constant if |x| < 𝑅 and 0 otherwise.
Two transitions can be identified in the system:

1. An absorbing transition that differentiates between the absorbing phase, where all
particles are dead (i.e. there are no particles in the system), and an active phase.
In the active phase, at large times and high values of 𝜇 = 𝜆0 − 𝛽0 (the parameter
driving the transition), the system contains many particles.

2. Depending on the shape of the influence function, 𝐺, and if the diffusion co-
efficient of the particles is sufficiently small, the particles may arrange into a
hexagonal pattern, as illustrated in Fig. 3 for a top-hat influence function. The
plot also shows the statistically homogeneous distribution that occurs when the
diffusion coefficient is large.

Note that the pattern structure resembles that observed in the system of repulsive
particles (Fig. 1). However there are significant differences between the two models.
The system of repelling particles is in equilibrium with a thermal bath and the total
number of particles is conserved. In contrast, the birth-death system is a prototypical
non-equilibrium system, characterized by the presence of an absorbing configuration,
and the number of particles fluctuates and is not conserved (although its average
reaches a constant value at long times).

We can further explore the analogies and differences by examining the deter-
ministic macroscopic density equation for this system with an arbitrary influence
function 𝐺. This equation was derived using field theoretical techniques in [22]. As
before, we neglect here the stochastic terms so that a mean-field version of it is given
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by

𝜕𝑡 𝜌(x, 𝑡) = 𝜌(x, 𝑡)
(
𝜇 − 𝑔

∫
𝑑x′𝐺 (x − x′)𝜌(x′, 𝑡)

)
+ 𝐷∇2𝜌(x, 𝑡). (6)

Here, the influence function is usually normalized so that
∫
𝐺 (x)𝑑x = 1. Note that

Eq. (6) is not a continuity equation as Eq. (4), indicating that the total number
of particles is not conserved now. A linear stability analysis of Eq. (6) is also
straightforward. Again considering a perturbation around the homogenous solution,
𝜌0 = 𝜇/𝑔, we obtain the following growth rate

𝜆(𝑘) = −(𝐷𝑘2 + 𝜇𝐺̂ (𝑘)), (7)

where 𝐺̂ (𝑘) is the Fourier transform of the influence function. Note the similarity
between this expression and Eq. (5). A necessary condition for pattern formation
is that the Fourier transform of the influence function has negative values, which
is the same condition required for the potential in the system of repelling particles
(numerical simulations of the density equation, Eq. (6), confirm this scenario [22]).
But the underlying mechanism is quite different. Patterns appear due to the presence
of exclusion zones, which are spatial zones between the clusters (at distances larger
than 𝑅 and smaller than 2𝑅) that fall within the range of influence of two clusters. In
these zones, particles face enhanced competition as they must compete with particles
from both clusters. This phenomenon is similar to that observed in some nonlocal
vegetation models, where exclusion areas were first identified [13]. See Fig. 4 for a
visual explanation of this concept. Note that, when spacing is fixed by the interaction
range, hexagonal patterns naturally result from self-organization due to competitive

Fig. 3 Long-time spatial structures for the birth-death model with the top-hat influence function,
i.e. birth rate 𝜆𝑖 = 𝜆0 − 𝑔𝑁 𝑖

𝑅
, where 𝑁 𝑖

𝑅
is the number of neighbors within distance 𝑅 from

particle 𝑖. 𝑅 = 0.1, system size 𝐿 = 1, 𝑔 = 0.02. Left: 𝐷 = 10−5, 𝜆0 = 0.85 and 𝛽0 = 0.15, so
that 𝜇 = 𝜆0 − 𝛽0 = 0.7. Right: 𝐷 = 10−4, 𝜆0 = 0.95 and 𝛽0 = 0.05, so that 𝜇 = 0.9. The largest
diffusion coefficient destroys the spatial pattern. Modified from [22].
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interactions. This configuration maximizes the exclusion area while maintaining
spacing. However, more complex models can produce other structures like stripes
[26].

2.3 Discussion on the influence function

The models discussed in the previous section are phenomenological effective de-
scriptions of populations of interacting individuals. Real interactions, specially in
biological contexts, are often mediated by agents, visual or chemical signals, or
substances (in general called mediators) whose temporal dynamics is usually faster
than that of the population. A more fundamental description of the system should
explicitly consider these signal dynamics, with the effective mathematical equations
(e.g. Eq. (6)) derived through the adiabatical elimination of the signal dynamics.
However, there is no systematic derivation of the population dynamics leading to
arbitrary influence functions keeping the character of competitive-only interactions.
In cases where such a derivation has been provided, the resulting equations did not
have the characteristics necessary for pattern formation [26] (in vegetation systems),
or, although leading to patterns, the influence functions lack of generality [27] (in
the context of cell dynamics).

A new mechanism has been proposed that allows for the derivation of more general
influence functions, including those with a shape similar to the GEM-𝛼 function
[28, 29], in particular with cases leading to non-positive Fourier transforms. Briefly,
this mechanism considers that mediators are released into the environment in the
form of short pulses. The response to these pulse releases can significantly change
the spatial stability of the population. In particular, in the limit of fast mediator
dynamics, an effective description for the single population emerges, where the
influence function is general enough and capable of leading to spatial instabilities.

Fig. 4 Schematic repre-
sentation of the formation
of exclusion areas (orange
shaded region), where indi-
viduals have to compete with
two different clusters, whereas
individuals in each patch com-
pete only with individuals in
its own patch. Exclusion area

R
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3 Role of motion on spatial structure

In the models of the previous Section, despite their profound differences, we observed
that the same ingredients are key for pattern formation: the spatial shape of the
function (the potential or the influence) giving the particle interactions and a low
enough diffusivity. Having focused on the role of interactions in the earlier sections,
we will now discuss deeper the role of motility, considering two types: Lévy flights
and active motion. First, we will analyse the impact of Lévy on the birth-death
model, and then we will briefly examine the effects of active motion on the system of
repulsive particles. Given the numerous analogies in the descriptions of both models,
many of the results discussed for one system are applicable to the other.

As demonstrated both using the discrete particle dynamics and the instability
analysis of the continuum description, clusters disappear and the population shows a
uniform distribution for Brownian particles moving very randomly, i.e., when their
diffusion coefficient is large. A natural question arises: what happens in the system
if particles exhibit other types of motion? Of particular biological relevance is to
consider particles performing Lévy flights or active motion.

Lévy flights results in movement patterns that are statistically different to Brow-
nian motion. The displacement lengths have a power-law distribution resulting in
the alternation of frequent, short displacements, with rare, long ones. Due to the
weight of these long jumps, the variance of the displacement length is infinite, which
translates into an infinite diffusion coefficient. Yet, one can still define a generalized
diffusion coefficient, 𝜅𝛾 , such that the typical displacement of an individual particle
scales as 𝑥 ∝ (𝜅𝛾𝑡)1/𝛾 , where 0 < 𝛾 < 2 is the Lévy index or anomalous exponent
which determines the type of motion. The smaller the value of 𝛾 the more anoma-
lous is the random walk (more frequent are long jumps). The question is whether
the formally infinite diffusion coefficient destroys the spatial patterns. To analyze the
impact of Lévy type of motion and spatial patterns we, as mentioned, will focus on
the birth-death system (see [30]). We consider the same demographic processes as
in Sec.2.2 but instead of Brownian motion the particles perform Lévy flights.

As shown in [30], see also Fig. 5, clusters are not broken by the infinite diffusion
coefficient of Lévy flights. However, large jumps do influence the characteristics of
the patterns: clusters are less compact, and many single particles are found moving
between them. The large-scale properties of the system can be derived from the
mean-field density equation, which now, in terms of the fractional Laplacian ∇𝛾 ,
takes the form:

𝜕𝑡 𝜌(x, 𝑡) = 𝜌(x, 𝑡)
(
𝜇 − 𝑔

∫
𝑑x′𝐺 (x − x′)𝜌(x′, 𝑡)

)
+ 𝜅𝛾∇𝛾𝜌(x, 𝑡). (8)

Doing a stability analysis similar to the previous cases we obtain the following
perturbation growth rate

𝜆(𝑘) = −(𝜅𝛾𝑘𝛾 + 𝜇𝐺̂ (𝑘)), (9)
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where 𝐺̂ (𝑘) is the Fourier transform of the influence function. There are no essential
differences between Eq. (9) and Eq. (7). As shown in [30] the Lévy index 𝛾 has only
a small impact on the properties of the pattern.

One can conclude that the large-scale collective behavior of the system is more
strongly influenced by the competitive interactions than by the type of motion per-
formed by the particles. The long flights characteristics of Lévy movement do not
accumulate their effect enough to break clusters. However, this is of course not always
the case, as demonstrated by the consideration of active motion. [31, 32] explored
a simple extension of the system of repulsive particles Eq. (1) by introducing an
internal degree of freedom: the orientation of a self-propulsion speed. This results
in a system of active Brownian particles interacting in pairs through a repulsive
potential. Briefly, activity has two main effects on the distribution of particles (when
the diffusivity of the particles is small, and thus clusters form in the absence of
activity): a) For high values of the self-propulsion velocity, clusters are destroyed,
and the steady-state becomes statistically homogeneous (the cluster crystal melts).
This effect is similar to an enhanced effective diffusivity of the particles. b) For
intermediate values of the self-propulsion velocity, particle density within clusters
is depleted, see Fig. 6, so that they reach a ring-like shape. This is a striking effect
induced by the self-propelled motion.

4 Summary and conclusions

We have presented a comparative study of two types of motile competing particle
systems. Despite their significant differences, both of them exhibit similar spatial
patterns that are induced by the same conditions for the interactions and the diffusivity
of the individuals. However, the underlying physical or biological mechanisms differ
substantially. We also analyzed the role of motion on patterns characteristics. In

Fig. 5 Particle configuration
at long times for particles
interacting as in Fig. 3, but
with Lévy motion with Lévy
index 𝛾 = 1 and 𝜅𝛾 =

56 × 10−5. Other parameters:
𝑅 = 0.1, 𝐿 = 1, 𝜆0 = 1,
𝛽0 = 0.1, 𝑔 = 0.02. Modified
from [30].
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the case of Lévy flights, we concluded that their impact is less significant than
that of the interactions. Competitive interactions are the main drivers of the global
spatial structure of the system. However, striking impacts were observed when we
considered active motion, for example making single aggregates of particles become
rings.

The examples we showed highlight an important observation in the literature
on pattern formation studies: while analyzing the properties of structures can be
challenging, it often does not reveal the underlying natural mechanisms or the func-
tionalities of the individuals that are organized in such spatial distributions. However,
numerous studies show that pattern formation is key to understand the factors leading
to survival, the proper response to external factors, and ecological and evolutionary
processes in biological dynamics. For instance, there is a known spatial pattern se-
quence to desertification in water-limited ecosystems, so that it may serve as early
warning signal [33]. At much smaller scales, the spatial organization of cells is
essential for accurately characterizing, forecasting and controlling tumor evolution
[34]. For non-neutral species, patterns may enable weaker competitors to survive in
conditions that would otherwise lead to their extinction when spatial distribution is
ignored [35]. In the context of the birth-death model we presented, it has been shown
that when two otherwise identical types of particles compete, the type dispersing
less and forming more compact clusters, due to its type of motion, is more likely to
survive [36].

Regarding the interplay between spatial dispersion of organisms and their mobil-
ity, it is worth mentioning an emerging field known as proliferating active matter,
which considers demographic dynamics in addition to the other factors. This field
combines elements of the two models presented in this chapter, along with self-
propulsion, and offers a natural framework for studying many biological systems
[37].

Fig. 6 Ring-shaped clusters
appearing in a system of self-
propelled repulsive particles.
The inset shows the orien-
tation of the self-propulsion
velocity of the particles in
a given cluster. Taken from
[32].
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In conclusion, we believe that gaining a deeper understanding of the feedbacks
between spatial structure, interactions and individual motility will provide valuable
insights into the dynamics of living complex systems.
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