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Social hierarchy shapes foraging decisions
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Social foraging is a widespread form of animal foraging in which groups of individuals coordinate
their decisions to exploit resources in the environment. Animals show a variety of social structures
from egalitarian to hierarchical. In this study, we examine how different forms of social hierarchy
shape foraging decisions. We developed a mechanistic analytically tractable model to study the
underlying processes of social foraging, tying the microscopic individual to the macroscopic group
levels. Based on a stochastic evidence accumulation framework, we developed a model of patch-
leaving decisions in a large hierarchical group with leading and following individuals. Across a
variety of information sharing mechanisms, we were able to analytically quantify emergent collective
dynamics. We found that follower-leader dynamics through observations of leader movements or
through counting the number of individuals in a patch confers, for most conditions, a benefit for
the following individuals by increasing their accuracy in inferring patch richness. On the other
hand, misinformation, through the communication of false beliefs about food rewards or patch
quality, shows to be detrimental to following individuals, but paradoxically may lead to increased
group cohesion. In an era where there is a huge amount of animal foraging data collected, our
model provides a systematic way to conceptualize and understand those data by uncovering hidden
mechanisms underlying social foraging decisions.

Introduction— Foraging is a fundamental decision-
making behavior crucial for animal survival [1]. Often,
animals forage socially and adopt a wide variety of so-
cial organizations, from the less to the more hierarchical.
Some examples of animals adopting hierarchical struc-
tures are eusocial insects [2], birds [3], mice [4] or ba-
boons [5]. While social hierarchy shapes a wide variety
of behavioral facets [6], interactions with social forag-
ing are not well understood in quantitative mechanistic
terms. To investigate the underlying processes of social
foraging, several theories and quantitative models have
been developed, such as the ideal free distribution [7],
the marginal value theorem for groups [8], agent-based
models [9], reinforcement learning models [10][11], game-
theoretic approaches [12][13], or Bayesian models [14].
However, these approaches are often coarse-grained, im-
plying general interaction rules, or are too complex to
be treated analytically. Another limitation is that uncer-
tainty and noise in decision processes are often not taken
into account, which can strongly shape the agents’ patch
departure statistics while foraging [15][16]. This situa-
tion calls for the development of an analytically tractable
framework, including inherent stochasticity, to study the
mechanisms underlying social foraging across a variety of
social and environmental conditions. Models developed
within this framework should also be able to be fitted to
experimental data, to unravel mechanisms underlying the
decision-making of animals while they forage socially. In
this letter, we introduce a new framework to meet these
expectations.
The new model developed in this paper is built on a
widespread stochastic decision-making framework based
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FIG. 1. (Top) Schema of a hierarchical foraging group in a
two-patches environment, with a travel time Ttr. (Bottom)
Followers collect social information from leaders in different
ways, to follow leaders (counting, pulsatile) or be misinformed
about patch qualities (reward, diffusive).

on the evidence accumulation process, drift-diffusion
models, which can be applied to patch-leaving tasks [15].
So far, such mechanistic models have focused only on
one [15] or two cooperative foragers [17]. We have previ-
ously extended this modeling approach to study coupled
agents in an egalitarian group for a two-patches environ-
ment [18].

In this letter, we provide a quantitative analytically
tractable model to unravel the mechanisms of how social
hierarchy shapes social foraging decisions strategies. For
simplicity, we focus on a hierarchical organization in
a two-patches environment with leading and following
agents. We analytically derive strategies under a variety
of information sharing mechanisms, gathered in two
categories, follow-lead and misinformation (see Fig. 1).
The second category, also known as tactical deception, is
more likely to occur mainly in primates [19]. Throughout
this letter, numerical simulations and analytical analysis
enable us to characterize how these different information
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FIG. 2. Dynamics and quantification of the collective for-
aging task. (Top) Foraging agents accumulate evidence in
a patch of food (blue: patch 0, red: patch 1), and leave it
for the next patch when their decision variable x reaches the
threshold θ. (Bottom) Distributions of leaving times P 1(t)
(Left) and fraction of agents Q1(t) (Right) in patch 1 show
damped oscillations converging to an equilibrium state. Blue
lines correspond to numerical simulations, and orange lines to
theoretical predictions. The shaded area corresponds to stan-
dard deviation. The distributions can be quantified by their
equilibrium values, patch residence time and measure of co-
hesion. Parameters are θ = −5 and α = 1 s−1, B = 0.05 s−1,
p0 = 0.6, p1 = 0.8, τd = 0.1 s, Ttr = 2 s, NL = 2500, 20
simulations.

sharing mechanisms lead to various collective dynamics.
We found that each information sharing mechanism
shapes decision strategies in a specific way. For example,
misinformation through false belief sharing decreases
patch richness accuracy estimation, while increasing
group cohesion. We think that this model can provide a
benchmark for evolutionary comparison across species,
opening up the ability for quantitative behavioral
evolutionary studies.

Social foraging models— Agents move between two
patches identified by a number k. k = 0 is the initial
patch, and k = 1 is the highest quality patch. The deci-
sion to leave a patch for another one is taken through the
underlying process of evidence accumulation. Groups
are organized hierarchically, with a subgroup of leading
(L) and following (F) agents. Leading individuals do not
consider the information coming from other agents, they
act like non-interacting agents. Following individuals
have non-zero coupling parameters, and only follow
leading individuals. In addition, they receive less food.

xi, the decision variable of a foraging agent i in a patch
k, evolves according to the following stochastic differen-
tial equation

dxi(t) = (ri(t)−α)dt+
∑

j∈L

cij(t−τd)dt+
√
2BdWi(t) (1)

with the initial condition xi(0) = 0 for all i s. The
forager leaves a patch when xi reaches the threshold θ,

and xi is reset to zero. The travel time between patches
is Ttr. The drift-diffusion process is illustrated in Fig. 2.
The decision variable evolves following an evidence accu-
mulation process, where α represents the cost associated
with foraging, and ri(t) the food rewards. Every time
step ∆r, an L agent has a probability pk of receiving
a food reward ri = 1 s−1. Throughout this letter, we
fix ∆r = dt. The following individuals have a reward
probability βpk, with β ≤ 1. pk is constant here, this
is a non-depleting environment. Wi(t) is the standard
Wiener process, B represents the noise amplitude. For
F agents, information sharing from a leading j to a
following i individual in the same patch is expressed by
the coupling term cij , with a delay τd. For L agents,
this term is equal to zero. The different coupling types
are illustrated in Fig. 1 and detailed below.

Follow-lead dynamics. Two different mechanisms
may underlie the following dynamics. First, F agents
could perceive the beliefs of L agents through pulses of
information, corresponding to an agent’s arrival (κa) or
departure (κd) in a patch. This is the pulsatile coupling.
If an L agent j leaves, cij(t) = −κd(NLdt)

−1δ(xj − θ).
If an L agent j leaves to join the current patch of a F
agent i, cij(t) = κa(NLdt)

−1δ(xj − θ).
Instead of being sensitive to the departure or arrival
times of L individuals, F agents could also perceive
how many L individuals of their group are in the
same patch. This is the counting coupling. For clarity
reasons, we write this term without the sum in eq. (1),
ci(t) = κc(n

k
L(t)/NL − η). If many L agents are in the

same patch, nk
L(t) > η, so ci > 0, i.e. the F agent

accumulates evidence to stay in the patch. Inversely for
nk
L(t) < η.

Misinformation L agents may communicate false
information to mislead F individuals. L agents may
continuously share their beliefs about patch quality,
this is the diffusive coupling. cij(t) = κk

diffN
−1
L xL,j(t).

Lying L agents may modify their communicated decision
variable, to misinform F agents. If κ1

diff ≥ κ0
diff, this

incites F agents to leave the best patch.
False information can also come from a wrong commu-
nicated number of catches that L agents in the same
patch get. cij(t) = κrN

−1
L rj(t). κr corresponds to

the reward coupling strength. The false communicated
reward probability is ζk. If ζ1 ≤ ζ0, this incites F agents
to stay in the worst patch.
Pulsatile, diffusive and reward coupling results with
normalization terms nk

L(t) instead of NL are presented
in the appendix.

Simulations details. The stochastic differential equa-
tion (1) of the decision variable is solved numerically
with the Euler method. The parameters θ = −5,
α = 1 s−1, B = 0.05 s−1, p0 = 0.6, p1 = 0.9, τd = 0.1 s,
Ttr = 0.5 s, β = 0.3 remain constant throughout the
figures. The coupling parameters remain small enough
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(a) Counting (b) Pulsatile

Follow-lead

FIG. 3. Follow-lead dynamics of the best patch metrics: equilibrium leaving time distribution P 1
F,eq, equilibrium accuracy Q1

F,eq,

equilibrium patch residence time T 1
F,eq, and cohesion C

1
F . (a) Counting coupling metrics as a function of the coupling strength

parameter κc for different η values. (b) Pulsatile coupling metrics as a function of the departure strength parameter κd for
different arrival strength parameter κa values. Lines correspond to theoretical predictions and dots to numerical simulations.
Error bars correspond to the standard deviation.

compared to the asocial drift term. The duration of
the simulation is equal to 250 s. Cohesion is quantified
on the ǫ = 6 first extrema. The L and F group sizes
are NL = 200 and NF = 200, with dt = 0.001 s, 20
simulations, for all couplings except for pulsatile, with
NL = 60000 and NF = 2000, 2 simulations. A larger
L group size was needed for this condition, to get
a correct match between theory and simulations. A
larger time step dt = 0.02 s was implemented to keep
tractable computation times. In fact, leaving probability
densities P k

L(t) are included in the drift terms of pulsatile
coupling, and they are more noisy than the fraction
of agents Qk

L(t). Equilibrium metrics from numerical
simulations were computed through the averaged last
100 s of the process.
The distributions and metrics used to quantify the
process are first described, and then applied to the
follow-lead and misinformation dynamics.

Distributions and metrics— The probability density
of a group X (X = {L, F}) to leave a patch k at time t
is given by
P k
X(t) =

∑∞
ν=1 P

k
X,ν

(
t− (2ν − 2 + k)Ttr

)
[18], with

P k
X,ν(t) = (Ψk

X,1 ∗ ... ∗Ψ0
X,1 ∗Ψ1

X,1 ∗Ψ0
X,1)︸ ︷︷ ︸

2ν−1+k

(t) (2)

For t ≤ (2ν − 2 + k)Ttr, the convolution is equal to zero.

With Ψk
X,ν(t) =

−νθ√
4πBt3

exp

(
−(νθ+α̃k

X
t)2

4Bt

)
[20] for ν ≥ 1,

and Ψk
X,0(t) = 1 for all t. α̃k

X is the effective drift term.

For L agents, the effective drift term is α̃k
L = α − pk.

The mean rate is equal to pk (with unit s−1). For
clarity reasons, we write directly pk in effective drifts.
Since it is constant over time, the L leaving probability
density can be found after using the Laplace transform
of Ψk

X,1s to compute the convolution of functions:

P k
L(t) =

∑∞
ν=1

(
Ψ0

L,ν ∗Ψ1
L,ν−1+k

)(
t− (2ν − 2 + k)Ttr

)
.

F agents dynamics are described below.

The probability to be in the patch at a time t is given
by the time integral of the arrival minus the departure
probability density in a patch k:

Qk
X(t) = 1− k +

∫ t

0

dτ [P k′

X (τ − Ttr)− P k
X(τ)] (3)

Throughout this letter, we refer to the fraction of agents
in the best patch Q1

X(t) as accuracy.
Fig. 2 shows an example of distributions P k

L(t),
Qk

L(t). After an oscillating period, they converge
towards an equilibrium value. These equilib-
rium values can be calculated [18]: T k

X,eq = − θ

α̃k

X

,

Qk
X,eq =

(
− 2α̃k

X
Ttr

θ
+ 1 +

α̃k

X

α̃k′

X

)−1

P k
X,eq = α̃k

X

(
2α̃k

XTtr − θ

(
1 +

α̃k

X

α̃k′

X

))−1

Cohesion is quantified as the deviation of extrema from
equilibrium. For ǫ local maxima and minima Qk

X,ν , the

cohesion metrics is defined as Ck
X = 1

ǫ

∑ǫ

ν=1 Q
k
X,ν−Qk

X,eq.

The larger Ck
X is, the less damped the oscillations are,

i.e. the more cohesive the group is.

Follow-Lead dynamics— To analytically predict the
F distributions and metrics, it is possible to include
social information in an effective drift term α̃k

F . If the
L dynamics is slow enough compared to the F one and
NL >> 1 (see supplementary Fig. S1(a) for theory-
simulation fit as a function of NL), the averaged term
over the time spent in a patch k,

〈
α̃k
F

〉
(t, τ), may be used

as a quasi-continuous drift term in the distribution cal-

culations.
〈
α̃k
F

〉
(t, τ) = (t− τ − Ttr)

−1
∫ t

τ+Ttr

α̃k
F (τ

′)dτ ′



4

(a) Reward (b) Diffusive

Misinformation

FIG. 4. Misinformation dynamics of the best patch metrics: equilibrium leaving time distribution P 1
F,eq, equilibrium accuracy

Q1
F,eq, equilibrium patch residence time T 1

F,eq, and cohesion C
1
F . (a) Reward coupling metrics as a function of the communicated

reward rates in patch 1 ζ1, for different communicated reward rates in patch 0 ζ0 values. The reward strength parameter is
κr = 0.5. (b) Diffusive coupling metrics as a function of the diffusive strength parameter in patch 1 κ1

diff, for different diffusive
strength parameter in patch 0 κ0

diff values. Lines correspond to theoretical predictions and dots to numerical simulations. Error
bars correspond to the standard deviation.

with the arrival (τ) and departure (t) times. At
equilibrium, the coupling parameters are restricted by
αk
F,eq ≥ 0 s−1.

For counting coupling,

α̃k
F (t) = α− βpk − κc(Q

k
L(t)− η) (4)

Fig. 3(a) shows that an increasing coupling parameter
κc is associated with an increased equilibrium accuracy,
patch residence time, and decreased cohesion. The effect
is more important for small η values. The equilibrium
leaving probability density increases with κc for large η
values and decreases for small ones.

The effective drift term with pulsatile coupling de-
pends on the departure and arrival probability densities.

α̃k
F (t) = α− βpk + κdP

k
L(t)− κaP

k′

L (t) (5)

Fig. 3(b) shows that higher κd values are associated
with a decrease in equilibrium accuracy, patch residence
time, and an increased equilibrium leaving probability
density. These effects are more important for small κa

values. Please note that in the case of normalization
by nk

L instead of NL, increased κd values are linked to
an increased accuracy, see supplementary Fig. S1(b).
Cohesion decreases for small κa values, and increases
for large ones. All in all, departure and arrival coupling
have opposite effects on accuracy, patch residence time
and leaving probability, while their impact on cohesion
is less trivial and depends on {κd, κa} combinations.
Cohesion decreases with increasing departure strengths
κd for small κa values, and increases for larger κa values.

Lying: impact of misinformation— In this section,
lying L agents display or communicate wrong informa-
tion about the environment richness (reward coupling)

or their belief about a patch quality (diffusive coupling).
To communicate wrong social information about patch
quality, lying agents increase their communicated num-
ber of catches in the worst patch (k = 0) and decrease it
in the best patch (k = 1). In this way, F agents are mis-
informed about the distribution of resources and perceive
false reward rates ζk. The effective drift term is

α̃k
F (t) = α− βpk − κrζ

kQk
L(t) (6)

Fig. 4(a) shows the impact of reward misinformation.
A smaller ζ1 value is associated with a decrease in
equilibrium accuracy, patch residence time, and an
increase in leaving density and cohesion. Larger ζ0

values contribute to the decrease in accuracy, leaving
density and cohesion, while having no impact on patch
residence time.

To communicate wrong beliefs about patch quality, ly-
ing agents increase their decision variable in the worst
patch (k = 0) and decrease it in the best patch (k = 1).
In this way, F agents are misinformed about the leading
agents’ beliefs and perceive modified averaged decision
variables κk

diff

〈
xk
L

〉
(t). The effective drift term is

α̃k
F (t) = α− βpk − κk

diff

〈
xk
L

〉
(t) (7)

See the appendix for
〈
xk
L

〉
(t) calculation details.

At equilibrium, the averaged L decision variable can be

estimated as xk
L,eq = Qk

L,eq

(
θ
2 + B

α̃k

L

)
. The first part

corresponds to the mean and the second part represents
the variance of the Ornstein-Uhlenbeck process [21].
Fig. 4(b) shows the impact of misinformation on patch
quality belief. A larger κ1

diff is associated with a decrease
in accuracy, patch residence time, and an increased
leaving density. Smaller κ0

diff values contribute to
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the decrease in accuracy, leaving density, while does
not have an impact on patch residence time. The
cohesion dynamics is more complex and depends on the
{κ0

diff, κ
1
diff} combinations. Larger κ1

diff values decrease
accuracy for small κ0

diff ones, and inversely for large κ0
diff

values.

Discussion— This letter introduces a new framework
to quantitatively understand collective patch foraging
dynamics in a hierarchical group. Through analytical
formal analysis and numerical simulations, we show that
it is possible to characterize how different information
sharing mechanisms lead to a variety of emergent
collective dynamics. In particular, we found that being a
following individual can be beneficial (i.e. increase accu-
racy) when agents count how many leaders are in their
patch (counting coupling) or observe leader arrivals in
their patch (arrival pulsatile coupling). Another result is
that although misinformation from leading individuals is
detrimental to the following group, other positive effects
can emerge, such as greater cohesion. In fact, more
cohesion can be interesting in the presence of threats,
as it provides risk dilution [22][23]. Non-cooperative
behaviors such as misinformation or sabotage (increased
travel time, see [18]) could be especially advantageous
for agents in case of competition for resources, e.g.
depleting patches.
The diversity and non-trivial emergent processes found
in our study highlight the mechanistic and flexible
features of our model, which makes it able to understand
the large diversity of animal behaviors and uncover
their hidden mechanisms. In particular, social hierarchy
changes the collective dynamics compared to an egali-
tarian group [18]. For example, we found a decreased
accuracy with diffusive coupling in a hierarchical group,
whereas no change was observed in an egalitarian orga-
nization. In addition, different normalization conditions,
by the number of agents in a patch nk

L(t), instead of the
group size NL, may also change the emergent properties.
i.e. whether agents keep in mind the size of the L
group, without observing them, or adjust their behavior
depending on the observable number of L agents. For
example, accuracy decreases or increases with departure
pulsatile coupling, depending on whether the reference
is NL or nk

L(t) (see supplementary Fig. S1).
Our study also suggests that although a widely used
metric in foraging studies is patch residence time (a key
variable in the Marginal Value Theorem [24]) accuracy
and cohesion may be of critical importance to charac-
terize group dynamics (as shown in some experimental
studies [25][26]). As for pulsatile or diffusive coupling,
the non-trivial variations of social cohesion strongly
point out this metric to be a key descriptor to identify
precisely underlying cognitive mechanisms of emergent
group processes.
We may note that for some couplings, like pulsatile, large
L groups were mandatory to have a theory-simulation
match. The results may be different for smaller groups,

especially for cohesion which is more variable compared
to equilibrium metrics (see supplementary Fig. S1(a)).
Further directions include investigations of how different
L dynamics (for example different cohesion features of
the L group) may lead to different emergent processes
in the F group. In addition, variations of existing cou-
plings would be studied, such as repulsive counting and
pulsatile coupling, as well as adding uncertainty, such
as imprecise counting. Lastly, a gradual hierarchy with
more than two groups would advance our understanding
of the wide dynamic range of social organizations.
Our aforementioned results and our mechanistic model-
ing framework (which has been applied in a variety of
cases beforehand [15][17][18]) call for the reformulation
of optimal foraging theories in a manner that accounts
for the diversity of social dynamics. Our quantitative
approach provides the foundations for a reformulated
foraging theory.
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APPENDIX

Calculation of
〈
xL

〉

The leading averaged decision variable
〈
xL

〉
(t) is

found through the average with the probability to get

x at a time t, Uk(x, t). So that
〈
xL

〉
(t) =

∫ 0

θ
xUk(x, t)dx.

The probability Uk(x, t) is itself calculated through
the convolution between the unit x probability for a sin-
gle patch problem u(x, t) [20](see eq. 8) and the arriv-

ing distribution from the patch k′ to k, P k′

(t). So that

Uk(xL, t) =
∫ t

0
uk(xL, t− τ)P k′

(τ)dτ , with

u(x, t) =
1√
4πBt

(
exp

(
− (x− αt)2

4Bt

)

− exp

(
−αθ

B
− (x + 2θ − αt)2

4Bt

)) (8)

Results for normalization by nk
L instead of NL

In case of couplings normalized by the number
of leading agents in a patch k, nk

L, instead of the size
of the leading group NL, the effective drift terms are, for:
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Reward coupling: α̃k
F (t) = α− pk − κrζ

k

Pulsatile coupling: α̃k
F (t) = α− pk + κd

Pk

L
(t)

Qk

L
(t)

− κa
Pk

′

L
(t)

Qk′

L
(t)

Diffusive coupling: α̃k
F (t) = α− pk − κk

diff

〈
xk

L

〉

Qk

L

(
t
)

These effective drift terms are then used to compute
the different distributions and metrics. See supple-
mentary Fig. S1 for the dynamics of these couplings
normalized by nk

L.
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(b) Pulsatile(a) Counting size

(c) Reward (d) Diffusive

FIG. S1. Effect of L group size and normalization by nk
L. Best patch metrics: equilibrium leaving time distribution P 1

F,eq,

equilibrium accuracy Q1
F,eq, equilibrium patch residence time T 1

F,eq, and cohesion C
1
F . (a) Effect of L group size NL for theory

- numerical simulations match in counting coupling. Parameters are κc = 0.2 s−1, η = 0.25 NF = 200, 20 simulations,
dt = 0.001 s. (b) Pulsatile coupling metrics as a function of the departure strength parameter κd for different arrival strength
parameter κa values. Parameters are NL = 60000, NF = 2000, 2 simulations, dt = 0.02 s. (c) Reward coupling metrics as
a function of the communicated reward rates in patch 1 ζ1, for different communicated reward rates in patch 0 ζ0 values.
Parameters are κr = 0.5, NL = 2000, NF = 2000, 2 simulations, dt = 0.02 s. (d) Diffusive coupling metrics as a function of
the diffusive strength parameter in patch 1 κ1

diff, for different diffusive strength parameter in patch 0 κ0
diff values. Parameters

are NL = 10000, NF = 2000, 2 simulations, dt = 0.01 s. Lines correspond to theoretical predictions and dots to numerical
simulations. Error bars correspond to the standard deviation.


