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Controlling tissue size by active fracture
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Groups of cells, including clusters of cancerous cells, multicellular organisms, and developing
organs, may both grow and break apart. What physical factors control these fractures? In these
processes, what sets the eventual size of clusters? We develop a framework for understanding
cell clusters that can fragment due to cell motility using an active particle model. We compute
analytically how the break rate of cell-cell junctions depends on cell speed, cell persistence, and
cell-cell junction properties. Next, we find the cluster size distributions, which differ depending
on whether all cells can divide or only the cells on the edge of the cluster divide. Cluster size
distributions depend solely on the ratio of the break rate to the growth rate—allowing us to predict
how cluster size and variability depend on cell motility and cell-cell mechanics. Our results suggest
that organisms can achieve better size control when cell division is restricted to the cluster boundaries
or when fracture can be localized to the cluster center. Our results link the general physics problem
of a collective active escape over a barrier to size control, providing a quantitative measure of how
motility can regulate organ or organism size.

How does an organ or an organism control its size?
Size is thought to be tightly regulated by feedbacks con-
trolling cell division [1]. However, two recent experiments
suggest a different possibility—that the size of a group
of cells can arise from a competition between growth,
which tends to make the group larger, and random cell
motility, which can make the group fracture into multiple
pieces, reducing group size. In the metazoan Trichoplax

adhaerens, asexual reproduction by fission is driven by
motility-induced fractures [2]. Similarly, germline cysts
in mice are formed by a combination of cell division and
fracture of intercellular bridges by random cell motil-
ity [3]. These mechanisms are more reminiscent of how
cancerous cells can break from an invading front [4–6]
than a well-regulated organism. Can motility-driven frac-
ture reliably regulate the size of a group of cells? Both T.

adhaerens and germline cysts show significant variability
in size [2, 3]. What physical factors control the group
size and its variability?

We argue that the size of cell clusters controlled by
fracture is set by competition between the break rate
of cell-cell junctions kb and the cell division rate kd. We
model break rate kb from a mechanical perspective, using
a simple one-dimensional model of cells as active particles
connected by springs. The break rate depends on typical
cell speed, cell-cell junction strength, and the cell’s per-
sistence time. We then develop models of cluster growth
and fracture. We derive the exact steady-state cluster
size distribution, finding that cluster sizes depend solely
on the ratio kb/kd, allowing us to link cluster size to cell
adhesion and motility. The quality of cluster size control
can be improved if only cells on the edge of the cluster
divide or if only cell-cell junctions near the cluster middle
can fracture.

Mechanics.—We model our cell cluster as a one-
dimensional chain of cells. This geometry is reasonable

for the germline cysts [3], and is often found in cells con-
fined in extracellular matrix [5–8]. One dimension may
be appropriate for T. adhaerens when it takes on an elon-
gated string-like shape [2], though a higher-dimensional
model is necessary for a full study of T. adhaerens. We
treat our chain of cells as self-propelled active particles
with positions {xn} connected by springs [Fig. 1(a)], as-
suming an overdamped environment:

ẋn = −µ∇nΦ+ vn(t), (1)

where µ is the particle mobility and Φ =
(1/2)k

∑

〈i,j〉 (|xi − xj | − ℓ0)
2

is the cell-cell interac-
tion energy. Here, k is the spring constant, ℓ0 is the
natural length of the springs, and 〈i, j〉 denotes the
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FIG. 1. (a) Illustration of the active chain model. Cells are
connected by springs; each cell has active velocity vn. (b)
Variance of the spring stretch 〈δℓ2n〉 as a function of µkτ .
Gray dashed line is the thermal variance 〈δℓ2th〉 = D/µk. We
change µkτ by varying τ while fixing µk in the simulations.
Red dashed line is the two-particle result 〈δℓ2〉2. (c) Mean
escape time τesc = 1/kb. Empty circles are simulation results
with N = 1000 cells; solid lines are theory, Eq. (4).
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summation over nearest neighbors. The active velocities
vn—the velocities the cell would have in the absence
of cell-cell interactions—are Ornstein-Uhlenbeck (OU)
processes [9]:

τ v̇n = −vn +
√
2Dξn(t), (2)

where ξn(t) are independent, zero-mean, unit-variance
Gaussian white noises. τ is the persistence time of
the cell, while D controls the typical cell speeds—
vn have mean zero and correlations 〈vn(t)vn′ (t′)〉 =
δnn′(D/τ)e−|t−t′|/τ if t, t′ ≫ τ . In the limit τ → 0, the
active velocities vn reduce to Gaussian white noises with
correlations 〈vn(t)vn′ (t′)〉 = δnn′2Dδ(t−t′)—in this limit
the system is in thermal equilibrium, but will be out of
equilibrium for a finite τ .
What is the mean first time to rupture for a given link,

i.e., the time required for the spring to be stretched to
a specified threshold? Our initial intuition was that the
rupture rate within a cluster would be the same as that of
a two-particle link, as in thermal equilibrium. To explore
this, we first compute the variance of the stretched length
δℓ = ℓ − ℓ0 (where ℓ is the distance between the parti-
cles) in the two-particle case. Extending the approach of
Ref. [10], we can map this problem to an inertial Brown-
ian particle in a harmonic potential U(δℓ) = µkδℓ2 expe-
riencing a friction η = 1+2µkτ , and an effective tempera-
ture kBTeff = 2D/η (see the Supplemental Material [11]).
The distribution of δℓ in the steady state is Boltzmann-
like ∼ exp(−U/kBTeff), i.e., a Gaussian distribution with
zero mean and variance 〈δℓ2〉2 = kBTeff/U

′′ = D/µk(1+
2µkτ). The subscript indicates this is the two-particle
result. When τ = 0, 〈δℓ2〉2 approaches the thermal equi-
librium solution 〈δℓ2th〉 = D/µk. If the spring breaks
when stretched beyond a critical length δℓb, the mean
escape time can be estimated using standard Kramers’
theory. For small effective temperatures, the time for
the pair to break is given by τpairesc = τ0 exp(∆U/kBTeff) =
τ0 exp[µkδℓ

2
b(1+2µkτ)/2D], where τ0 is a subexponential

correction [10, 12–15].
For a long chain of N ≫ 1 cells, we use a discrete

Fourier transform to compute the variance of δℓn = ℓn −
ℓ0, where ℓn = xn+1 − xn are the interparticle distances
(see SM [11]). We find

〈δℓ2n〉 =
D

µk
√
1 + 4µkτ

, (3)

different from the two-particle result 〈δℓ2〉2 at large µkτ
[Fig. 1(b)]. Notably, 〈δℓ2n〉 = 〈δℓ2th〉 when τ → 0, but
〈δℓ2n〉 also converges to the two-particle result 〈δℓ2〉2 when
0 < µkτ ≪ 1, as shown in Fig. 1(b). This implies
that when µkτ is small but finite, the system resides
in an effective equilibrium regime [16], and such a con-
vergence can be understood through a modified equipar-
tition theorem (see SM [11]). In the steady state, the
distribution of δℓn follows a Gaussian form, Ps(δℓn) ∼

exp(−δℓ2n/2〈δℓ2n〉). The escape rate will be proportional
to the probability density at the breaking length Ps(δℓb),
yielding [10]

kb = τ−1
0 exp

(

−µkδℓ2b
√
1 + 4µkτ

2D

)

, (4)

where we have found the subexponential correction τ0 =
πη/µk leads to a good fit to the escape time from our sim-
ulation of active cell motion [see Fig. 1(c)]. Time to rup-
ture increases with a higher break threshold δℓb, stiffer
springs, or greater cell persistence, while it decreases if
cells are faster (larger D). Unlike the two-particle prob-
lem, where the mean escape time grows exponentially
with k in equilibrium and k2 in the µkτ ≫ 1 nonequilib-
rium limit, it grows here exponentially in k3/2 for large
k.
Growth models.—We have described an active chain

in which links can break at a rate kb, while cells can
also divide at some rate, leading to an increase in the
chain length. What controls the cluster size, and how
broad is its distribution? As in germline cysts, where all
cells can divide [3], we first assume that each cell divides
independently with the same division rate kd. To analyze
the distribution of the chain length, we randomly pick
one of the daughter chains to track once fragmentation
occurs. The selected daughter chain then continues to
grow and rupture in the same manner as the original
chain, as illustrated in Fig. 2(a).
Assuming pn(t) gives the probability that the length

of the tracked chain at time t is n, the master equation
governing such a process is, generalizing [17],

dpn
dt

=
∑

m>n

kbpm − pn
∑

i+j=n

kb + kd(n− 1)pn−1 − kdnpn,

(5)
where the first two terms on the right-hand side de-
scribe the fragmentation process while the last two terms
represent the growth of the chain through cell division.
∑

m>n kbpm corresponds to the rate of obtaining an n-
mer through the fragmentation of a longer chain. Though
there are two possible rupture points (at n and m − n)
when an m-mer breaks to form an n-mer, the random
selection of one daughter chain causes the prefactors to
cancel out. In the second term,

∑

i+j=n kb = (n − 1)kb
describes the rupture of the n-mer chain into two daugh-
ter fragments of lengths (i, j), where (n − 1) is exactly
the number of connections within an n-mer chain. The
two terms for the growth process give the rates that an
(n−1)-mer grows into an n-mer, and an n-mer grows into
an (n+1)-mer, respectively. Using generating functions,
we find the steady-state solution:

pn =
γ

(1 + γ)n
, (all-cell growth) (6)

where γ ≡ kb/kd is the ratio of the break rate to the
division rate [11].
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(d)
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FIG. 2. Growth and fracture of cell groups under different
assumptions. (a) All cells can divide. After a rupture occurs,
one daughter chain is selected at random. (b) Only the cell
at one end of the chain can divide. (c) Only the cells at
the two ends can divide. (d) Potential rupture points when
a minimum cluster size Nmin is enforced. Rupture can only
occur when the chain length n > 2Nmin. Red cells have a non-
zero division rate kd, while blue cells have a division rate of
zero; gray crosses indicate actual or potential rupture points.

So far, we have assumed that all cells in the chain can
divide. However, cell division may be regulated by me-
chanical and spatial constraints. Cells with fewer neigh-
bors or experiencing lower compression are more likely
to divide—“contact inhibition of proliferation” [18]. As
an extreme limit of contact inhibition, we develop alter-
nate models where only cells at the chain ends divide.
First, consider the case where only one end of the chain
grows—e.g., if the other end is constrained by a barrier.
In contrast to the all-cell growth model, where the total
growth rate scales as kdn (proportional to chain length),
in one-end growth, the total growth rate is fixed at kd
[Fig. 2(b)]. Here, the master equation becomes

dpn
dt

=
∑

m>n

kbpm − pn
∑

i+j=n

kb + kdpn−1 − kdpn. (7)

We find that the steady-state solution is

pn = nγ1−n
/

(

1 + γ

γ

)

n

, (one-end growth) (8)

where (x)n = x(x+1)(x+2) · · · (x+n−1) is the Pochham-
mer symbol [11]. When γ ≪ 1, pn can be approximated

by a Rayleigh distribution nγe−γn2/2 with mode 1/
√
γ.

If the chain can grow from both ends, i.e., only the two
cells at the two ends can divide, the total growth rate is
2kd, except when n = 1 (the chain has only one particle)
where the total growth rate is kd [Fig. 2(c)]. For this
case, the steady-state solution is [11]

pn =







γ/(1 + γ)n, n = 1, 2,

2 + γ

2(1 + γ)

n(γ/2)1−n

((2 + γ)/γ)n
, n > 2.

(two-end)

(9)

In the limit of rare breaking γ ≪ 1 when clusters almost
always have two ends, pn converges to Eq. (8) with a
doubled division rate.

Figure 3(a) shows our theoretical predictions pn for the
three growth models, validated by Monte Carlo simula-
tions of chain evolution [11]. If all cells can divide, the
cluster size distribution is extremely broad with a peak
at n = 1; if only end cells divide, we have a better-defined
peak at n ≈ 1/

√
γ.

Larger growth rates relative to break rates lead to
larger clusters, but does this also result in greater vari-
ability of cluster size? With the distributions pn, we can
compute the means and variances of n [Figs. 3(b) and
3(c)]. In the limit γ → 0, fragmentation is rare, leading
to both increased growth and increased variability in all
models, while in the limit γ ≫ 1, fragmentation domi-
nates, and clusters become single-celled. To quantify the
relative variability, we plot the ratio of the standard de-
viation of cluster size to the mean (coefficient of variation
CV) in Fig. 3(d). We see a key difference between the
end-growth models and the all-growth model when γ ≪ 1
and cluster sizes are large—CV approaches 1 for the all-
growth model, while it approaches

√

(4− π)/π ≈ 0.523
for end-growth. The CV for end-growth is roughly half
that for all-growth, indicating better size control. If the
interior cells can still divide, but at a lower rate, the CV
is intermediate between end- and all-growth [11].
We have so far assumed all rupture rates to be iden-

tical, but secreted factors [19] or stress [20] may vary
across the cluster. As a simple model of these effects, we
assume that only the junctions sufficiently far from the
cluster edge break. This is equivalent to introducing a
minimum cluster size Nmin [Fig. 2(d)]. Once we include
the constraint that all clusters are larger than Nmin, we
cannot solve the master equation analytically. However,
in the steady state, we can write it simply as a matrix
equation Kp = 0 which can be easily solved numerically
to find p [11]. This method leads to good agreement with
stochastic simulations [Fig. 3(e)].

In the absence of a minimum cluster size, large clus-
ter sizes always come with an unavoidable variability
[Figs. 3(b)–3(d)], while large rupture rates γ ≫ 1 lead
to sizes being precise but 〈n〉 → 1. Given a minimum
cluster size, it’s possible to have precise size control and
finite clusters [Figs. 3(e)–3(h)]. In the limit γ ≫ 1, cell
clusters grow from size Nmin to 2Nmin, then fragment
in half. This is very similar to the dynamics of a single
cell’s growth, akin to a sizer model [21, 22], and leads to
distributions pn [Fig. 3(e)] like those of single cell size dis-
tributions [21–24]. During each growth cycle t ∈ [0, tc],
we have 〈n〉 = Nmine

kdt if all cells can divide, where
tc = ln 2/kd is the time required to double the chain’s
length. Over a long trajectory, any moment within the
chain’s lifecycle is equally likely to be sampled [21]. If t is
uniformly distributed in one cycle [0, tc], then pn should
obey a log-uniform distribution, as shown in Fig. S1(e)
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FIG. 3. (a) Steady-state distribution of chain length pn for the three growth modes, with γ = 0.1 for the all-cell growth and
two-end growth models, and γ replaced by γ′ = γ/2 = 0.05 for the one-end growth model (doubled division rate). Crosses
represent simulation results, while lines correspond to theoretical predictions. Panels (b)–(d) display the mean 〈n〉, variance

〈n2〉 − 〈n〉2, and coefficient of variation CV = σn/〈n〉, where σn =
√

〈n2〉 − 〈n〉2. Purple dashed lines are the one-end result
after doubling the division rate [γ → γ′ = γ/2 in Eq. (8)], while the purple dotted lines show Eq. (8). (e) Steady-state
distribution pn when minimum cluster size Nmin = 200. Crosses are simulation results, lines are theoretical predictions by
the matrix method [11]. Panels (f)–(h) show how mean, variance, and CV vary with Nmin in the all-cell growth model. Gray
dashed lines show predictions assuming log-uniform distributions [Eq. (10)].

in the Supplemental Material [11]:

pn =
1

n ln 2
, n ∈ [Nmin, 2Nmin], (10)

where the mean is 〈n〉 = Nmin/ ln 2 and the variance
is 〈n2〉 − 〈n〉2 = (3 ln 2 − 2)〈n〉2/2, i.e., the coefficient
of variation CV is independent of Nmin, as shown in
Figs. 3(f)–3(h). Similarly, if only edge cells can divide,
the chain length increases linearly with time. pn is then
uniformly distributed in [Nmin, 2Nmin], leading to a mean
of 3Nmin/2 and a variance of N2

min/12. When γ ≫ 1, we
see mean cluster size scales as Nmin and the variance
scales as N2

min, but the CV goes to a nonzero constant as
γ ≫ 1, and is smaller than for clusters with no minimum
size. If we weaken the strict assumption of a minimum
cluster size by assuming a basal break rate k0b for all junc-
tions, even small k0b creates a relevant population of small
clusters [11].
Combining mechanics and statistics.—According to

our theory, the break rate kb depends on four key param-
eters related to cell motility and mechanical properties of
the cluster—τ , µk, D, and δℓb. While these parameters
have not yet been measured simultaneously for a single
cell type, we can provide reasonable estimates. Experi-
ments measuring velocity correlations of HaCaT cells [25]
give a persistence time τ of roughly 0.5 hour and D of
around ∼ 100µm2/h, leading to an active velocity vn
on the order of

√

D/τ ≈ 15µm/h. The mobility µ and
spring constant k together create a relaxation timescale

1/µk, estimated to be approximately 15min based on
measurements for MDCK cells [8] (details in SM [11]).
According to Eq. (4), the break rate kb is highly sensi-
tive to the critical break length δℓb. As a rough guess,
δℓb = 5µm yields a mean escape time τesc ≈ 17.6 h, or a
break rate of approximately 0.057 h−1. This is the right
order of magnitude for experiments in germline cyst frac-
ture [3] and cancer cell dissociation [5, 6]. We use these
values as our default parameters (Table S1 in [11]).

Our results suggest that clusters of cells may regulate
their size not only by changing division rate but also
by changing cell motility or persistence or cell-cell adhe-
sion. Recent experiments found that germline cells have
motility that decreases as cysts develop, decreasing frac-
ture over time and controlling cyst size [3]. How much
does a change in cell properties change cluster size? The
break rate and division rate of germline cysts are approx-
imately 0.02 h−1 and 0.04 h−1 [3], i.e., the ratio γ ≈ 0.5,
corresponding to a mean cluster size 〈n〉 ≈ 3 in the all-
cell growth model. (We note this is not the value found
by Ref. [3]—their germline cysts do not reach the steady
state. If we simulate for only 5 division times, we get
similar results to their experiment and model [11].) For
germline cysts, we set δℓb = 6.5µm to match kb to exper-
iment. Cell motility and cell-cell adhesion change kb and
thus change γ, changing cluster size distributions. For in-
stance, if cells double their adhesiveness by increasing k,
γ decreases to approximately 0.0067, leading to a larger
cluster size 〈n〉 ≈ 150 with significantly higher variability



5

σn ≈ 150. At long developmental times, the break rate of
germline cysts drops to under 1/190 h−1, which Ref. [3]
attributes to changes in cell motility. We find this drop
does not require a dramatic change in cell speed. To de-
crease the break rate to this level, D must decrease by
more than a factor of 1.5, i.e., the typical speed of cells
needs to decrease by more than a factor of 1.2.

Discussion.—Our work provides a route to understand
quantitatively how the size of groups of cells ranging from
cancer to organs to organisms can emerge from balanc-
ing growth and random cell motility. Our model shows
that differences in where cell division and rupture occur
can lead to different characteristic distributions of cluster
sizes, and that biologically relevant regulation of clus-
ter size can occur from relatively small changes in cell
motility. From a physics standpoint, our results show
that even in a very simple one-dimensional active ma-
terial, the collective rupture of a link is nontrivial and
can’t be understood from the properties of a single pair
of cells—unlike in an equilibrium version of our model.
This qualitative difference with the simple active trap
model [10] suggests that rupture rates may be sensitive to
other collective features, e.g., differing between branched
and linear chains of cells, or reflecting the degree of cell-
cell correlation of velocities.

We have generally chosen analytic tractability over
biological detail in our approach to capture the key
elements of this problem. There are many possible
generalizations. These include polymer networks within
the cell [26], cell-matrix interactions [27, 28], cell
shape [6, 29] and its coupling to division [18, 30], or
mechanosensitive feedback [31], as well as cell-cell inter-
actions like contact inhibition of locomotion [32–34] and
collective alignment of cell polarity [8, 35]. Determining
to what extent these features only change the relevant
energy barrier, rescaling k, or qualitatively change our
picture is an important open question.
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I. RATES FOR BREAKING CHAINS USING

KRAMERS’ THEORY

A. Results for two particles

The rupture rate of a pair of cells can be found straight-
forwardly through a very simple generalization of the
approach of Ref. [1], who mapped overdamped active
Ornstein-Uhlenbeck particles (AOUPs) in a harmonic
well to an equivalent thermal system. Here, we show
that the same holds for a pair of harmonically bound
AOUPs. For a pair of particles {x1, x2} with a distance
ℓ = x2 − x1 between them, we have

ẋ1 = µkδℓ+ v1,

ẋ2 = −µkδℓ+ v2,

where δℓ = ℓ − ℓ0 is the stretched length of the spring.
Thus we can obtain δ̇ℓ = −2µkδℓ+ δv, where δv = v2 −
v1 is the solution of τ δ̇v = −δv +

√
4Dξ(t)—i.e., δv is

still an Ornstein-Uhlenbeck process but with correlation
〈δv(t)δv(t′)〉 = (2D/τ)e−|t−t′|/τ . By a standard change
of variable p = −2µkδℓ + δv, we obtain a new set of
Langevin equations for a thermal Brownian particle with
displacement δℓ [1, 2]:

{

δ̇ℓ = p,

τ ṗ = −ηp− U ′ +
√
4Dξ(t),

(S1)

where the potential U(δℓ) = µkδℓ2 is harmonic, the
persistence time τ is acting as a mass, and the drag
η = 1 + 2µkτ . Thus an effective temperature can be
defined by

kBTeff :=
2D

η
=

2D

(1 + 2µkτ)
. (S2)

Then we can write out the Fokker-Planck equation (aka
Klein-Kramers equation) from Eq. (S1):

∂tP (δℓ, p, t) = −p∂δℓP +
1

τ
∂p(ηp+ U ′)P +

2D

τ2
∂2
pP,

and the stationary solution is given by a Boltzmann-like
measure

Ps(δℓ, p) = Z exp

(

− U

kBTeff
− τp2

2kBTeff

)

, (S3)

∗ Contact author: wei.wang@jhu.edu
† Corresponding author: bcamley@jhu.edu

where Z is the partition function. The variance of δℓ
follows directly,

〈δℓ2〉 = kBTeff

U ′′
=

D

µk(1 + 2µkτ)
.

From standard Kramers’ theory, for a trap in the po-
tential U(δℓ) of size δℓb, the mean escape time, when the
effective temperature is small compared to the potential
barrier height ∆U = U(δℓb)− U(0), is given by [3–5]

τesc =
2π

ω0
exp

(

∆U

kBTeff

)

= π

√

2τ

µk
exp

[

µkδℓ2b(1 + 2µkτ)

2D

]

,

where ω0 =
√

U ′′/τ =
√

2µk/τ is the undamped angular
frequency of the system. The subexponential correction
τ0 = 2π/ω0 applies in the limit of moderate friction but
may vary under different friction regimes [4, 6].

B. Results for a long chain

We can explicitly write Eq. (1) in the main text as:

ẋn = µk(xn+1 − 2xn + xn−1) + vn.

Assuming that xn(t) = nℓ0 + δxn(t), where δxn repre-
sents the deviation of xn around the lattice point nℓ0,
we find that δxn obeys the same equation as xn:

˙δxn = µk(δxn+1 − 2δxn + δxn−1) + vn. (S4)

For a long chain with N ≫ 1 particles, it is simpler to
solve for the fluctuations of cell-cell distances if we im-
pose periodic boundary conditions, δxn+N = δxn. In
principle this could change the amplitude, but we find
that in our simulations in Sec. IVA with free bound-
aries at the end of the chain, the variance 〈δℓ2n〉 does not
depend on n when the number of cells N is large. An
alternate approach would be to use a continuum approx-
imation (δxn+1 − 2δxn + δxn−1) ≈ ∂2δx/∂n2 as in the
Rouse model [7]. We have done this, and the results can
well describe the long-wavelength behaviors, but when
µkτ ≪ 1, the high-frequency terms become more and
more important, and such a long-wavelength approxima-
tion breaks down. Therefore, we introduce a standard
discrete Fourier transform to the equations of motion for
an N -particle chain, as given in Eq. (S4):

x̃q =
1

N

N−1
∑

n=0

δxne
−iqn,

http://arxiv.org/abs/2503.03126v1
https://ror.org/00za53h95
https://ror.org/00za53h95
mailto:wei.wang@jhu.edu
mailto:bcamley@jhu.edu
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where q = 2πm/N and the index m = 0, 1, · · · , N − 1.
The inverse transform is given by δxn =

∑

q x̃qe
iqn.

By substituting the inverse transforms into the above
Eq. (S4) and matching terms for each mode q, we can
then obtain

˙̃xq = −µkqx̃q + ṽq, (S5)

where kq = 2k(1− cos q) and ṽq = (1/N)
∑N−1

n=0 vne
−iqn

is the Fourier amplitude of vn. The mean is simply 〈ṽq〉 =
0, and the time correlation is

〈ṽq (t)ṽ∗q′ (t′)〉 =
1

N2

N−1
∑

n=0

N−1
∑

n′=0

〈vn(t)vn′(t′)〉e−iqn−iq′n′

= δqq′
D

Nτ
e−|t−t′|/τ , (S6)

where we have used the mean and time correlation of vn,
along with the orthogonality relation

∑N−1
n=0 ei(q−q′)n =

Nδqq′ . Equation (S5) can be solved by using the expo-
nential ansatz δx̃q = Rq(t)e

−µkqt. When t ≫ 1/µkq, we
have

x̃q(t) =

∫ t

0

dt′ e−µkq(t−t′)ṽq(t
′).

Thus, for the zeroth mode x̃0 = (1/N)
∑

n δxn (center
of mass), which is special because k0 = 0, we obtain
〈x̃0〉 = 0 and 〈|x̃0(t)|2〉 = 2Dt/N . For other modes with
q 6= 0, 〈x̃q〉 = 0 and

〈x̃q(t)x̃
∗
q′ (t)〉 = δqq′

D

Nµkq(1 + µkqτ)
. (S7)

Ref. [8] shows that active Brownian particles (ABPs)
exhibit a similar relationship, as their active velocities
share the same Gaussian colored noise temporal corre-
lations as those of AOUPs. Then we can calculate the
stretched lengths of the springs by δℓn = xn+1−xn−ℓ0 =
δxn+1 − δxn =

∑

q 6=0 x̃qe
iqn(eiq − 1), where the mean is

simply 〈δℓn〉 = 0, and the variance is

〈δℓ2n〉 =
∑

q 6=0

∑

q′ 6=0

〈x̃q x̃
∗
q′ 〉ei(q−q′)n(eiq − 1)(e−iq′ − 1)

=
D

Nµk

∑

q 6=0

1

1 + 2µkτ(1− cos q)
.

In the limit N ≫ 1, we can replace the sum by integral

∑

q 6=0

1

1 + 2µkτ(1 − cos q)
≈ N

2π

∫ 2π

0

dq

1 + 2µkτ(1− cos q)
,

which equals N/
√
1 + 4µkτ . Then, we obtain the vari-

ance of δℓn given in the main text:

〈δℓ2n〉 =
D

µk
√
1 + 4µkτ

. (S8)

Thus, in the steady state, the marginal distribu-
tion of δℓn follows a Gaussian distribution Ps(δℓn) =
Z exp(−δℓ2n/2〈δℓ2n〉) since each δℓn is the sum of Gaus-
sian processes, and each δxn is similarly a Gaussian pro-
cess. In the small noise limit, the system rapidly relaxes
from Ps(δℓn) to a quasi-stationary state described by
PQS(δℓn, t) ∼ Ps(δℓn) e

−t/τesc , indicating that the escape
process is Poissonian with a rate of 1/τesc [1]. Therefore,
the mean escape time follows an effective “Arrhenius law”
where the rate of rupture is proportional to the probabil-
ity density at the breaking stretch δℓb, τ

−1
esc ∼ Ps(δℓb) [1].

We then can find the mean escape time is given by

τesc ∼ exp

(

µkδℓ2b
√
1 + 4µkτ

2D

)

.

We propose the result

τesc =
2πη

ω2
0τ

exp

(

µkδℓ2b
√
1 + 4µkτ

2D

)

. (S9)

We originally derived this prefactor as
2πη/

√

U ′′(0)|U ′′(δℓb)|, which is the prefactor appropri-
ate to an overdamped thermal escape [4]. However, its
application to this case, where the potential is a cusp,
is somewhat ad hoc—we view this as a reasonable first
approximation, and it has a good fit to the simulated
rates. While the prefactor may be slightly different
under different parameter regimes, the leading behavior
for small effective temperatures is dominated by the
exponential term [1]—so the prefactor is essentially
only serving to set the units of the problem, and its
magnitude can be neglected.

C. When is the two-cell result the N-cell

result?—an effective equipartition theorem

For the thermal equilibrium case where τ = 0, the
variances of stretched lengths for both a cell pair 〈δℓ2〉
and a chain 〈δℓ2n〉 are identical, given by 〈δℓ2th〉 = D/µk.
This result can be easily verified using the equipartition
theorem. For a long chain, the energy of the system is
expressed as Φ = (1/2)k

∑

n δℓ
2
n. Due to translational

symmetry in the limit N ≫ 1, we have

〈Φ〉 = N

2
k〈δℓ2n〉 =

N

2
kBT,

where kBT = D/µ from the Einstein relation, thus
we obtain 〈δℓ2n〉 = D/µk. For a particle pair, Φ =
(1/2)k(x2 − x1 − ℓ0)

2 = (1/2)kδℓ2, we then get the same
result by applying the equipartition theorem.
However, we note that the results for both the pair

and the chain also converge to the same non-equilibrium
value when µkτ ≪ 1 because

√
1 + 4µkτ → 1 + 2µkτ

for small µkτ . Why should an active system with a fi-
nite persistence time τ (nonequilibrium) still show that
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〈δℓ2〉pair = 〈δℓ2n〉chain, as if some equipartition theorem
applied? In Ref. [9], Fodor et al. found that for a system
of interacting AOUPs, at small but finite persistence time
τ , there exists an effective equilibrium regime—the par-
ticle dynamics still respects detailed balance and time-
reversal symmetry—the entropy production rate van-
ishes. Rather than defining an effective temperature as
in Sec. IA, the authors stated that the system could be
equivalently described using an effective potential, while
defining kBT = D/µ [9, 10]:

Φ̃ = Φ + τ
[µ

2
(∇nΦ)

2 −D∇2
nΦ

]

+O(τ2). (S10)

Note that we have restored the mobility µ which was
set to one in Refs. [9, 10], and ∇n ≡ ∂/∂xn denotes
the derivative with respect to xn, not δℓn. The Einstein
summation convention is applied here, i.e., (∇nΦ)

2 =
∑

n(∂xn
Φ)2 and∇2

nΦ =
∑

n ∂
2
xn
Φ. For a particle pair, we

have (∇nΦ)
2 = 2k2(x2 −x1− ℓ0)

2 = 2k2δℓ2, and ∇2
nΦ =

2k, which is a constant and can therefore be disregarded.
Applying equipartition on this effective potential,

〈Φ̃〉 = 1

2
k(1 + 2µkτ)〈δℓ2〉 = 1

2
kBT,

the variance derived in Sec. I A follows immediately. For
a long chain, it yields (∇nΦ)

2 = k2
∑

n(xn+1 − 2xn +
xn−1)

2 = k2
∑

n(δℓn+1 − δℓn)
2, and ∇2

nΦ = 2Nk, which
is also a constant. Therefore, we have

N

2
k
[

〈δℓ2n〉+ 2µkτ
(

〈δℓ2n〉 − 〈δℓnδℓn+1〉
)]

=
N

2
kBT,

where we have used the translational symmetry of the
system. We can directly calculate 〈δℓnδℓn+1〉, the corre-
lation between adjacent stretched lengths as

∑

q 6=0

∑

q′ 6=0

〈x̃q x̃
∗
q′〉eiqn−iq′(n+1)(eiq − 1)(e−iq′ − 1)

=
D

Nµk

∑

q 6=0

cos q

1 + 2µkτ(1− cos q)

≈ D

2πµk

∫ 2π

0

dq
cos q

1 + 2µkτ(1 − cos q)

= 〈δℓ2n〉
1 + 2µkτ −√

1 + 4µkτ

2µkτ
.

Since
√
1 + 2x = 1 + x − x2/2 + O(x3), we have

〈δℓnδℓn+1〉 ≈ µkτ〈δℓ2n〉 ≪ 〈δℓ2n〉 when µkτ ≪ 1. Thus,
the above equation for a chain yields the two-particle re-
sult 〈δℓ2n〉 ≈ D/µk(1 + 2µkτ) when µkτ ≪ 1.

II. SOLVING THE MASTER EQUATION FOR

DIVISION AND FRACTURE WITH

GENERATING FUNCTIONS

A. All particles can divide

To solve the master equation (5) in the main text, we
first define a generating function as

G(z, t) :=
∑

n>1

pn(t)z
n. (S11)

We then multiply the master equation by zn and sum
over all n, so the left-hand side becomes ∂G(z, t)/∂t. On
the right-hand side, the first term is

kb
∑

n>1

zn ·
∑

m>n

pm

= kb
∑

m>1

pm ·
m−1
∑

n=1

zn = kb
∑

m>1

pm
z − zm

1− z

= kb
z

1− z

∑

m>1

pm − kb
1

1− z

∑

m>1

pmzm

=
kbz

1− z
(1 − p1(t))−

kb
1− z

(G(z, t)− p1(t)z)

=
kb

1− z
(z −G(z, t)) ,

where we interchange the order of summation in the
first step, and we have used the normalization condition
∑

m pm = 1 in the penultimate step. The second term is

−kb
∑

n>1

zn(n− 1)pn = −kb

(

z
∂G

∂z
−G

)

,

and the third term is

kd
∑

n>1

zn(n−1)pn−1 = kdz
2 ∂

∂z

∑

n>1

pn−1z
n−1 = kdz

2∂G

∂z
,

where we have used the condition pn(t) ≡ 0 when n = 0.
The last term is

−kd
∑

n>1

znnpn = −kdz
∂G

∂z
.

Hence, we obtain a partial differential equation (PDE)
for the generating function:

∂G

∂t
= (kdz−kb−kd)z

∂G

∂z
−kb

z

1− z
G+kb

z

1− z
, (S12)

where the steady-state solution is

G(z) =
kb − (1 − z)C

kb + kd − kdz
, (S13)

where C is a constant we have to set. Expanding G(z)
in powers of z, we get

G(z) =
kb − C

kb + kd
+

kb(C + kd)

(kb + kd)2
z +O(z2).
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By construction, our function G(z) has no zeroth-order
term, so the constant must be C = kb. We could also
find this constant by explicitly solving the original master
equation for p1: dp1/dt =

∑

m>1 kbpm − kdp1 = kb(1 −
p1)− kdp1. In the steady state, setting dp1/dt = 0 gives
p1 = kb/(kb + kd). This result holds for all three growth
models, as the master equation for n = 1 remains the
same in each case. Matching the first-order coefficient to
p1 gives the same value of C = kb. Using this value of C
in Eq. (S13), we find the steady-state generating function
is given by

G(z) =
kbz

kb + kd − kdz
=

∑

n>1

kb
kd

(

kd
kb + kd

)n

zn. (S14)

We can read the value of pn directly from this formal
series, finding Eq. (6) in the main text:

pn =
kb
kd

(

kd
kb + kd

)n

=
γ

(1 + γ)n
, (S15)

where we define the ratio γ := kb/kd. When γ → 0,
pn ≈ γ(1 − nγ); when γ ≫ 1, pn ≈ 1/γn−1 decreases
exponentially with n. The first two moments are

〈n〉 =
∑

n

pnn =
1 + γ

γ
, (S16a)

〈n2〉 =
∑

n

pnn
2 =

(1 + γ)(2 + γ)

γ2
, (S16b)

and the variance is

〈n2〉 − 〈n〉2 =
1 + γ

γ2
=

〈n〉
γ

. (S17)

We can also calculate the coefficient of variation (CV) as

CV :=
σn

E[n]
=

√

〈n2〉 − 〈n〉2
〈n〉 =

1√
1 + γ

, (S18)

where σn represents the standard deviation of n, and E[n]
denotes the expected value of n.

B. One-end growth

To solve Eq. (7) in the main text, we can still apply
the generating function method. The first two terms on
the right-hand side are the same as in the all-cell growth
case, but the last two terms after multiplication by zn

and summing over n become

kd
∑

n>1

znpn−1 = kdz
∑

n>1

zn−1pn−1 = kdzG,

and

−kd
∑

n>1

znpn = −kdG.

Hence, the PDE for G(z, t) for the one-end-growth model
is given by

∂G

∂t
= −kbz

∂G

∂z
−
(

kd(1 − z) + kb
z

1− z

)

G+ kb
z

1− z
.

Then the steady-state solution is

G(z) =
(1− z)

z1/γ
ez/γ

(
∫ z

1

x1/γ

(1− x)2
e−x/γdx+ C

)

.

Similarly, we can determine the constant C by matching
the conditions p0 = 0 and p1 = kb/(kb + kd):

C =

∫ 1

0

x1/γ

(1− x)2
e−x/γdx,

so the generating function is given by

G(z) =
(1 − z)

z1/γ
ez/γ

∫ z

0

x1/γ

(1− x)2
e−x/γdx. (S19)

Expanding G(z) around z = 0, we obtain Eq. (8) in the
main text:

pn =
nγ

∏n
m=1(1 +mγ)

=
nγ1−n

((1 + γ)/γ)n
, (S20)

where (x)n = x(x+1)(x+2) · · · (x+n− 1) =
∑n−1

k=0 (x+
k) denotes the Pochhammer symbol. The distribution
pn for one-end growth is shown in Fig. S1(b), where a
distinct peak (or typical scale of n) is observed. When
γ ≫ 1, pn ≈ γ1−n/(n−1)! deceases faster than the all-cell
growth results. Since n = 1 becomes the most probable
outcome when γ is large, statistical quantities such as the
mean and variance should converge to those of the all-cell
growth model. For small γ, to determine the location of
the peak in pn, we compute the ratio:

pn+1

pn
=

n+ 1

n

1

1 + (n+ 1)γ
.

By setting pn+1/pn = 1, we arrive at the equation n(n+
1) = 1/γ, which implies the peak n∗ ≈ 1/

√
γ, and n∗ ≫ 1

when γ ≪ 1. The log-probability function is given by

ln pn = ln(nγ)−
n
∑

m=1

ln(1 +mγ).

For large n and small γ, the sum can be approximated
by

∫ n

0 ln(1 +mγ) dm ≈
∫ n

0 mγ dm = γn2/2. Thus, when
γ ≪ 1, the distribution near the peak n = n∗ can be
approximated as

pn ≈ f(n;σ) = nγe−γn2/2, (S21)

where f(n;σ) is a Rayleigh distribution with mode σ =
1/

√
γ. Therefore, when γ ≪ 1, we can use the saddle-

point approximation to compute the average of anyX(n):

〈X(n)〉 =
∑

n

pnX(n) ≈
∫ ∞

0

pnX(n)dn

≈
∫ ∞

0

f(n;σ)X(n)dn.
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FIG. S1. How the steady-state distributions pn vary with γ and Nmin across different growth models. (a) Steady-state
distribution pn for various values of γ in the all-cell growth model [Eq. (S15)]. (b) Steady-state distribution pn for different γ in
the one-end growth model, where we have doubled the division rate [γ → γ′ = γ/2 in Eq. (S20)]. (c) Steady-state distribution
pn for different γ in the two-end growth model from Eq. (S25). (d) Steady-state distribution pn obtained from the matrix
equation Kp = 0 incorporating different values of minimum cluster size Nmin with γ = 0.1. (e) Steady-state distribution pn
obtained from the matrix equation method for different values of γ with Nmin = 500. The gray dashed line represents the
corresponding log-uniform distribution 1/(n ln 2) within the range [Nmin, 2Nmin].

Thus, the mean and variance of n are directly obtained
from the Rayleigh distribution:

〈n〉 = σ

√

π

2
, 〈n2〉 − 〈n2〉 = 4− π

2
σ2, (S22)

and the coefficient of variation is

CV =

√

〈n2〉 − 〈n2〉
〈n〉 =

√

4− π

π
. (S23)

C. Two-end growth

For the two-end growth scenario, the master equation
is described by Eq. (5) for n = 1 and n = 2, and by
Eq. (7) with a doubled division rate for n > 2:

dpn
dt

=











F(kb) + 0− kdpn, n = 1,

F(kb) + kdpn−1 − 2kdpn, n = 2,

F(kb) + 2kdpn−1 − 2kdpn, n > 2,

where F(kb) = kb
∑

m>n pm − kb(n− 1)pn represents the
fragmentation process which remains unchanged. Using
the generating function method, multiplying the master
equation by zn and summing over n, the generating func-
tion corresponding to F(kb) are just the ones we derived

before. However, the last two terms in the master equa-
tion become

0 + kdp1z
2 + 2kd

∑

n>2

pn−1z
n = −kdp1z

2 + 2kdzG,

and

−kdp1z − 2kd
∑

n>2

pnz
n = kdp1z − 2kdG.

In the steady state, we have p1 = kb/(kb + kd) and
∂G/∂t = 0, so we obtain the equation:

kbz
∂G

∂z
= −

(

2kd(1− z) + kb
z

1− z

)

G+ kb
z

1− z

+
kbkd

kb + kd
z(1− z). (S24)

The solution is given by

G(z) =
(1− z)

z2/γ
e2z/γ

∫ z

0

x2/γ(x2 − 2x+ 2 + γ)

(1 + γ)(1− x)2
e−2x/γdx,

where the integration constant has been set as

C =

∫ 1

0

x2/γ(x2 − 2x+ 2 + γ)

(1 + γ)(1− x)2
e−2x/γdx,
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to match p0 = 0, and p1 = kb/(kb + kd). By expand-
ing G(z) around z = 0, we derive the exact analytical
solution for two-end growth case:

pn =







γ/(1 + γ), n = 1,

2 + γ

2(1 + γ)

n(γ/2)1−n

((2 + γ)/γ)n
, n > 2.

(S25)

Observe that the results are quite similar to the one-
end growth case, but with a doubled division rate 2kd
[equivalent to replacing γ with γ/2 in Eq. (S20)]. When
γ → 0, meaning only growth without fragmentation, the

two scenarios converge. In contrast, when γ ≫ 1, the
chain is most likely to be a monomer (p1 ≈ 1), and pn is
reduced by half compared to the one-end growth scenario
with 2kd for n > 2.

III. GENERALIZATIONS TO THE MODEL

WITH A MATRIX EQUATION METHOD

A general master equation with a minimum cluster size
Nmin and different growth mechanisms can be written as

dpn
dt

= kb
∑

m>n+Nmin

pm − kb max(n− 2Nmin + 1, 0)pn + g(n− 1)pn−1 − g(n)pn, (n > Nmin) (S26)

where we have incorporated in the first term that given a
minimum cluster size Nmin, a cluster of size m can only
break into one of size n if m > n+Nmin. In the second
term, we require that both daughter clusters must satisfy
i, j > Nmin, i.e., this term is

pn
∑

i+j=n
i,j>Nmin

kb = kb max(n− 2Nmin + 1, 0)pn, (S27)

where max acts as an activation function indicating that
the chain can only break once it has grown to at least
2Nmin. In the third and fourth terms of our general mas-
ter equation [Eq. (S26)], g(n) describes how the total
growth rate scales with the length of the chain:

g(n) :=











kdn, all-cell,

kd, one-end,

kd[1 + Θ(n− 2)], two-end,

(S28)

where Θ(x) is the Heaviside step function, with the con-
vention Θ(0) = 1 adopted throughout this paper. Then,
the master equation can be organized as

dpn
dt

= kb
∑

m>n+Nmin

pm + g(n− 1)pn−1 − λ(n)pn, (S29)

where λ(n) := kb max(n−2Nmin+1, 0)+g(n) is the total
transition rate from n-mer state to other states. As a
continuous-time Markov chain, Eq. (S29) can be written
in the matrix form as ṗ = Kp, where K is the generator
on the state space {Nmin, Nmin + 1, Nmin + 2, · · · }. For
simplicity, we decompose K = A + B, where A is a

smaller upper triangular matrix:

Ap =



























0 0 0 · · · kb kb kb · · ·
0 0 0 · · · 0 kb kb · · ·
0 0 0 · · · 0 0 kb · · ·
...

...
...

. . .
. . .

0























































pNmin

pNmin+1

pNmin+2

...
p2Nmin

p2Nmin+1

p2Nmin+2

...





























,

and B is a lower bidiagonal matrix:

B =















−λ(Nmin) 0 0 · · ·
g(Nmin) −λ(Nmin + 1) 0 · · ·

0 g(Nmin + 1) −λ(Nmin + 2) · · ·
0 0 g(Nmin + 2) · · ·
...

...
...

. . .















,

i.e., the main diagonal Bnn = −λ(n) and subdiagonal
Bn+1,n = g(n). Note that the transition-rate matrix
K satisfies the property Knn = −∑

m 6=n Kmn, namely,
the columns of the matrix sum to zero. In the steady
state, we obtain a homogeneous equation Kp = 0. We
can then find the null space of K and normalize it
to obtain the steady-state distribution p, ensuring that
∑

n>Nmin
pn = 1. Note that to solve this equation numer-

ically, we must truncate to a maximum possible cluster
size Nmax ≫ 2Nmin, where pn is negligible for n > Nmax.
Nmax is set to Nmin + 5000 by default in our calcula-
tions. It is also possible to incorporate the normaliza-
tion condition into the matrix K by adding an extra
row (1, 1, 1, · · · ) at the top, forming a new matrix K

′.
Then the matrix equation becomes K

′p = c, where
c = (1, 0, 0, · · · )⊤. Note that K

′ is not a square ma-
trix after adding the normalization row. However, by
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FIG. S2. Comparison of the analytical solution obtained us-
ing the generating function method with numerical results
from the matrix equation method. Lines represent the same
analytical solutions for γ = 0.1 as shown in Fig. 3(a) in the
main text (γ′ = γ/2 = 0.05 for the one-end growth model).
Empty symbols denote exact numerical results from the ma-
trix equation Kp = 0.

multiplying the matrix equation by K
′⊤ from the left,

the product K
′⊤
K

′ becomes square again, allowing us
to compute its inverse. The final solution is given by

p =
(

K
′⊤
K

′
)−1

K
′⊤c. When setting Nmin = 1, the

solutions p match those derived in Sec. II using the gen-
erating function method (see Fig. S2).

A. Basal rates

So far we have assumed that both the end-growth and
minimum cluster size models are strictly enforced, mean-
ing that break and division rates are either at their max-
imum values or completely suppressed. However, in real
cell clusters, it is not clear whether breakage would be
completely absent, even if its rate is larger near the clus-
ter center. Similarly, cells within a cluster may still divide
despite contact inhibition of proliferation. Therefore, it
is reasonable to incorporate basal rates into our model—
changing the model so that every cell has a basal rate
of division and every junction has a basal rate of frac-
ture. This is straightforward with the matrix equation
method.
We first consider a scenario where, in addition to the

regulated break rate kb (restricted by the minimum clus-
ter size), there exists a basal break rate k0b that applies
uniformly to all links. In our matrix equation formula-
tion, we solve Kp = 0, where now p = (p1, p2, p3, · · · )⊤,
rather than (pNmin

, pNmin+1, pNmin+2, · · · )⊤. We continue
to decompose the transition-rate matrix as K = A+B,
where A remains an upper triangular matrix, but with
modified elements Amn = Θ(n − m − 1)k0b + Θ(m −
Nmin)Θ(n−m−Nmin)kb. Note that the second term cor-
responds exactly to the original matrixA. B remains the
bidiagonal matrix but is updated with the total transition
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FIG. S3. Effect of basal break and division rates on the
steady-state distributions pn. (a) Cluster sizes when Nmin =
500 and γ is varied, but with a basal break rate k0

b = 10−3kb,
i.e., the basal break rate varies when γ changes; this figure
should be compared to Fig. S1(e). (b) The near-deterministic
case γ = 10 with varying basal break rates k0

b . Minimum clus-
ter size is set to Nmin = 500; gray dashed lines are the corre-
sponding log-uniform distributions. (c) The same distribution
as in Fig. S1(b), but with a basal division rate k0

d = kd. (d)
Coefficients of variation (CV) as a function of γ for different
basal division rates k0

d. Note that we have used γ → γ′ = γ/2,
as in Figs. S1(b) and 3(d).

rate λ(n) = k0b (n− 1)+ kb max(n− 2Nmin +1, 0)+ g(n).
Figure S3(a) illustrates how the steady-state distribu-
tions change, as in Fig. S1(e), when a small basal break
rate k0b = 10−3kb is applied to all links, while keep the
definition γ := kb/kd. For small k0b (low γ), the dis-
tribution remains nearly unchanged, but as k0b increases
with increasing γ (near-deterministic), it effectively re-
laxes the minimum cluster size constraint, shifting the
distribution toward an exponential decay. Figure S3(b)
further demonstrates this effect for a near-deterministic
break case (γ = 10), where the distribution gradually
leaks into n < Nmin. We note that the basal break rate
does not have to be very large in order to qualitatively
change our results—even if the basal break rate is a factor
of 100 lower than kb, it can overwhelm the “controlled”
break rate that respects Nmin, leading to a system dom-
inated by small clusters, as when all links break at the
same rate. This may argue that the limit of fast rupture
γ ≫ 1 is not a biologically robust way to control size,
since it requires a very small basal break rate.

If a basal division rate k0d is introduced, the results are
relatively straightforward—the system simply transitions
from the end-growth case to the all-growth case. Within
our matrix equation framework—e.g., in the one-end
growth model—the total growth rate becomes: g(n) =
k0dn + kd. This modification allows all cells to divide
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at a small but finite rate k0d. In the near-deterministic
limit γ ≫ 1, the distribution transitions from a uniform
distribution in the range [Nmin, 2Nmin] to the predicted
log-uniform distribution in the all-cell growth model. To
check whether some of the key qualitative results in the
end-growth model are still preserved, we set Nmin = 1
and observe that the steady-state distribution remains
largely unchanged until k0d becomes comparable to kd.
Figure S3(c) shows the distributions pn corresponding
to Fig. S1(b), but with a basal division rate k0d = kd.
While the peaks persist, pn increasingly resembles the
all-growth case [Fig. S1(a)] with long exponential tails.
Regarding relative errors, the coefficients of variation re-
main < 1 and gradually approach the all-growth results
as k0d increases. We expect the key factor of the relevance
of the basal growth rate is whether growth is dominated
by basal growth or end-growth, i.e., for the most com-
mon cluster sizes n, whether nk0d or 2kd is larger. This
means that if there is a basal growth rate, as cluster sizes
get larger and larger, we would expect that the system
looks more and more like the all-growth case. We see this
in Fig. S3(d) for k0d = 0.1kd: As γ ≪ 1, the CV transi-
tions from the end-growth value and starts to increase,
presumably reaching eventually to CV = 1 as γ becomes
small enough.

IV. MONTE CARLO SIMULATIONS

A. Active-particle simulations

We simulate the dynamics of N active Ornstein-
Uhlenbeck particles (AOUPs) described by Eq. (1)
using the forward Euler method (Euler-Maruyama
method [11]) as in Ref. [9]. We integrate the dynam-
ics with a time step ∆t = 10−3 h over a total simulation
time T = 103 h. The variances of the stretched lengths of
the springs 〈δℓ2n〉 are calculated from 4800 independent
simulation runs. We have verified that 〈δℓ2n〉 does not de-
pend on the position n within the chain when N is large
in the simulations. Therefore, 〈δℓ2N/2〉 for the central link
is used to represent the variance in Fig. 1(b).

To measure the mean escape time τesc, we first allow
the chain to relax to its steady state by running the sim-
ulation for 103 h. After relaxation, we track the stretched
length of the central link δℓN/2, starting the timer when
it approaches zero, i.e., |δℓN/2| < ε = 0.1µm in our sim-
ulations. The break time τesc is recorded as the time at
which δℓN/2 reaches the critical break length δℓb. The
final results shown in Fig. 1(c) are averaged over 103 in-
dependent simulations.

TABLE S1. Table of simulation parameters.

Parameter Description Dimension Valuea

N Number of particles 1 1000
∆t Simulation time step T 10−3 h
1/µk Spring relaxation time T 0.25 h [12]
τ Persistence time T 0.5 h [13]
D Diffusion coefficient L2/T 100µm2/h [13]
δℓb Critical break length L 5µm

a These serve as the default parameter values for the AOUP

simulations; any deviations from them are explicitly specified.

1. Details of parameter estimates

The default parameter values used in our model are
listed in Table S1. These values have been calibrated
using experimental data as discussed in the main paper.
We provide a few additional details here. We estimated
D = 100µm2/h and τ ≈ 0.5 h from data on HaCaT cells
(a human keratinocyte cell line) from Ref. [13] (Fig. 4E of
that paper). Selmeczi et al. show in their paper that the
Ornstein-Uhlenbeck model is not a complete representa-
tion of their velocity correlation data [13], so our applica-
tion here is only to get a reasonable order-of-magnitude.

We estimate the spring relaxation time 1/µk based on
the results of Jain et al., who calibrated a self-propelled
particle model of collective cell migration using their ex-
perimental measurements [12]. We want to note how our
model maps to their calibration briefly, since it might not
be immediately obvious. The model of Ref. [12] essen-
tially assumes a force balance between a self-propulsion
force of the cell FM , a viscous drag, and a cell-cell in-
teraction force, 0 = −ξv + FM + fcell-cell. In the ab-
sence of cell-cell contact, then the cell velocity is given
by v = FM/ξ (ξ is called µ in Ref. [12]; we have changed
this to avoid confusion with our mobility µ, which is
1/ξ). Based on typical cell velocities in their exper-
iment, it’s possible to set FM/ξ = 30µm/h. If one
cell is colliding into a stationary cell, the cell-cell in-
teraction force is nonzero, and they assume it to be
fcell-cell = FC [1 − (d/2R)], where d is the cell-cell dis-
tance. Within our model, the force would be −kδℓ—so
with a typical spacing of ℓ0 = 2R of twice the radius of
the cell, we see that our k value corresponds to FC/2R
in their model. By measuring how much a cell is com-
pressed when another cell is pushing against it, Ref. [12]
estimated the ratio of cell stiffness FC to the persistent
motile force FM to be approximately FC/FM ≈ 5.5. This
means our value of k = FC/2R ≈ 5.5FM/2R, or in our
notation, k/ξ ≈ 5.5FM/2Rξ. Using the speed of the cell
for FM/ξ and the value from Ref. [12] of R = 20µm for
MDCK cells, we find k/ξ = µk ≈ 4 h−1, or our timescale
1/µk ≈ 0.25 h = 15min. We note that other papers have
come up with different estimates for this timescale [14],
which may vary significantly from cell type to cell type
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and depending on the context (e.g., cells being on a sub-
strate vs in a 3D aggregate likely have very different fric-
tions).

B. Fragmentation-growth simulations

We implement a rejection-free kinetic Monte Carlo
(rfKMC) algorithm to simulate the fragmentation-
growth processes. The initial chain length is set to
n0 ≫ Nmin. For a chain of N particles, there are N − 1
connections, each with a break rate. If breaking a con-
nection violates the minimum cluster sizeNmin, the break
rate is set to zero. Each particle has a division rate, which
is set to zero for particles not allowed to divide (e.g., in
the end-growth mechanism).
In our simulations, we fix the division rate kd = 1 and

vary the ratio γ by adjusting the break rate kb = γ, i.e.,
the time unit is 1/kd. In the rfKMC algorithm, the time
step for each MC step is calculated as ∆t = Q−1

k ln(1/u),
where the total rate Qk is the sum of all break and
division rates, and u is a uniform random number in
(0, 1]. Each step permits either a fragmentation or a
division event. If a particle division occurs, the chain
length increases by one. If fragmentation occurs, one
of the daughter chains is randomly selected as the new
tracked chain. Then, we update all rates for particles
and connections according to the specific fragmentation-
growth mechanism. Since the time step ∆t in rfKMC is
not constant, the output is a time series {t0, t1, t2, · · · }.
To determine the chain size at a specific time T , we
identify the first time ti+1 > T , and then record the
chain size at ti as n(t = T ). To obtain the steady-
state distribution pn, we must wait for a sufficiently
long time T for the chain length n(t) to reach a stable
increase-then-drop pattern (as shown in Fig. S4), akin
to cell size control [15, 16]. The distribution is then
generated from the results of 104 independent simula-
tion runs. There is an alternative, faster way to obtain
the same distribution from simulations. We expect that
the steady-state distribution pn is equivalent to the lin-
eage distribution of the tracked chains as T → ∞, i.e.,

limT→∞ T−1
∫ T

0 pn(t)dt = limt→∞ pn(t) [17]. We can get
the lineage distribution by measuring the length n(t) of
the tracked chain over a long period and calculating the
fraction of time spent at each n. We have computed these
lineage distributions and confirmed that they agree with
our distributions shown in Figs. 3(a), 3(e), and theory.
We note that the cluster sizes of germline cysts shown

in Fig. 5 of Ref. [18] are smaller than our steady-state pre-
dictions using their measured break and division rates,
as their system has not yet reached steady state. For
instance, the break rate is approximately 0.015 h−1 at
E11.5 and E12.5 ovaries (Fig. 4C of Ref. [18]), while
the division rate for germline cysts is about ln 2/16 h−1.
Our steady-state solution predicts a mean cluster size

0 5 10 15 20 25

t

200

400

600

800

1000

n

Nmin

FIG. S4. A representative time trajectory of chain length n(t)
from rfKMC simulation with Nmin = 200 and γ = 0.1. The
initial chain length is set to n0 = 1000, and the simulation
begins at t = 0. The time unit is 1/kd.

(1+ γ)/γ ≈ 4, whereas their simulated average cyst sizes
are 1.73 and 3.26 at E11.5 and E12.5, respectively. If
we similarly evolve a single cell only from E10.5 to E11.5
and E12.5, as in Ref. [18], we obtain mean cluster sizes
of approximately 2 and 3, which closely match their re-
sults. We note the simulations of Ref. [18] also include
variability in cell division rates, which we do not include
in order to allow us to get a simple analytic answer.
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