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ABSTRACT

Spergel & Steinhardt proposed the possibility that the dark matter particles

are self-interacting, as a solution to two discrepancies between the predictions of

cold dark matter models and the observations: first, the observed dark matter

distribution in some dwarf galaxies has large, constant-density cores, as opposed

to the predicted central cusps; and second, small satellites of normal galaxies

are much less abundant than predicted. The dark matter self-interaction would

produce isothermal cores in halos and expel the dark matter particles from dwarfs

orbiting in large halos. Another consequence of the model is that halos should

become spherical once most particles have interacted. Several observations show

that the mass distribution in relaxed clusters of galaxies is elliptical. Here, I

discuss in particular gravitational lensing in the cluster MS2137-23, where the

ellipticity of the dark matter distribution can be measured to a small radius,

r ∼ 70 kpc, suggesting that most dark matter particles in clusters outside this

radius do not collide during the characteristic age of clusters. If true, this implies

that any dark matter self-interaction with a cross section independent of velocity

is too weak to have affected the observed density profiles in the dark-matter

dominated dwarf galaxies, or to have facilitated the destruction of dwarf satellites

in galactic halos. If sx is the cross section and mx the mass of the dark matter

particle, then sx/mx < 10−25.5 cm2/GeV.

Subject headings: dark matter - galaxies: clusters: general - galaxies: formation

- large-scale structure of universe
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1. Introduction

The Cold Dark Matter (CDM) model of structure formation in the universe has been

tremendously successful in accounting for a huge variety of available observations (e.g., the

Cosmic Background fluctuations, the abundances of clusters of galaxies, peculiar velocity

fields, the Lyα forest), provided that the mean density of matter is only a fraction Ωm ≃

0.3 of the critical density, and the existence of vacuum energy with a negative pressure

equation of state is allowed to make the universe spatially flat (e.g., (Knox & Page 2000);

(6); (Bahcall et al. 1999); (Strauss & Willick 1995); (1); (Croft et al. 1999)).

A possible problem of this model has emerged when comparing the density profiles

of dark matter halos predicted in numerical simulations, with observations of the rotation

curves in dwarf galaxies ((Moore 1994); (Flores & Primack 1994); (4); (Moore et al. 1998);

(Kravtsov et al. 1998); (Moore et al. 1999b)). Whereas the observations show linearly rising

rotation curves out to core radii greater than 1 kpc in certain dwarf galaxies where the density

is dominated by dark matter everywhere (indicating that the dark matter has a constant

density core), the simulations predict that the collapse of collisionless particles of cold dark

matter produces cuspy halo density profiles, with a logarithmic slope −d log ρ/d log r > 1

down to the smallest resolved radius. A second problem is that the number of dwarf galaxies

observed in the Local Group is much smaller than the total number predicted from numerical

simulations ((Klypin et al. 1999); (Moore et al. 1999b)).

A solution to this discrepancy has been proposed by Spergel & Steinhardt (2000): if

the dark matter is self-interacting, with large enough cross section to make most particles

in the inner core of a dwarf galaxy interact among themselves over a Hubble time, then an

isothermal core will be produced. A clear prediction of this hypothesis is that when most

of the particles of a halo within some radius rc have interacted, then the halo should be

close to spherical inside rc, or else be supported by rotation, because the velocity dispersion

tensor should become isotropic. This paper examines the consequence of this prediction for

the inner parts of rich clusters of galaxies, where highly magnified images of background

galaxies are occasionally observed. We will find that severe restrictions on the collisional

dark matter hypothesis are obtained.

2. The Collisional Radius in Dwarf Galaxies and in Galaxy Clusters

We assume that a halo of self-interacting dark matter has an initial density profile equal

to the one for the case of collisionless dark matter, and is thereafter modified by the effects

of the collisions. Numerical simulations of collisionless CDM models have shown that halos
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have a characteristic density profile, with a logarithmic slope that increases gradually with

radius (Navarro, Frenk, & White 1996, 1997; Moore et al. 1999b). We define the radius

rh where the logarithmic slope is equal to 2, so that |d log ρ/d log r| < 2 at r < rh, and

|d log ρ/d log r| > 2 at r > rh. The particles closest to the center will be the first ones

to collide, owing to the higher density. We define the collisional radius, rc, as the radius

within which more than half the particles have interacted. The effects of the collisions will

be to change the velocity distribution of the particles inside the collisional radius toward

a Maxwellian distribution, with constant velocity dispersion. This implies that the density

profile within the collisional radius will be altered toward that of an isothermal sphere with

finite core. The core radius produced by the collisions can obviously not be larger than the

collisional radius, but it can be much smaller than the collisional radius if the initial slope

of the halo profile inside rc was already close to isothermal, because the total energy needs

to be conserved. Several numerical simulations have recently been done to model this effect

(e.g., Burkert 2000, Yoshida et al. 2000, Davé et al. 2001).

In the initial density profile, the velocity dispersion should clearly decrease toward the

center at r < rh: as long as the density profile has a central power-law cusp, and the orbits

are not all highly radial near the center, then σ2(r) ∝ ρ(r)r2. The collisions will therefore

transport heat to the colder central particles from the hotter exterior, destroying the cusp

and slowly increasing the core of the isothermal sphere as the collisional radius increases.

However, the particles at r > rh should have a decreasing velocity dispersion with radius

in their initial configuration, so when rc > rh heat starts to be transported outward and

the isothermal core shrinks as more particles are slung to the outer parts of the halo (or to

unbound orbits), leading eventually to core collapse. As discussed by Spergel & Steinhardt

(2000), the cross section should be low enough so that the core collapse of the dark matter

has not taken place in any halos up to the present time.

How should the collisional radius vary with the velocity dispersion of a dark matter halo?

We assume that the cross section for the elastic collisions in the dark matter is independent

of velocity, as expected in the low energy limit when the cross section is dominated by

the s-wave contribution (e.g., Landau & Lifshitz 1977). Then, the rate of interaction of

a particle is proportional to the dark matter density, ρ, times the velocity dispersion σ.

Hence, ρ σ t = constant, where t is the age of the halo (or the time since the last merger

which determined an initial density profile). Assuming that the core of the halo is not larger

than the collisional radius, dynamical equilibrium implies ρ(rc) ∝ σ2/r2c , and therefore,

rc ∝ σ3/2 t1/2 . (1)

This implies that if the core radii in dwarf galaxies are caused by dark matter collisions

within a larger collisional radius, then all the galactic and cluster dark matter halos should



– 4 –

have much larger collisional radii as their velocity dispersion increases.

Typically, the constant density cores of dwarf galaxy halos measured from the kinematics

of the HI gas extend out to a few kpc, and a typical velocity dispersion is 50 km s−1. As a

few examples, the rotation curves of the dwarfs DDO 154, DDO 170, and DDO 236 yield fits

for their dark matter halos with velocity dispersion σ = (28, 52, 45) km s−1, and core radii

(3, 2.5, 6) kpc ((Carignan & Beaulieu 1989); (2); (Jobin & Carignan 1990)), with assumed

distances of (4, 15, 1.7)Mpc, respectively.

If we wish to explain the sizes of these dark matter cores in dwarf galaxies as the result of

collisional dark matter, then the collisional radii of the halos of these dwarfs must be larger

than the observed core radii, and the collisional radii in rich clusters of galaxies must be

much larger, according to (1). Using the conservative values of rc = 2 kpc and σ = 50 km s−1

for a typical dwarf galaxy, and assuming that a typical rich cluster is about a third as old

as a dwarf galaxy (since massive halos have collapsed more recently than dwarf galaxies; see

Fig. 10 of Lacey & Cole 1993), we infer that the collisional radius of a typical rich cluster

with velocity dispersion σ = 1000 km s−1 should be at least rc > 100 kpc.

Within the collisional radius, the halo potential should be very nearly spherical because

the collisions should make the velocity dispersion tensor of the dark matter particles isotropic

(unless the core is rapidly rotating, which is highly unlikely as will be discussed in §4). This

is most easily seen for a finite system, using the tensor virial theorem: the potential energy

tensor (which reflects the shape of the mass distribution) will become diagonal over the

same timescale as the kinetic energy tensor. The next section discusses the evidence from

gravitational lensing showing that cluster cores are elliptical in their inner parts, focusing in

particular on the example of MS2137-23.

3. The core of the cluster MS2137-23 is elliptical

Highly magnified images of background galaxies (or “arcs”) produced by gravitational

lensing have been observed in many clusters of galaxies. In general, models that reproduce

the positions and shapes of these images assume the presence of elliptical clumps of dark mat-

ter centered on the most luminous galaxies in the cluster, with the ellipticity being oriented

along the same axis as the optical light. Examples of clusters that have been modeled in

this way include A370 ((Kneib et al. 1993)), A2218 ((Kneib et al. 1995)), MS2137-23 ((3)),

and A2390 ((Pierre et al. 1996)). It should be noted that the optical isophotes of the central

cluster galaxies generally extend out to the radius where the gravitationally lensed images

are observed, where the potential is strongly dominated by the dark matter. The regular
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elliptical isophotes of the distribution of stars implies that the gravitational potential has

the same shape, and this is confirmed by the lensing models that reproduce the positions

and shapes of the multiple images of background galaxies.

We note here the intriguing fact that the isophotes of central cluster galaxies tend to

show a decrease of the ellipticity toward the center, within radii . 10 kpc (Porter et al.

1991). This might plausibly be an indication of the effects of self-interacting dark matter

at this small radius, making the potential more spherical; however, other dynamical effects

associated with the formation of these galaxies from mergers might also explain this if the

dark matter is collisionless. In this paper, we will discuss the evidence that if there is self-

interacting dark matter, the collisional radius in rich clusters of galaxies should be smaller

than ∼ 100 kpc, leaving the question of whether there might a smaller collisional radius for

future work.

Here, we shall focus on the cluster MS2137-23. This cluster has several characteristics

that make it particularly useful for our purpose. First, the central region of the cluster

appears to be well relaxed as shown from both the optical image, dominated by the central

galaxy, and the X-ray emission, centered on the galaxy and with an ellipticity and position

angle similar to that of the central galaxy ((Hammer et al. 1997)). In clusters with sub-

structure, the presence of multiple mass clumps requires models of the mass distribution

with many parameters, making it difficult to constrain the ellipticity of each mass clump.

Second, a total of five gravitationally lensed images arising from two sources are observed

in MS2137-23, providing many constraints for the lensing model. Although redshifts for

these five images have not yet been measured, their morphologies and colors provide strong

evidence for the lensing interpretation ((Hammer et al. 1997)). One source produces a long,

tangential arc and two other arclets, and the second source gives rise to a radially elon-

gated image near the center and another arclet (where “arclet” refers to images that are

not magnified by very large factors, but still show a characteristic stretching effect due to

lensing).

The positions and relative sizes and shapes of these five images can be reproduced in an

extremely simple model: an elliptical mass clump centered on the central galaxy, with the

same ellipticity and position angle ((3); (Miralda-Escudé 1995)). This model needs only two

free parameters for the radial density profile (the velocity dispersion of the cluster and the

core radius). Since the positions of the five images alone already provide 6 constraints (ten

coordinates of the five images minus 4 for the unknown positions of the two sources), and

in addition the relative sizes and orientations of each image are also reproduced, this should

be considered as strong evidence that the potential of the dark matter is elliptical, just like

the stellar isophotes, and has not been significantly circularized by dark matter collisions at
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the radius where the images are observed. This radius is 15” for the longest tangential arc,

which corresponds to 70 kpc (for H0 = 70 km s−1Mpc−1). The radially elongated image is

only 5” from the cluster center; however, if the potential became spherical only at this small

radius, this radial image would not be significantly altered.

Could other perturbations to the potential, arising from substructure (which causes

external shear), mimic the effect of ellipticity if the true potential was spherical within

∼ 100 kpc? There are two arguments against this possibility. First, an external shear would

be roughly constant within the region of the multiple images, whereas an elliptical potential

causes a variable shear and convergence that depend on the density profile (see eqs. 2 to 8

below). Second, there would be no reason why the external shear should be aligned with the

major axis of the galaxy. While substructure is common in many clusters, the central parts

of MS2137-23 appear relaxed, as discussed above.

Although the fact that the simple elliptical potential, with constant ellipticity as a

function of radius, fits the observed positions and shapes of the five images can already be

considered as persuasive evidence that the potential cannot be spherical within ∼ 100 kpc,

it will be useful to show analytically why an ellipticity is required in a model-independent

manner. We will focus here on the radial image and its counterimage. These two images

of the same source are labeled as A1 and A5 in Mellier et al. (1993), and in Figure 1 of

Miralda-Escudé (1995), and as AR and A5 in the HST image presented in Hammer et al.

(1997).

A schematic representation of the lensing of the source on the radial caustic is shown in

Figure 1, which defines the notation that will be used here. The point labeled C is the center

of the cluster, and S is the position of the source that gives rise to the radial image at R and

the counterimage at I (the entire lensing configuration in this system, with the critical lines

and caustics of a simple elliptical potential, is shown in Fig. 1 of Miralda-Escudé 1995). We

use polar coordinates on the image plane: θ, the angular distance from the center C, and φ,

the azimuthal angle. The light ray observed at R is deflected by an angle αθR in the radial

direction, and αφR in the azimuthal direction, and the same for the light ray observed at I.

The specific observed quantity that we will relate to the ellipticity of the potential is

the angle γ of misalignment between the images R and I, relative to the center of the lens.

In a spherical potential, the images R and I should lie on a straight line passing through C.

The observed angle is γ = 19◦, indicating that the potential is elliptical. In principle, this

misalignment could also be caused by substructure in the cluster, but this is unlikely in view

of the relaxed appearance of the cluster.

We now relate the angle γ to the ellipticity and the density profile of the potential. If the



– 7 –

Fig. 1.— Schematic representation of the lensing configuration in the cluster MS2137-23

discussed in §3. The lens center is at C, the source is located at S, and its two images

are observed at R (which is the image on the radial critical line) and I. The angle of

misalignment γ between the two images relative to the center would be zero for a spherical

potential. The radial and azimuthal components of the deflection angles (αθ and αφ) are

indicated.
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ellipticity ǫ is small, the projected potential is adequately approximated with a quadrupole

term (e.g., (Miralda-Escudé 1995)),

ψ(θ, φ) = ψ0(θ)−
ǫ

2
ψ1(θ) cos(2φ) , (2)

where

ψ0(θ) =

∫ θ

0

dθ′ α0(θ
′) , (3)

α0(θ) =
2

θ

∫ θ′

0

dθ′ θ′ κ0(θ
′) ≡ θκ̄0(θ

′) , (4)

ψ1(θ) =
2

θ2

∫ θ

0

dθ′ θ′3 κ0(θ
′) , (5)

and where the surface density of the lens is

κ(θ, φ) = κ0(θ)−
ǫ

2
θ
dκ0
dθ

cos(2φ) . (6)

Here, κ0(θ) is the azimuthally averaged surface density profile, and κ̄0(θ) is the averaged

surface density within θ. The deflection angle is given by the gradient of the potential,

αθ = θκ̄0(θ) + θ

[

κ0(θ) +
ψ1(θ)

θ2

]

ǫ cos(2φ) , (7)

αφ =
ψ1(θ)

θ
ǫ sin(2φ) . (8)

In the limit of a small ellipticity of the potential, the angle of misalignment γ is given

by (using the notation in Fig. 1),

γ = βI
αθI

θI − αθI
+ βR

αθR

αθR − θR
=

αφI

θI − αθI
+

αφR

αθR − θR
. (9)

Using the condition that the rays at images R and I are deflected to the same position

S, which is simply θi−αθI = αθR−θR (the ellipticity introduces only second order corrections

here), we obtain

γ =

[

ψ1(θR)

θR
+
ψ1(θI)

θI

]

ǫ sin(2φI)

θI − αθI
. (10)

We now want to find a lower limit to the ellipticity necessary to generate the observed

angle γ. For this purpose, it will be convenient to replace the function ψ1(θ)/θ) by an

upper limit. Using equation (5), we find that if the κ0 is constant within θ, then ψ1(θ)/θ =

θ κ̄0(θ)/2, while in any profile where κ0 decreases with radius, we have ψ1(θ)/θ < θ κ̄0(θ)/2,
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because the integral of equation (5) weights more heavily the surface density near θ than at

smaller angular radius. Therefore,

γ <
[θRκ̄0(θR) + θI κ̄0(θI)] ǫ sin(2φI)

2 θI [1− κ̄(θI)]
=

(1 + θR/θI) ǫ sin(2φI)

2 [1− κ̄(θI)]
. (11)

We can now substitute the observed values θI = 22′′.5 ((Fort et al. 1992)), and θR = 5′′.2

((Hammer et al. 1997)):

γ < 0.62
ǫ cos(2φI)

1− κ̄0(θI)
. (12)

To obtain a lower limit to ǫ, we need to assume an upper limit for 1 − κ̄(θI). Because the

two images R and I result from radial (rather than tangential) magnification, there is no

reason why κ̄ needs to be particularly close to unity at either image. Given the relation

[κ̄0(θR) − 1]/[1 − κ̄0(θI)] = θI/θR = 4.3, the quantity 1 − κ̄(θI) could be very small only if

the surface density profile was very flat between the angular radii θR and θI . This is very

unlikely because the velocity dispersion implied for the cluster for an Einstein radius close

to θI = 22′′.5 is already larger than 1000 km s−1 (see (Miralda-Escudé 1995), Figs. 8 and 9),

and it would increase to a much higher value at large radius if the slope of the density profile

was much shallower than isothermal at θ ∼ θI .

As a reasonable limit on how flat the κ̄ profile could be from θR to θI , we will assume

here κ̄(θR)/κ̄(θI) > 2 (remember that θI/θR = 4.3). This corresponds to 1 − κ̄0(θI) > 0.16,

implying that the image I is not tangentially magnified by more than a factor 6, which is

reasonable given the length of the image I (called A5 in (Hammer et al. 1997)), ∼ 3′′, and

its axis ratio of ∼ 3.

With this condition, and using also cos(2φI) ≃ 0.7 (e.g., Mellier et al. 1993; we assume

the major axis of the potential is aligned with that of the central galaxy), and γ = 0.33, the

lower limit on the ellipticity from equation (12) is

ǫ > 0.77 [1− κ̄(θI)] & 0.1 . (13)

This is only a lower limit that we have obtained using only one observational constraint,

the misalignment of two images relative to the center. The models that reproduce also the

three images of the other source require an ellipticity ǫ ≃ 0.2.

There are other clusters that show little substructure in their inner parts and are well

modelled by an elliptical potential with the major axis coinciding with that of the central

galaxy: one is A2218 (Kneib et al. 1995), which requires two clumps in the model, but with

the dominant agreeing in position and ellipticity with the central cluster galaxy. Another is

A963, which shows two tangential arcs around the central giant elliptical (Lavery & Henry
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1988). In the case of A963 the ellipticity is difficult to constrain because there are only two

images which could be from the same source or two different sources.

4. Discussion

The modeling of multiple images of background galaxies produced by gravitational lens-

ing in clusters of galaxies require elliptical models of the mass distribution in order to repro-

duce their positions and magnifications successfully ((Kneib et al. 1993); (3); (Kneib et al. 1995)).

The last section discussed the specific example of MS2137-23, where the misalignment in the

position of two images relative to the cluster center can be used to constrain the elliptic-

ity in a model-independent way: the ellipticity of the dark matter halo around the central

galaxy must be greater than 0.1 within the image I, which is at 22′′.5 from the cluster center,

corresponding to a distance of 65h−1 kpc. The fact that the dark matter halos of galaxy

clusters are elliptical within this small radius implies that the dark matter particles have not

collided over the age of the cluster. As shown in §2, this also implies that the observed cores

of the dark matter halos in dwarf galaxies are too big to have been caused by dark matter

self-interaction, as proposed by Spergel & Steinhardt (2000).

Further evidence supporting that cluster dark matter halos are elliptical at radii ∼ 100

kpc comes from the similarity with the ellipticity of the optical isophotes of the central

cluster galaxies in both the magnitude of the ellipticity and the orientation of the major axis

((3); (Kneib et al. 1993); (Kneib et al. 1995)). If the underlying dark matter distribution

became spherical due to the collisions, the ellipticity of the stellar distribution would be

reduced (although not eliminated, owing to the anisotropy in the velocity dispersion tensor).

According to Hammer et al. (1997), the central galaxy in MS2137-23 has ellipticity ǫ =

0.16± 0.02 beyond the radius of the radial arc, and the best fit ellipticity for the lens model

is ǫ = 0.18 (see also (Kneib et al. 1995) for similar conclusions obtained in the cluster A2218).

We note again that the ellipticities of the optical isophotes decline at a radius smaller than

that probed by gravitational lensing (Porter et al. 1991).

The ellipticity of the cluster halo can be used to place an upper limit on the interaction

rate of the dark matter, in terms of the cross section sx and mass mx of the dark matter

particle. We assume here that the collisional radius must be smaller than the distance from

the center to the long tangential arc and two other arclets (these images are A01-A02, A2

and A4 in (Hammer et al. 1997), and they also require an ellipticity similar to that of the

central galaxy in the lensing models), which is about 70 kpc. The dark matter density at this

radius is ρ ≃ Σcrit/2r, where the critical surface density is Σcrit ≃ 1 g cm−2 for a source at

zs = 1. Assuming also a cluster velocity dispersion σ = 1000 km s−1 (roughly the minimum
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value required given the Einstein radius of the cluster), and a cluster age tc = 5× 109 years,

we obtain the upper limit

sx
mx

<
1

ρ 21/2σ tc
≃ 10−25.5 cm

2

mp
≃ 0.02

cm2

g
. (14)

For the dwarf galaxies DDO 154, DDO 170, and DDO 236 mentioned in §2, with velocity

dispersion σ = (28, 52, 45) km s−1, and core radii (3, 2.5, 6) kpc, the time it would take for the

collisional radius to reach the value of their core radii if sx/mx were equal to the above upper

limit is t = (40, 5, 40)× 1010 years, respectively [where we have used the relation t ∝ σ3/r2c ,

from eq. (1) ].

The limit we have obtained on the self-interaction of the dark matter also rules it out as

an explanation for the low abundance of dwarf galaxies in the Local Group, compared to the

predictions of halo satellites abundances from numerical simulations ((Klypin et al. 1999);

(Moore et al. 1999a)). In order to strike out the dark matter particles, the satellite halos

must be moving in an orbit inside the collisional radius. For example, in the Milky Way

halo (with σ ≃ 150 km s−1), the collisional radius cannot be greater than about 6 kpc, if

rc < 100 kpc in a cluster with σ = 1000 km s−1 (where we use the scaling rc ∝ σ3/2).

Finally, we mention three ways by which the collisional dark matter hypothesis might

still remain viable as an explanation of the constant density cores observed in some dwarf

galaxies. A first possibility is that the presence of substructure in the mass distribution of

MS2137-23, or of other massive structures projected on the line of sight of the cluster, intro-

duces an external shear that would modify the positions of the images. However, this seems

unlikely as discussed in §3, because elliptical models fit the observed positions and shapes

of the images remarkably well with fewer model parameters than observational constraints,

and an external shear induces a lensing potential different than a constant ellipticity, and

would not generally be aligned with the major axis of the galaxy. The second possibility is

that the ellipticity of the dark matter could be supported by rotation, instead of anisotropic

velocity dispersion. However, halos formed by collisionless collapse are known to rotate very

slowly ((Barnes & Efstathiou 1987); (Warren et al. 1992)), and the collisions would further

slow down the rotation of the central parts of the halo by enforcing solid body rotation. Fi-

nally, there is the possibility that the cross section for the dark matter interaction decreases

with velocity. Here we have assumed the cross section to be constant; if it were proportional

to v−1 (see, e.g., Firmani et al. 2000), then the constraints we have used here from gravita-

tional lensing in clusters of galaxies would allow a large enough collisional radius in dwarfs

to explain their dark matter core radii.

I am grateful to Andy Gould, Paul Steinhardt and David Weinberg for discussions and
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