
ar
X

iv
:a

st
ro

-p
h/

00
01

04
2v

1 
 4

 J
an

 2
00

0
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 7 December 2018 (MN LATEX style file v1.4)

Eccentric stellar discs with strong density cusps and

separable potentials

M. A. Jalali
⋆
& A. R. Rafiee

Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-159, Gava Zang, Zanjan, IRAN

7 December 2018

ABSTRACT

We introduce a class of eccentric discs with “strong” density cusps whose potentials
are of Stäckel form in elliptic coordinates. Our models exhibit some striking features:
sufficiently close to the location of the cusp, the potential and surface density distri-
bution diverge as Φ ∝ r

−1 and Σ ∝ r
−2, respectively. As we move outward from the

centre, the model takes a non-axisymmetric, lopsided structure. In the limit, when r

tends to infinity, the isocontours of Φ and Σ become spherically symmetric. It is shown
that the configuration space is occupied by three families of regular orbits: eccentric
butterfly, aligned loop and horseshoe orbits. These orbits are properly aligned with the
surface density distribution and can be used to construct self-consistent equilibrium
states.

Key words: celestial mechanics, stellar dynamics – galaxies: kinematics and dynam-
ics

1 INTRODUCTION

High resolution observations based on Hubble Space Tele-

scope photometry of nearby galaxies have increased our un-
derstanding of the central regions of elliptical and spiral
galaxies. It was found that in most galaxies density di-
verges toward the centre in a power-law cusp. In the pres-
ence of a cusp, regular box orbits are destroyed and re-
placed by chaotic orbits (Gerhard & Binney 1985). Through
a fast mixing phenomenon, stochastic orbits cause the or-
bital structure to become axisymmetric at least near the
centre (Merritt & Valluri 1996). These results are confirmed
by the findings of Zhao et al. (1999, hereafter Z99). Their
study reveals that highly non-axisymmetric, scale-free mass
models can not be constructed self-consistently. Among the
models studied for self-consistency, one can refer to the in-
tegrable, cuspy models of Sridhar & Touma (1997, hereafter
ST97). Without a nuclear black hole (BH), centrophobic
bananas are the only family of orbits presenting in ST97
discs. Although such orbits elongate in the same direction
as density profile, the orbital angular momentum takes a lo-
cal minimum somewhere rather than the major axis where
the surface density has a maximum. This is the main obsta-
cle for building self-consistent equilibria by regular bananas
(Syer & Zhao 1998; Z99). A similar situation occurs for anti-
aligned tube and high resonance orbits for which one could
not be able to fit the curvatures of orbits and surface den-
sity distribution near the major axis (Z99). According to
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the results of Miralda-Escudé & Schwarzschild (1989), it is
only possible to construct self-consistent models by certain
families of fish orbits.

The orbital structure of stellar systems is enhanced by
central BHs in a different manner. Although nuclear BHs
destroy box orbits, they enforce some degree of regularity
in both centred and eccentric discs (Sridhar & Touma 1999,
hereafter ST99). In systems with analytical cores and central
BHs, a family of long-axis tube orbits can help the host
galaxy to maintain its non-axisymmetric structure within
the BH sphere of influence (Jalali 1999).

In this paper, we present a class of non-scale-free, lop-
sided discs, which display a collection of properties ex-
pected in self-consistent non-axisymmetric cuspy systems.
Our models are of Stäckel form in elliptic coordinates (e.g.,
Binney & Tremaine 1987) for which the Hamilton-Jacobi
equation separates and stellar orbits are regular. In central
regions where the effect of the cusp dominates, the potential
functions of our distributed mass models are proportional
to r−1 as r → 0. So, we attain an axisymmetric structure
near the centre which is consistent with the predicted na-
ture of density cusps. The slope of potential function changes
sign as we depart from the centre and our model galaxies
considerably become non-axisymmetric. Non-axisymmetric
structure is supported by a family of eccentric loop orbits,
which are aligned with the lopsidedness. Our potential func-
tions have a local minimum around of which a family of
eccentric butterfly orbits emerges. Close to the centre, loop
orbits break down and give birth to a new family of orbits,
horseshoe orbits. Stars moving in horseshoes lose their ki-
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netic energy as they approach to the centre and contribute
a large amount of mass to form a cusp. Our models can be
applied to the study of dynamics in systems with double
nucleus such as M31 (Tremaine 1995, hereafter T95) and
NGC4486B (Lauer et al. 1996).

2 THE MODEL

Consider the Hamiltonian function

H =
1

2
(p2x + p2y) + Φ(x, y), (1)

which is described in cartesian coordinates, (x, y). The vari-
ables px and py denote the momenta conjugate to x and y,
respectively. Φ is the potential due to the self-gravity of the
disc. Let us express H in elliptic coordinates, (u, v), through
the following transformations

x = a(1 + cosh u cos v), (2)

y = a sinh u sin v, (3)

u ≥ 0, 0 ≤ v ≤ 2π,

where a is constant and 2a is the distance between the foci
of confocal ellipses and hyperbolas defined by the curves of
constant u and v, respectively. In the new coordinates, the
Hamiltonian function becomes

H =
1

2a2(sinh2 u+ sin2 v)
(p2u + p2v) + Φ(u, v), (4)

with pu and pv being the new canonical momenta. We think
of those potentials which take Stäckel form in elliptic coor-
dinates. The most general potential of Stäckel form is

Φ(u, v) =
F (u) +G(v)

2a2(sinh2 u+ sin2 v)
, (5)

where F and G are arbitrary functions of their arguments.
By this assumption, the Hamilton-Jacobi equation separates
and results in the second integral of motion, I2. We get

I2 = p2u − 2a2E sinh2 u+ F (u), (6)

or equivalently

− I2 = p2v − 2a2E sin2 v +G(v), (7)

where E is the total energy of the system, E ≡ H.
We now introduce a class of potentials with

F (u) = C(cosh u)γ ,

G(v) = −C cos v| cos v|γ−1, (8)

where C > 0 and γ are constant parameters. One can readily
verify that

cosh u =
1

2a
(r + s), cos v =

1

2a
(r − s), (9)

where

r2 = x2 + y2, s2 = (x− 2a)2 + y2. (10)

We substitute from (10) into (8) and express Φ in the (x, y)
coordinates:

Φ = K
(r + s)γ − (r − s)|r − s|γ−1

2rs
, (11)

K = C(2a)−γ .

The surface density distribution, associated with Φ, is de-
termined as (see Binney & Tremaine 1987):

Σ(x′, y′) =
1

4π2G

∫ ∫

(∇2Φ)dxdy
√

(x′ − x)2 + (y′ − y)2
. (12)

We examine the characteristics of the potential and surface
density functions for small and large radii. Very close to the
centre, we have r ≪ s that simplifies (11) as follows

Φ =
Ksγ−1

2

(1 + r
s
)γ + (1− r

s
)γ

r
. (13)

One can expand (1 + r
s
)γ and (1 − r

s
)γ in terms of r/s to

obtain

Φ =
Ksγ−1

r

[

1 +

∞
∑

n=1

Γ(γ + 1)

(2n)!Γ(γ − 2n+ 1)

(

r

s

)2n

]

, (14)

where Γ is the well known Gamma function. As r tends
to zero, s is approximated by 2a and r/s → 0. Therefore,
Equation (14) reads

Φ ≈
K(2a)γ−1

r
. (15)

Dimensional considerations show that the surface density Σ
will approximately be proportional to r−2. Thus, sufficiently
close to the centre, we obtain a strong density cusp with
spherical symmetry. When r tends to infinity, the potential
Φ is approximated as

Φ ≈ K2γ−1rγ−2. (16)

So, we find out

Σ ∝ rγ−3. (17)

We have to select those values of γ for which the surface
density distribution is plausible and orbits are bounded. Ac-
cording to (17), the surface density decays outward (r → ∞)
for γ < 3. Moreover, Equation (16) shows that orbits will be
escaping if γ ≤ 2. To verify this, consider the force exerted
on a star, which is equal to −∇Φ. This force will always be
directed outward for γ ≤ 2 and results in escaping motions.
Therefore, we are confined to 2 < γ < 3.

We have used Equations (11) and (12) to compute Φ
(Figure 1) and Σ (Figure 2) for γ = 2.8. Due to the com-
plexity of ∇2Φ, we have utilized a numerical scheme to eval-
uate the double integral of (12). The potential and surface
density functions are symmetric with respect to the x-axis
and are cuspy at (x = 0, y = 0). The potential Φ has a local
minimum at (x = a, y = 0) that plays an important role in
the evolution of orbits. This minimum point has no image
in the plane of the surface density isocontours. The surface
density monotonically decreases outward from the centre.
As it is evident from Figure 2, a non-axisymmetric, lopsided
structure is present at moderate distances from the centre.

3 ORBITS

To this end, we classify orbit families. Having the two iso-
lating integrals E and I2, one can find the possible regions
of motion by employing the positiveness of p2u and p2v in (6)
and (7). We define the following functions:

f(u) = −2a2E sinh2 u+ F (u), (18)

g(v) = −2a2E sin2 v +G(v), (19)
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Figure 1. As a demonstrating example, we have determined the
potential Φ for γ = 2.8, a = 0.5 and K = 0.2. Figures (a) and (b)
show the isocontours and a three dimensional view of Φ, respec-
tively.

where F (u) and G(v) are given as (8). By virtue of p2u ≥ 0
and p2v ≥ 0 one can write

I2 − f(u) ≥ 0, (20)

−I2 − g(v) ≥ 0. (21)

Due to the nature of Φ, no motion exists for negative ener-
gies. Hence, E can only take positive values, E > 0. Our
classification is based on the behavior of f(u) and g(v).
The most general form of f(u) is attained for γC < 4a2E.
In such a circumstance, f(u) takes a local maximum at
u = 0, fM = f(0) = C, and a global minimum at u = um,
fm = f(um), where

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x
-2

-1

0

1

2

y
Figure 2. The surface density isocontours corresponding to the
potential function of Figure 1.

cosh um =

(

4a2E

Cγ

) 1

γ−2

, (22)

and

fm = −2a2E sinh2 um + C(cosh um)γ . (23)

According to (20) we obtain

I2 ≥ fm. (24)

On the other hand, g(v) has a global maximum at v = π,
gM = g(π) = C, and two global minima at v = π/2
and v = 3π/2, gm=g(π/2)=g(3π/2)=−2a2E. Therefore, In-
equality (21) implies

I2 ≤ 2a2E. (25)

By combining (24) and (25) one achieves

fm ≤ I2 ≤ 2a2E. (26)

It should be noted that 2a2E > C. This is because of 2 <
γ < 3. fm and in consequence I2, can take both positive and
negative values. Depending on the value of I2, three general
types of orbits are generated:

(i) Eccentric Butterflies. For C < I2 < 2a2E, the al-
lowed values for u and v are

u ≤ u0, vb,1 ≤ v ≤ vb,2, vb,3 ≤ v ≤ vb,4, (27)

where u0 and vb,i (i = 1, 2, 3, 4) are the roots of f(u) =
I2 and g(v) = −I2, respectively. As Figure 3a shows, the
horizontal line that indicates the level of I2, intersects the
graph of f(u) at one point, which specifies the value of u0.
The line corresponding to the level of −I2 intersects g(v)
at four points that give the values of vb,is (Figure 3b). In
this case the motion takes place in a region bounded by
the coordinate curves u = u0 and v = vb,i. The orbits fill
the shaded region of Figure 4a. These are butterfly orbits
(de Zeeuw 1985) displaced from the centre. We call them
eccentric butterfly orbits.
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Figure 3. The graphs of f(u) and g(v) for γ = 2.8, C = 0.2,
E = 1.2 and a = 0.5. The horizontal lines indicate the levels of I2
and −I2 in the graphs of f(u) and g(v), respectively. (a) I2 = 0.4
(b) −I2 = −0.4 (c) I2 = −0.25 (d) −I2 = 0.25 (e) I2 = −0.1 (f)
−I2 = 0.1.

(ii) Aligned Loops. We now let I2 be negative so that
fm < I2 < −C. In this case the equation f(u) = I2 has two
roots, ul,1 and ul,2, which can be identified by the intersec-
tions of f(u) and the level line of I2 (see Figure 3c). The
equation g(v) = −I2 has no real roots and Inequality (21)
is always satisfied (Figure 3d). The allowed ranges of u and
v will be

ul,1 ≤ u ≤ ul,2, 0 ≤ v ≤ 2π. (28)

(a) (b)

(c) (d)

Figure 4. The possible families of orbits: (a) an eccentric but-
terfly orbit (b) an aligned loop orbit (c) a horseshoe orbit (d) a
lens orbit associated with I2 = C.

The orbits fill a tubular region as shown in Figure 4b. These
orbits are bound to the curves of u = ul,1 and u = ul,2 and
elongate in the same direction as lopsidedness. Following
ST99, they are called aligned loops.

(iii) Horseshoes. For −C < I2 < C, we have a different
story. In this case, both of the equations f(u) = I2 and
g(v) = −I2 have two roots. We denote these roots by u =
uh,i and v = vh,i (i = 1, 2). In other words, the level lines of
±I2 intersect the graphs of f(u) and g(v) at two points as
shown in Figures 3e and 3f. The orbits fill the shaded region
of Figure 4c, which looks like a horseshoe. We call these
horseshoe orbits. The orbital angular momentum of stars
moving in horseshoes (G = xpy − ypx) flips sign when stars
arrive at one of the coordinate curves v = vh,1 or v = vh,2.

For γC > 4a2E, f(u) is a monotonically increasing
function of u and eccentric butterflies are the only existing
family of orbits. There are three transitional cases corre-
sponding to I2 = C, I2 = 2a2E and I2 = fm. For I2 = C,
eccentric butterflies extend to a lens orbit as shown in Fig-
ure 4d. For I2 = 2a2E, stars undergo a rectilinear motion
on the line x = a with the amplitude of ±a sinhu0 in the
y-direction. For I2 = fm, loop orbits are squeezed to an
elliptical orbit defined by u = um.

4 DISCUSSIONS

In this work we explore a credible model based on the self-
gravity of stellar discs to explain how an eccentric disc, with
strong density cusp, can be in equilibrium. Our mass models
exhibit most features of eccentric stellar systems, especially,
double nucleus ones such as M31 and NGC4486B.

All of the orbits of our model discs are non-chaotic.
Below, we clarify how the existing families of orbits help the
eccentric disc to maintain the assumed structure.

The force exerted on a star is equal to −∇Φ. The mo-
tion under the influence of this force can be tracked on the
potential hill of Figure 1b. This helps us to better imagine
the motion trajectories.
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As Figure 1b shows, the potential function is concave.
A test particle released from distant regions with x > 0 and
“small” initial velocity, slides down on the potential hill and
moves toward the local minimum at (x = a, y = 0). After
passing through the neighborhood of this point (there are
some trajectories that exactly visit the minimum point), the
test particle climbs on the potential hill until its potential
energy becomes maximum. Then, the particle begins to slip
down again. This process is repeated and the trajectory of
the particle fills an eccentric butterfly orbit. Stars moving
in eccentric butterflies form a local group in the vicinity of
(x = a, y = 0). The accumulation of stars around this local
minimum of Φ can create a second nucleus like P2 in M31
(see T95). The predicted second nucleus will approximately
be located at the “centre” of loop orbits while the brighter
nucleus (P1) is at the location of the cusp.

Aligned loop orbits occur when the orbital angular mo-
mentum is high enough to prevent the test particle to slide
down on the potential hill. The boundaries of loop orbits are
defined by the ellipses u = ul,1 and u = ul,2. The central
cusp is located at one of the foci of these ellipses. Aligned
loops have the same orientation as the surface density iso-
contours (compare Figures 2 and 4b). Thus, according to
the results of Z99, it is possible to construct a self-consistent
model using aligned loop orbits.

Similarly, we can describe the behavior of horseshoe or-
bits. Stars that start their motion sufficiently close to the
centre, are repelled from the centre because the force vector
is not directed inward in this region. As they move outward,
their orbits are bent and cross the x-axis with non-zero an-
gular momentum. These stars considerably lose their kinetic
energy as they approach the centre (this is equivalent to
their climb on the cuspy region of the potential hill). Mean-
while, the orbital angular momentum takes a minimum and
switches sign somewhere on the boundary of horseshoe orbit.
This boundary is defined by v = vh,1 (or v = vh,2) and can
be chosen arbitrarily close to the centre. These stars spend
much time near the centre and deposit a large amount of
mass, which generates a cusp. Therefore, horseshoe orbits
can be used to construct a self-consistent strong cusp. The
method of Z99 is no longer applicable to horseshoes because
such orbits don’t cross the long axis (here the x-axis) near
the centre. In fact, horseshoe orbits are an especial class of
boxlets that appropriately bend toward the centre. The lack
of such a property in banana orbits causes the ST97 discs
to be non-self-consistent.

In the case of M31 and NGC4486B, if we suppose that
loop and high-energy butterfly orbits control the overall
shape of outer regions, horseshoe orbits together with low-
energy butterflies (small-amplitude liberations around the
local minimum of Φ) can support the existence and stabil-
ity of a double nucleus. The parameter a will indicate the
distance between P1 and P2.

There remains an important question: what does hap-
pen to a star just at the centre? The centre of the model,
where the cusp has been located, is inherently unstable.
With a small disturbance, stars located at (x = 0, y = 0)
are repelled from the centre. But, the time that they spend
near the centre will be much longer than that of distant re-
gions when they move in horseshoes. We remark that the
stars of central regions live in horseshoe orbits. Although
one can place a point mass (black hole) at the centre with-

out altering the Stäckel nature of the potential, such a point
mass will not remain in equilibrium and leaves the centre.
Based on the results of this paper, we conjecture that there
may not be any mass concentration just at the centre of
cuspy galaxies. However, a very dense region exists arbitrar-
ily close to the centre! This may be an explanation of dark
objects at the centre of cuspy galaxies. The centre of our
model galaxies is unreachable. Our next goal is to apply the
method of Schwarzschild (1979,1993) for the investigation of
self-consistency.
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