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ABSTRACT
We present predictions for the reionization of the intergalactic medium (IGM) by
stars in high-redshift galaxies, based on a semi-analytic model of galaxy formation.
We calculate ionizing luminosities of galaxies, including the effects of absorption by
interstellar gas and dust on the escape fraction fesc, and follow the propagation of
the ionization fronts around each galaxy in order to calculate the filling factor of
ionized hydrogen in the IGM. For a ΛCDM cosmology, with parameters of the galaxy
formation model chosen to match observations of present-day galaxies, and a physical
calculation of the escape fraction, we find that the hydrogen in the IGM will be
reionized at redshift z = 6.1 if the IGM has uniform density, but only by z = 4.5 if the
IGM is clumped. If instead we assume a constant escape fraction of 20% for all galaxies,
then we find reionization at z = 9.0 and z = 7.8 for the same two assumptions about
IGM clumping. We combine our semi-analytic model with an N-body simulation of the
distribution of dark matter in the universe in order to calculate the evolution of the
spatial and velocity distribution of the ionized gas in the IGM, and use this to calculate
the secondary temperature anisotropies induced in the cosmic microwave background
(CMB) by scattering off free electrons. The models predict a spectrum of secondary
anisotropies covering a broad range of angular scales, with fractional temperature
fluctuations ∼ 10−7

− 10−6 on arcminute scales. The amplitude depends strongly on
the total baryon density, and less sensitively on the escape fraction fesc. The amplitude
also depends somewhat on the geometry of reionization, with models in which the
regions of highest gas density are reionized first giving larger CMB fluctuations than
the case where galaxies ionize surrounding spherical regions, and models where low
density regions reionize first giving the smallest fluctuations. Measurement of these
anisotropies can therefore put important constraints on the reionization process, in
particular, the redshift evolution of the filling factor, and should be a primary objective
of a next generation submillimeter telescope such as the Atacama Large Millimeter
Array.

Key words: cosmology: theory- dark matter- large scale structure of Universe- in-
tergalactic medium

1 INTRODUCTION

The Gunn-Peterson (GP) effect (Gunn & Peterson 1965)
strongly indicates that the smoothly distributed hydrogen
in the intergalactic medium (IGM) is already highly ion-
ized by z = 5 (Schneider, Schmidt & Gunn 1991; Lanzetta,
Wolfe & Turnshek 1996). Barring the possibility of colli-
sional reionization (e.g. Giroux & Shapiro 1994), the GP
effect implies the presence of very luminous ionizing sources

at high redshifts capable of producing enough Lyman con-
tinuum (Lyc) photons to cause photoionization of hydrogen
by z >∼5. The two possible sources of these ionizing photons
are QSOs and high mass stars.

Models in which QSOs dominate the production of
ionizing photons may be able to meet the GP constraint
(Miralda-Escudé & Ostriker 1990). However, such models
are strongly constrained by the observed drop in the abun-
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dance of bright QSOs above z ≈ 3 (Hartwick & Schade 1990;
Warren, Hewett & Osmer 1994; Kennefick, Djorgovski & de
Carvalho 1995; Schmidt, Schneider & Gunn 1995). Further-
more, Madau, Haardt & Rees (1999) note that a model in
which faint QSOs provide all the required ionizing luminos-
ity can be ruled out on the basis of the number of faint QSOs
seen in the HDF.

There is, however, growing evidence for the presence of
bright galaxies at redshifts as high as z ∼ 5 (Spinrad 1998),
and perhaps even higher (Yahil, Lanzetta & Ferna’ndez-Soto
1998). Thus the other natural candidate sources of ioniz-
ing photons are young, high mass stars forming in galaxies
at redshifts greater than 5 (e.g. Couchman & Rees 1986;
Haiman & Loeb 1996; Ciardi et al. 2000). Madau, Haardt &
Rees (1999) note that at z ≈ 3 stars in Lyman-break galax-
ies will emit more ionizing photons into the IGM than QSOs
if more than 30% of such photons can escape from their host
galaxy. Whilst such high escape fractions may not be real-
istic (e.g. local starbursts show escape fractions of only a
few percent, Leitherer et al. 1995), this does demonstrate
that high-redshift galaxies could provide a significant con-
tribution to (or perhaps even dominate) the production of
ionizing photons. In this work we will restrict our attention
to ionizing photons produced by stars, deferring considera-
tion of the QSO contribution to a later paper.

According to the hierarchical structure formation sce-
nario (e.g. Peebles 1980) perturbations in the gravitation-
ally dominant and dissipationless dark matter grow, by grav-
itational instability, into virialised clumps, or halos. Galax-
ies, and later stars, then form by the cooling and conden-
sation of gas inside these halos (e.g. White & Rees 1978;
White & Frenk 1991). Dark matter halos continually grow
by merging with other halos (e.g. Bower 1991; Bond, Cole,
Efstathiou & Kaiser 1991). In the context of this hierar-
chical scenario, we present a realistic scheme for studying
the reionization of the universe by ionizing photons emitted
from massive stars. We focus on the photoionization of the
hydrogen component of the IGM. To predict the time depen-
dent luminosity in Lyc photons we use a semi-analytic model
of galaxy formation (e.g. Kauffmann et al. 1993; Cole et al.
1994; Somerville & Primack 1999). In particular, we use the
semi-analytic model of Cole et al. (2000), modified to take
into account Compton cooling by cosmic microwave back-
ground (CMB) photons, to model the properties of galaxies
living in dark matter halos spanning a wide range of masses.

We then estimate the fraction of the ionizing photons
which manage to escape each galaxy, and therefore con-
tribute to the photoionization of the intergalactic Hi. The
fraction of ionizing photons escaping is determined on a
galaxy-by-galaxy basis, using physically motivated models.
Assuming spherical symmetry, we follow the propagation of
the ionization front around each halo to compute the fill-
ing factor of intergalactic Hii regions, including the effects
of clumping in the IGM. Finally, using several alternative
models for the spatial distribution of ionized regions within a
high resolution N-body simulation of the dark matter distri-
bution, we estimate the anisotropies imprinted on the CMB
by the patchy reionization process, due to the correlations
in the ionized gas distribution and velocities (Sunyaev &
Zel’dovich 1980; Vishniac 1987). In previous models many
simplifications were made in computing both the spatial dis-
tribution of ionized regions and the two-point correlations

of gas density and velocity in those regions (Aghanim et al.
1996; Jaffe & Kamionkowski 1998; Gruzinov & Hu 1998;
Knox, Scoccimarro & Dodelson 1998; Peebles & Juskiewicz
1998; Haiman & Knox 1999). Our calculations represent a
significant improvement over these models as we are able to
calculate the two-point correlations between gas density and
velocity in ionized regions directly from an N-body simula-
tion.

The rest of this paper is arranged as follows. In §2 we
outline the features of the semi-analytic model relevant to
galaxy formation at high redshifts. In §3 we describe how
we calculate the fraction of ionizing photons escaping from
galaxies, and observational constraints on the ionizing lumi-
nosities and escape fraction at low and high redshift from
Hα luminosities and Hi masses and column densities. In §4
we describe how we calculate the filling factor of photoion-
ized gas in the IGM, including the effects of clumping of this
gas. We then present our predictions for reionization, includ-
ing the effects on the reionization redshift of using different
assumptions about escape fractions and clumping factors.In
§5 we examine the robustness of our results to changes in
the other parameters of the semi-analytic galaxy formation
model. In §6 we describe how the semi-analytic models are
combined with N-body simulations to calculate the spatial
distribution of the photoionized IGM. We then calculate the
spectrum of anisotropies introduced into the CMB by this
ionized gas. Finally, in §7 we summarize our results and ex-
amine their consequences.

2 THE SEMI-ANALYTIC MODEL OF
GALAXY FORMATION

To determine the luminosity in ionizing Lyc photons pro-
duced by the galaxy population, we use the semi-analytic
model of galaxy formation developed by Cole et al. (2000).
This model predicts the properties of galaxies residing
within dark matter halos of different masses. This is achieved
by relating, in a self-consistent way, the physical processes
of gas cooling, star formation, and supernovae feedback to a
halo’s merger history, which is calculated using the extended
Press-Schechter theory. The parameters of this model are
constrained by a set of observations of galaxies in the local
Universe, including the B and K-band luminosity functions,
the I-band Tully-Fisher relation, the mixture of morphologi-
cal types and the distribution of disk scale lengths (see Cole
et al. (2000) and references therein for a thorough discus-
sion of the observational constraints). Once the model has
been constrained in this way it is able to make predictions
concerning the clustering of galaxies (Benson et al. 2000)
and the properties of galaxies at higher redshifts. For ref-
erence, the parameters of our standard model are given in
Table 1. Definitions of the semi-analytic model parameters
can be found in Cole et al. (2000).

As we are employing the semi-analytic model at much
higher redshifts than we have previously attempted, we will
investigate the effects on our results of changing key model
parameters. Of particular interest will be the prescription
for feedback from supernovae and stellar winds. The model
assumes that a mass β∆M of gas is reheated by supernovae
and ejected from the disk for each mass ∆M of stars formed.
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Table 1. The parameters of our standard model.

Parameter Value

Cosmology

Ω0 0.3
Λ0 0.7
H0 70 km/s/Mpc
σ8 0.90
Γ 0.21
Ωb 0.02

Gas cooling

Gas profile¶ CDC
rcore 0.33rNFW

Recooling∗ not allowed

Star formation and feedback

α⋆ -1.5
ǫ⋆ 0.01
αhot 2.0
Vhot 150 km s−1

Feedback∗∗ standard

Stellar populations

IMF Kennicutt (1983)
p 0.02
R 0.31
Υ 1.53

Mergers and bursts

fdf 1.0
fellip 0.3
Starbursts included
fdyn 1.0

Ionizing luminosities

S‡
2 10.0× 1050 photons/s

hz/r
†
disk

0.1

¶ Gas profiles that we consider are CDC (for which the gas den-
sity is ρ(r) ∝ (r2 + r2core)

−1 — i.e. an isothermal profile but with
a constant density core), and SIS (an isothermal profile with no
core).

∗ Gas ejected from galaxies by supernovae is allowed to cool again
in the same halo if ‘Recooling’ is allowed. Otherwise this gas can
only cool again once it enters a newly formed halo.

∗∗ ‘Standard’ feedback is the form specified in eqn. (1). The alter-
native is ‘modified’ feedback, which is the form specified in eqn.
(9).

‡ The upper cut off the in luminosity function of OB associations
assumed in the DS94 model (see Appendix A and §3.2).

† This is the ratio of disk vertical and radial scale lengths used
in the DS94 and DSGN98 models for the gas escape fraction (see
Appendix A and §3.2).

The quantity β is allowed to be a function of the galaxy
properties, and is parameterised as

β = (Vdisk/Vhot)
−αhot , (1)

where Vdisk is the circular velocity of the galaxy disk and
Vhot and αhot are adjustable parameters of the model. Cole
et al. (2000) show that αhot and Vhot are well constrained
by the shape of the B-band luminosity function and the
Tully-Fisher relation at z = 0. However, since there is very
little time available for star formation at the high redshifts
which we consider, it is possible that these parameters, or
indeed the form of the parameterisation in eqn. (1), could
be changed at high redshift without significantly affecting
the model predictions at z = 0. In §5 we will therefore ex-
periment with different values of these parameters and will
also consider a modified functional form for β.

Two other key model inputs are the baryon density pa-
rameter, Ωb, and the stellar initial mass function (IMF). The
value of Ωb determines cooling rates (and so star formation
rates) in our model halos. The shape of the IMF determines
the number of high mass stars which produce the ionizing
photons. For Ωb our standard value is 0.02, which is consis-
tent with the estimate Walker et al. (1991) and which allows
a good match to the bright end of the observed B-band lumi-
nosity function. We will also consider an alternative value of
Ωb = 0.04, which is in better agreement with estimates from
the D/H ratio in QSO absorption line systems (Schramm &
Turner 1998; Burles & Tytler 1998). For the IMF, we adopt
as our standard choice the IMF of Kennicutt (1983), which
is close to the “best” IMF proposed by Scalo (1998) on
the basis of observations in the Solar neighbourhood and in
nearby galaxies. We consider the effects of changing both Ωb

and the IMF in §5.

2.1 Gas Cooling

The standard semi-analytic model of Cole et al. (2000) al-
lows hot halo gas to cool only via collisional radiative pro-
cesses. At high redshift, Compton cooling due to free elec-
trons in the hot plasma scattering off CMB photons becomes
important. The Compton cooling timescale is given by (Pee-
bles 1968)

tCompton =
1161.3(1 + x−1

hot)

(1 + z)4(1− TCMB
0 (1 + z)/Te)

Gyr, (2)

where xhot is the ionized fraction of the hot halo gas, TCMB
0

is the temperature of the CMB at the present day and Te is
the temperature of electrons in the hot halo gas, which we set
equal to the virial temperature of the halo. At high redshifts
this cooling time becomes shorter than the Hubble time and
so Compton cooling may be effective at these redshifts. To
implement eqn. (2) in the semi-analytic model, we assume
that the shock-heated halo gas is in collisional ionization
equilibrium, and use values for xhot which we interpolate
from the tabulated values given by Sutherland & Dopita
(1993). In halos with virial temperatures less than around
104K collisional ionization is ineffective, and so the ionized
fraction in the halo gas will equal the residual ionization
fraction left over from recombination. However, since this
fraction is small, we will simply assume in this paper that
cooling in halos below 104K is negligible.
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It should be noted that, unlike the radiative cooling
time, the Compton cooling time is independent of the gas
density and depends only very weakly on the gas temper-
ature. Whereas with collisional radiative cooling a cooling
radius, within which the cooling time is less than the age
of the halo, propagates through the halo as more and more
gas cools, with Compton cooling the entire halo cools at the
same rate. The amount of gas which can reach the centre of
the halo is then controlled by the free-fall timescale in the
halo.

Including Compton cooling in our model turns out to
make little difference to the results. For example, the total
mass of stars formed in the universe as a function of redshift
differs by less than 5% for z < 20 between models with and
without Compton cooling. At higher redshifts the differences
can become as large as 30% for small intervals of redshift.
For example, if a massive halo cools via Compton cooling it
will rapidly produce many stars — without Compton cooling
it will still form these stars, but not until slightly later when
collisional radiative cooling takes effect. However, the mass
of stars formed at these high redshifts is tiny, and so any
differences become entirely negligible at lower redshifts when
many more stars have formed. Although at high redshift
the Compton cooling time is shorter than the age of the
Universe, halos are merging at a high rate and so their gas is
being repeatedly shock-heated by successive mergers which,
we assume, heat the gas to the virial temperature of the
halo. We find that for the majority of halos the time between
successive major mergers (defined as the time for a doubling
in mass of the halo) is less than the Compton cooling time
at the redshifts considered here. Therefore, Compton cooling
will be ineffective in these halos. In the few cases where the
halo does survive long enough that Compton cooling could
be important, we find that the collisional radiative cooling
time at the virial radius of the halo is often shorter than
the Compton cooling time, in which case all of the gas in
the halo will cool whether or not we include the effects of
Compton cooling. Nevertheless, Compton cooling is included
in all models considered.

In this work we ignore cooling due to molecular hydro-
gen (H2). Although molecular hydrogen allows cooling to
occur in gas below 104K, it is easily dissociated by photons
from stars that form from the cooling gas. Previous studies
that have included cooling due to H2 typically find that it
is completely dissociated at very high redshifts. For exam-
ple, Ciardi et al. (2000) find that molecular hydrogen is
fully dissociated by z ≈ 25. Objects formed by H2 cooling
are therefore not expected to contribute significantly to the
reionization of the IGM.

2.2 Fraction of Gas in the IGM

At any given redshift, some fraction of the gas in the Uni-
verse will have become collisionally ionized in dark matter
halos and some fraction will have cooled to become part of
a galaxy. Within the context of our semi-analytic model, we
define the IGM as all gas which has not been collisionally
ionized inside dark matter halos and which has not become
part of a galaxy (note that we are here only interested in ion-
ization of hydrogen). It is this gas which must be photoion-
ized if the Gunn-Peterson constraint is to be satisfied. The
fraction of the total baryon content of the universe which is

Figure 1. The fraction of baryons remaining in the IGM as a
function of redshift. Other baryons have either been collisionally
ionized in dark matter halos or have cooled to become part of a
galaxy.

in the IGM, fIGM, can be estimated by integrating over the
mass function of dark matter halos, as follows

fIGM(z) = 1−
[
∫ ∞

0

MgasxH
dn

dMhalo

dMhalo

Ωbρc

]

−fgalaxy(z), (3)

where Mgas(Mhalo, z) is the mean mass of diffuse gas in ha-
los of mass Mhalo, xH(Mhalo, z) is the fraction of hydrogen
which is collisionally ionized at the halo virial temperature
(which we take from the calculations of Sutherland & Dopita
1993), dn/dMhalo(Mhalo, z) is the comoving number density
of halos (which we approximate by the Press-Schechter mass
function), ρc is the critical density of the Universe at z = 0,
and fgalaxy is the fraction of the total baryonic mass in the
Universe which has been incorporated into galaxies. The
quantities Mgas and fgalaxy can be readily calculated from
our model of galaxy formation. Fig. 1 shows the evolution
of fIGM with redshift.

2.3 Observational Constraints

The semi-analytic model provides the spectral energy dis-
tribution (SED) of each galaxy, from which we can deter-
mine the ionizing luminosity of that galaxy. Summing the
contributions from all galaxies in a given halo yields the to-
tal ionizing luminosity produced in that halo. Cojazzi et al.
(2000), using the model of Haiman & Loeb (1996), demon-
strated that a higher reionization redshift could be obtained
if zero-metallicity stars were responsible for reionization, as
these produce a greater number of ionizing photons than
low (i.e. 10−4) metallicity stars. In our model the very first
stars have zero metallicity, but as we include chemical evo-
lution only a very small fraction of stars have metallicities
below 10−4. This is consistent with the results of Tumlinson
& Shull (2000) who argue that the epoch of metal-free star
formation must end before z = 3, as the enhanced emis-

c© 0000 RAS, MNRAS 000, 000–000



Non-Uniform Reionization by Galaxies and its Effect on the Cosmic Microwave Background 5

Figure 2. The comoving number density of galaxies brighter than
a given ionizing luminosity ṅion as a function of redshift. The
number is plotted for ṅion = 102 (solid line), 103 (dotted line)
and 104 (dashed line) in units of 1050 photons/s.

sion shortwards of 228Å from such stars is inconsistent with
observations of Heii opacity in the IGM at that redshift.
Therefore we cannot appeal to such zero-metallicity stars to
increase the redshift of reionization in our model.

As a result of absorption by neutral hydrogen close to
the emitting stars and extinction caused by dust, only a
small fraction of the ionizing radiation emitted by the stars
escapes from each galaxy (Leitherer et al. 1995; Hurwitz,
Jelinsky & Dixon 1997; Kunth et al. 1998). We therefore
estimate, within the context of the semi-analytic model, the
fraction, fesc, of ionizing photons which escape the galaxy
to become available for the photoionization of the Hi in the
IGM. The calculation of fesc is discussed in §3.

In Fig. 2 we show the redshift evolution of the comov-
ing number density of galaxies with ionizing luminosity ṅion

larger than 102, 103 and 104 in units of 1050 photons per
second. These are the unattenuated luminosities produced
by massive stars in the galaxies. The abundances of sources
of given luminosity rises sharply up to z = 2− 4 (the exact
position of the peak depending on luminosity) as more and
more dark matter halos form that are capable of hosting
bright galaxies. After z = 2−4 abundances quickly drop to-
wards z = 0 as the amount of gas available for star formation
declines.

The escape fractions in our model will be determined
by the mass and radial scale length of the Hi gas in
galactic disks. It is therefore important to test that our
model produces galaxies with reasonable distributions of
Hi mass and disk scale length. Cole et al. (2000) have
shown that our semi-analytic model produces distributions
of I-band disk scale lengths in good agreement with the
z = 0 data of de Jong & Lacey (1999). In Fig. 3 we
compare our model with observations of damped Lyman-
α systems (DLAS) over a range of redshifts and with the
Hi mass function at z = 0.0. Under the assumption that

Figure 3. Panels (a), (b) and (c) show the distribution of DLAS
at z = 1, 2 and 3 respectively as a function of their Hi column
density. Solid lines indicate the distribution determined from our
model. Points with error bars are from Lanzetta, Wolfe & Turn-
shek (1996). Panel (d) shows the Hi mass function of galaxies at
z = 0.0. The solid line is the mass function determined from our
model. Points with errorbars are from Zwaan et al. (1997).

DLAS are caused by neutral gas in galactic disks, we com-
pute the DLAS column density distribution in our model,
fDLAS, defined such that fDLAS(NHi, t)dNHidX is the mean
number of DLAS at cosmic time t with column densities
in the range NHi to NHi + dNHi and absorption distance
X(z) = 2

3

[

(1 + z)3/2 − 1
]

in the interval dX along a line
of sight (Lanzetta, Wolfe & Turnshek 1996). Our model
is in reasonable agreement with the distribution of DLAS
column densities observed by Lanzetta, Wolfe & Turnshek
(1996), indicating that both the mass of Hi and its radial
scale length in our model galaxies are realistic. The z = 0
Hi mass function from our model is also in reasonable agree-
ment with the data of Zwaan et al. (1997), although it
does overpredict the abundance of low Hi mass galaxies.
Our model predictions assume that all of the hydrogen in
galactic disks is in the form of Hi. In practice, some of the
hydrogen in disks will be in the form of molecules (H2) or
ionized gas (Hii), so this over-estimates the Hi masses and
column densities.

A significant contribution to the ionizing luminosity
comes from very low mass halos. We therefore ensure that
we resolve all halos which have a virial temperature ≥ 104K
up to z = 50, i.e. all halos down to a mass of 5×106h−1M⊙.
Below this temperature cooling becomes inefficient (since we
are ignoring cooling by molecular hydrogen, and the Comp-
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ton cooling from the residual free electrons left over after
recombination) and so galaxy formation ceases.

The requirement that 5× 106h−1M⊙ halos be resolved
sets an upper limit on the mass of halo that we can simulate
due to computer memory limits, since the lower the mass of
halo that is resolved, the more progenitors a halo of given
mass will have. At z = 0, the most massive halos that we are
able to simulate make a significant contribution to the total
filling factor and ionizing luminosity. However, for z ≈ 2
the most massive halos simulated contribute only 1% of the
total number of escaping ionizing photons, and this fraction
drops extremely rapidly as we look to even higher redshifts.
Therefore, at the high redshifts (z >∼3) we will be interested
in, ignoring higher mass halos makes no significant difference
to our results.

We note that once any halo has begun to ionize the
surrounding IGM, it could potentially influence the pro-
cess of galaxy formation in nearby halos. Ionizing photons
from the first halo will act to heat the gas in nearby ha-
los, thereby reducing the effective cooling rate (Efstathiou
1992; Thoul & Weinberg 1996). Since prior to full reion-
ization each halo will see only the flux of ionizing photons
from nearby sources, a detailed accounting of this radiative
feedback requires a treatment of the radiative transfer of
the ionizing radiation through the IGM. This is beyond the
scope of the present work. Such radiative feedback is ex-
pected to be very efficient at dissociating molecular hydro-
gen, with Ciardi et al. (2000) finding that H2 is completely
dissociated by z ≈ 25. Radiative feedback will also inhibit
galaxy formation both by reducing the amount of gas that
accretes into low mass halos (Gnedin 2000) and by reduc-
ing the cooling rate of gas within halos. Thoul & Weinberg
(1996) show that radiative feedback may be effective in in-
hibiting galaxy formation in halos with circular velocities of
50 km/s or less. In our model, the ionizing luminosity be-
comes dominated by galaxies in halos with circular velocities
greater than 50 km/s at redshifts below z ≈ 10. At higher
redshifts we may therefore be overestimating the total ion-
izing luminosity produced by galaxies, but this should not
significantly affect the reionization redshift.

3 THE ESCAPE FRACTION OF IONIZING
PHOTONS

3.1 Global constraints at low redshift

Gas and dust inside galaxies can readily absorb ionizing pho-
tons and re-emit the energy at longer wavelengths. Therefore
the amount and distribution of these components are the
main factors that determine fesc. The model of galaxy for-
mation explicitly provides the mass and metallicity of cold
gas present in each galaxy disk and the half-mass radius of
that disk, all as functions of time. The mass of dust is as-
sumed to be proportional to the mass of cold gas and to its
metallicity. We split the escape fraction into contributions
from gas, fesc,gas, and dust, fesc,dust, such that the total es-
caping fraction is given by fesc = fesc,gasfesc,dust.

Cole et al. (2000) describe in detail how the effects
of dust are included in their model of galaxy formation.
This modelling, which uses the calculations of Ferrara et
al. (1999), is much more realistic than has been previously

included in semi-analytic galaxy formation models, as it in-
cludes a fully 3D (though axisymmetric) dust distribution,
and the dust optical depths are calculated for each galaxy in-
dividually. In this model, stars are assumed to be distributed
in a bulge and in an exponential disk with a vertical scale
height equal to 0.0875 times the radial scale length (this
ratio was adopted by Ferrara et al. to match the observed
values for the old disk population of galaxies like the Milky
Way). The dust is assumed to be distributed in the same
way as the disk stars. The models give the attenuation of
the ionizing radiation as a function of the inclination angle
at which a galaxy is viewed, and we average this over angle
to find the mean dust extinction for each galaxy. The dust
attenuations do not include the effects of clumping of the
stars or dust, and also assume that the ionizing stars have
the same vertical distribution as the dust. With these two
caveats in mind, the dust extinctions we apply should only
be considered as approximate.

Some of the emitted Lyc photons are absorbed by neu-
tral hydrogen close to the emitting star, thereby causing Hα
line emission from the galaxy. Therefore, the Hα luminosity
function is sensitive to the fraction, fesc,gas, of the ionizing
photons which manage to escape through the gas. We will
require our models to reproduce the observed Hα luminosity
function and luminosity density.

In Figs. 4 and 5 we compare the Hα emission line prop-
erties of galaxies in our model with observational data at
low redshift. The observed values are already corrected for
dust extinction, so we compare them with the theoretical
values before dust attenuation. In order to calculate these
properties accurately, we simulate halos of mass up to and
including 1015h−1M⊙. In calculating the Hα line luminos-
ity of each galaxy, we assume that a fraction 1− fesc,gas of
the Lyc photons are absorbed by hydrogen atoms, producing
Hα photons according to case B recombination. The remain-
ing Lyc photons escape, after being further attenuated by
dust. The figures show results for fesc,gas = 0, 0.05 and 0.2,
which roughly brackets the likely range of values for typical
disk galaxies at the present day, as we discuss below. Both
the predicted Hα luminosity function and luminosity density
are in reasonable agreement with the observations, demon-
strating that our models produce galaxies with realistic total
ionizing luminosities (before attenuation by gas and dust).
In principle, these observational comparisons provide a con-
straint on the value of fesc,gas, if the other parameters in the
semi-analytical model are assumed to be known. However,
in practice it is not possible to reliably distinguish between
fesc,gas = 0.2 and fesc,gas = 0 or 0.05, given the uncertainties
in the observational data. The observational results depend
on the dust correction factors applied, and there is also some
uncertainty in the ionizing luminosities predicted by stellar
population synthesis models for a given IMF. With these
caveats in mind it would seem that mean escape fractions
anywhere between zero and 20-30% are acceptable. Obser-
vations of starburst galaxies in the nearby universe suggest
that the escape fraction is actually less than 3% for such
galaxies (Leitherer et al. 1995), but starbursts are known
to have very high column densities of gas and dust, and
so the escape fraction in normal galaxies can probably be
significantly higher (e.g. Kennicutt 1998).
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Figure 4. The Hα luminosity function at z = 0. Points with er-
ror bars are observational data from Gallego et al. (1995) (filled
squares) and Sullivan et al. (2000) (open circles; note that the
median redshift of this survey is 〈z〉 ≈ 0.15). The observed Hα
luminosities are corrected for dust extinction. The solid line is
the luminosity function from our model assuming that no ioniz-
ing photons escape (fesc,gas = 0). The dashed line is the same

function for fesc,gas = 0.05 and the dotted line for fesc,gas = 0.2.
The Hα luminosities from the model are the values unattenuated
by dust.

3.2 The dependence of fesc,gas on redshift and on
halo mass

So far, we have assumed that fesc,gas is a global constant,
varying neither with galaxy properties nor redshift. The de-
tails of the physical processes which determine fesc,gas are
uncertain, but a constant fesc,gas seems unrealistic, as the
properties of the emitting galaxies depend strongly upon
both redshift and the mass of the halos in which they live.
Given the complexity of this problem, here we merely aim
at establishing the general trend of how fesc,gas may vary
with halo mass and redshift.

We will consider three models for fesc,gas. In the first
model, fesc,gas is assumed to be a universal constant (this
will be referred to as the “fixed model”). In the second and
third models fesc,gas is evaluated for each galaxy, based on
its physical properties. These two models are described next.

Our first physical fesc,gas model is based on the ap-
proach of Dove & Shull (1994), hereafter DS94 who de-
rived an analytic expression for fesc,gas . In their model, Lyc
photons are emitted by OB associations in a galactic disk
and escape by ionizing “Hii chimneys” in the Hi layer. The
fraction of photons escaping a disk of given size and gas
content can then be calculated. Whilst the original DS94
model assumes that OB associations all lie in the mid-plane
of the galaxy disk, we have also considered the case where
OB associations are distributed vertically like the gas in the
disk.

The Hii chimney model of DS94 does not include the
effects of finite lifetimes of the OB associations, or of dy-

Figure 5. The Hα luminosity density of the Universe as a func-
tion of redshift. Points with errorbars are observational estimates,
including corrections for dust extinction: Gallego et al. (1995)
(square); Tresse & Maddox (1998) (triangle); Gronwall (1998)
(circle) and Sullivan et al. (2000) (cross). We have converted the
data for the effects of differing luminosity distances and volume
elements to correspond to the Ω0 = 0.3, Λ0 = 0.7 cosmology

assumed in our model. The solid line is the equivalent luminos-
ity density measured in our model assuming that no photons es-
cape (fesc,gas = 0). The dashed line is the same function for
fesc,gas = 0.05 and the dotted line for fesc,gas = 0.2.

namical evolution of the gas distribution around an OB as-
sociation due to energy input by stellar winds and supernova
from the OB association itself. Dove, Shull & Ferrara (2000)
have calculated the escape of ionizing photons through a dy-
namically evolving superbubble, which is driven by an OB
association at its centre. They find that the resulting es-
cape fractions are slightly lower than those obtained from
the DS94 model (since the superbubble shell is able to effec-
tively trap radiation). Numerical solutions of the radiative
transfer equations in disk galaxies give results in excellent
agreement with the Strömgren sphere approach of DS94 for
OB associations at the bright end of the luminosity function,
but give somewhat lower escape fractions for the faintest OB
associations, the two approaches differing by around 25% for
a single OB star (Wood & Loeb 1999).

Our second physical model for fesc,gas is based on De-
vriendt et al. (1998), hereafter DSGN98. In this case, the
ionizing stars are assumed to be uniformly mixed with the
gas in the galaxy, and the gas is assumed to remain neutral.
DSGN98 give an approximate analytic expression for the
escape fraction in this case, but we have instead calculated
the escape fraction exactly by numerical integration, for a
specific choice for the gas density profile.

We give details of the calculation of fesc,gas in the DS94
and DSGN98 models in Appendix A. Both models contain
one free parameter, hz/rdisk, the ratio of disk scale height
to radial scale length. We will consider the effects of vary-
ing this parameter in §5. For starbursts, we calculate the
escape fraction based on a simple spherical geometry, as is
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Figure 6. The escape fraction, fesc, at z = 0 as a function of
halo mass. Thick lines with solid symbols show the escape frac-
tion ignoring the effects of dust, whilst thin lines with open sym-
bols include absorption by dust. Three models for the gas escape
fraction are plotted: fixed escape fraction of 10% (squares), DS94
(triangles), and DSGN98 (circles). In each case, the symbols indi-
cate the median of the distribution of escape fractions, whilst the

errorbars indicate the 10% and 90% intervals of the distribution.

also described in Appendix A. The contribution to the total
ionizing luminosity from bursts of star formation is small
(< 8%) at all redshifts.

To summarize, we will show results from three models
for fesc,gas as standard. These are: a model in which fesc,gas is
held constant at 0.1; the DS94 model with OB associations
in the disk midplane; and the DSGN98 model using our
exact calculation of the escaping fraction. We consider the
DS94 model to be the most realistic of our three models for
fesc,gas, but also present results from the other models for
comparison.

In Fig. 6 we show the variation of fesc with dark halo
mass at z = 0 for the three models. The thin and thick
lines show the escape fraction respectively with and without
attenuation by dust. When a halo contains more than one
galaxy, we plot the mean fesc weighted by ionizing luminos-
ity. At a given halo mass, halos with the lowest fesc tend
to have the highest ionizing luminosities, as both the star
formation rate and attenuation of photons are increased in
galaxies with large gas contents. The three models all show
a trend for decreasing escape fraction with increasing halo
mass up to Mhalo ∼ 1012h−1M⊙. For the fixed gas escape
fraction model, the variation in fesc is due entirely to the
effects of dust, which can therefore be seen to be negligi-
ble in halos less massive than ∼ 1010h−1M⊙. This decrease
in fesc due to dust is enhanced in the other two models by
the variation in fesc,gas , which also declines with increasing
halo mass. For halos more massive than 1012h−1M⊙, the
escape fractions rise somewhat for the variable fesc,gas mod-
els. Note that the DSGN98 model predicts a much smaller
escape fraction than the DS94 model at all masses.

In Fig. 7 we plot the variation in the (ionizing
luminosity-weighted) mean disk scale length and cold gas
mass for galaxies in our model as a function of halo mass.
Evidently, the decline in fesc with increasing halo mass be-
low 1012h−1M⊙ seen in Fig. 6 is due mainly to the greater
masses of gas found in galaxies in these halos. This rapid
change in the mass of gas present is due to the effects of feed-
back, which efficiently ejects gas from galaxies in low mass
halos. Above 1012h−1M⊙, the mass of cold gas in galaxies
levels off and then begins to decline as cooling becomes in-
efficient in more massive halos. This results in an escape
fraction increasing with halo mass for the most massive ha-
los simulated. Although galaxy sizes increase with increasing
halo mass, thereby reducing gas densities somewhat, this ef-
fect is not strong enough to offset the increased cold gas
mass in these galaxies.

We find that the DS94 and DSGN98 models applied to
our galaxies predict escape fractions (including the effects
of dust) for halos of mass ∼ 1011h−1M⊙ at z = 0 of ≈
20% and ≈ 0.2% respectively. The mean DS94 and DSGN98
luminosity-weighted escape fractions for galaxies at z = 0
are lower, being ≈ 6% and ≈ 0.1% respectively. However, we
expect some variation in these values with redshift due to the
evolution of the galaxy population. In fact, we find a rapid
decline in both cold gas content and galaxy disk size with
increasing redshift. In Fig. 8 we show the evolution of the
(ionizing luminosity-weighted) mean fesc between redshifts
0 and 45. All models show an initial rapid decline in fesc
with increasing z. After this, in the constant fesc,gas model,
the mean escape fraction increases with redshift since the
dust content of galaxies was lower in the past. The DS94
model shows a very gradually rising escape fraction, whilst
the DSGN98 model has a more rapid decline.

In our model, the contribution of stellar sources to the
UV background is dominated by galaxies at low redshifts
(z∼<1). We find that immediately shortwards of 912Å our
DS94 model predicts a background due to stellar sources
which is very close to that expected from QSOs (Haardt &
Madau 1996), after including the effects of attenuation by
the intervening IGM (Madau 1995). At shorter wavelengths
the QSO contribution soon becomes dominant. Thus, at
z = 0 the combined background due to stars (from our DS94
model) and QSOs (from Haardt & Madau 1996) is J912Å ≈
4 × 10−23 ergs/s/cm2/Hz/ster. This is consistent with the
upper limit of J912Å = 8× 10−23 ergs/s/cm2/Hz/ster found
by Vogel et al. (1995), who searched for Hα emission from
intergalactic HI clouds. The contribution of galaxies to the
local ionizing background has also been estimated by Gial-
longo, Fontana & Madau (1997), based on the luminosity
function of galaxies observed in the Canada-France Red-
shift Survey. They estimated the galactic contribution as
J912Å ≈ 5 × 10−23 ergs/s/cm2/Hz/ster at z = 0, assum-
ing an escape fraction of fesc = 0.15. If we assume the
same fesc in our model, we obtain J912Å = 5.2 × 10−23

ergs/s/cm2/Hz/ster, in excellent agreement with their re-
sult.
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Figure 7. The variation in (ionizing luminosity-weighted) mean
disk scale length (squares) and gas mass (triangles) for galaxies
in our model as a function of halo mass. The symbols show the
medians of the distributions, while the errorbars indicate the 10%
and 90% intervals.

4 THE FILLING FACTOR AND THE
EVOLUTION OF THE IONIZATION
FRONTS

We define the filling factor, Ffill, as the fraction of hydro-
gen in the IGM (as defined in §2.2) which has been ionized.
This is the natural quantity which serves as an indication
of the amount of reionization in the IGM. We calculate the
growth of the ionized region around each halo, using the
ionizing luminosities predicted by the semi-analytic model,
and then sum over all halos to find Ffill. We make two sim-
plifying assumptions: (1) the radiation from each halo is
emitted isotropically, and (2) the distribution of hydrogen is
uniform on the scale of the ionization front and larger (but
with small-scale clumping). It follows that each halo by itself
would produce a spherical ionization front.

The mass of hydrogen ionized within the ionization
front, M , in spherical symmetry is given by (Shapiro &
Giroux 1987; Haiman & Loeb 1996)

1

mH

dM

dt
= S(t)− α

(2)
H a−3fclumpnH

M

mH
, (4)

where nH is the comoving mean number density of hydrogen
atoms (total, Hi and Hii) in the IGM, a(t) is the scale factor
of the universe normalized to unity at z = 0, t is time and
S(t) is the rate at which ionizing photons are being emitted.
The factor fclump(t), defined by

fclump = 〈ρ2IGM〉/ρ̄2IGM, (5)

is the clumping factor for the ionized gas in the IGM (here
ρIGM is the density of IGM gas at any point and ρ̄IGM is the
mean density of the IGM). Small-scale clumpiness causes
the total recombination rate to be larger than for a uniform
medium of the same mean density.

The value of fclump(t) for the ionized gas in the IGM is

Figure 8. The (ionizing luminosity-weighted) mean escape frac-
tion for all galaxies as a function of redshift. Thick lines show the
escape fraction ignoring the effects of dust, whilst thin lines in-
clude dust. Three models for the gas escape fraction are plotted:
constant gas escape fraction of 10% (solid line), DS94 (dotted
line) and DSGN98 (dashed line).

complicated to calculate analytically. We remind the reader
that in our picture, the IGM consists of all gas which has
not been collisionally ionized in halos nor become part of a
galaxy. For a uniform IGM fclump = 1 by definition. If low
density regions of the IGM are ionized before high density
regions, as suggested by Miralda-Escudé, Haehnelt & Rees
(2000), then this would be similar to having fclump < 1 in
eqn. (4), but for most purposes, fclump = 1 can be consid-
ered as an approximate lower bound. We make two different
estimates of the possible effects of clumping.

For our first estimate, which we call f
(variance)
clump , we as-

sume that the photoionized gas basically traces the dark
matter, except that gas pressure prevents it from falling
into dark matter halos with virial temperatures smaller than
104K (the approximate temperature of the photo-ionized

gas). Thus, we calculate the clumping factor as f
(variance)
clump =

(1 + σ2), where σ2 is the variance of the dark matter den-
sity field in spheres of radius equal to the virial radius of a
104K halo. σ2 is calculated from the non-linear dark matter
power spectrum, estimated using the procedure of Peacock
& Dodds (1996), and smoothed using a top-hat filter in real
space.

For our second estimate, which we call f
(halos)
clump , we in-

clude the effects of collisional ionization in halos and of re-
moval of gas by cooling into galaxies in a way consistent
with our definition of fIGM given in equation (3). The dif-
fuse gas in halos with virial temperatures above ≈ 104K is
assumed to have the density profile of an isothermal sphere
with a constant density core. The gas originally associated
with smaller halos is assumed to be pushed out of these ha-
los by gas pressure following photoionization, and to be in
a uniform density component occupying the remaining vol-
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ume. As shown in Appendix B, the clumping factor is then

f
(halos)
clump =

f2
m,smooth

fv,smoothf2
IGM

+
fint∆vir

f2
IGM

∫ ∞

MJ

〈(1− fgal)
2〉

×(1− xH)
2Mhalo

ρcΩ0

dn

dMhalo
dMhalo, (6)

where MJ is the mass of a halo which just retains reionized
gas, fm,smooth is the fraction of the total baryonic mass in
the uniform component, and fv,smooth is the fraction of the
volume of the universe occupied by this gas. Here, fgal is
the fraction of the baryonic mass in a halo in the form of
galaxies, xH is the fraction of hydrogen in the diffuse halo gas
which is collisionally ionized (as in eqn. 3), and 〈〉 indicates
an average over all halos of mass Mhalo. The factor fint is
a parameter depending only on the ratio of the size of the
core in the gas density profile to the halo virial radius. For
a core radius equal to one-tenth of the virial radius fint =
3.14 (see Appendix B). This estimate of the clumping factor
ignores the possibility of gas in the centres of halos (but not
part of a galaxy) becoming self-shielded from the ionizing
radiation. Such gas would not become photoionized, and so
would not contribute to the recombination rate, resulting in
fclump being lower than estimated here. A detailed treatment
of the ionization and temperature structure of gas inside
halos is beyond the scope of this work.

Of course, before reionization, when the gas is typically
much cooler than 104K, gas will fall into dark matter halos
with virial temperatures below 104K. If all gas were in halos,
then we would find

fclump ≈ fint∆vir

f2
IGM

∫ ∞

0

〈(1− fgal)
2〉(1− xH)

2Mhalo

ρcΩ0

× dn

dMhalo
dMhalo (7)

Once reionized, some of the gas in these small halos will
flow back out of the halo as the gravitational potential is no
longer deep enough to confine the gas.

We consider f
(halos)
clump as our best estimate of the IGM

clumping factor, at least for lower redshifts, when a signif-
icant fraction of the gas is in halos with M > MJ , while
f
(variance)
clump is more in the nature of an upper limit.

The clumping factors f
(halos)
clump and f

(variance)
clump are plotted

as functions of redshift in Fig. 9. They show fairly simi-
lar behaviour above z ≈ 10. Below this redshift, f

(variance)
clump

greatly exceeds f
(halos)
clump , because it becomes dominated by

gas in massive dark matter halos, which, on the other hand,
contributes negligibly to f

(halos)
clump as it is collisionally ion-

ized. We also plot estimates of the clumping factor from
two other papers: Valageas & Silk (1999) calculated the
clumping factor of the baryons which have been unable to
cool (the quantity they call Cn) using their own analytical
model. They obtain values of fclump which are comparable to

f
(halos)
clump at z∼<10, but are substantially larger at higher red-
shifts. Gnedin & Ostriker (1997) performed hydrodynamical
simulations in a cosmology similar to that which we consider,
from which they measured fclump directly. They calculated
two clumping factors: one for all baryons in their simulation,
fclump = f

(GO:bb)
clump , and the other for baryons in ionized re-

gions only, fclump = f
(GO:HII)
clump , which is smaller. f

(GO:HII)
clump is

more relevant for our purposes, but may still overestimate
the clumping of photo-ionized gas in the IGM, since it in-

Figure 9. The gas clumping factor fclump as a function of red-

shift. The solid line shows f
(halos)
clump

, whilst the dotted and dashed
lines show the contributions to this quantity from gas inside and

outside halos respectively. The dot-dashed line shows f
(variance)
clump

.
Filled circles show the clumping factor calculated by Valageas &
Silk (1999). Squares show the clumping factors determined from
a simulation by Gnedin & Ostriker (1997) for all baryons (open
squares) and baryons in ionized regions only (filled squares).

cludes collisionally ionized gas in galaxy halos. These clump-
ing factors are everywhere lower than fclump = f

(variance)
clump .

f
(GO:HII)
clump is close to our estimate f

(halos)
clump at the highest and

lowest redshifts, but smaller in the intermediate range.

4.1 Model results

In Fig. 10 we show the ionized filling factor of the IGM, Ffill,
as a function of redshift. Here we compute Ffill by summing
the volumes of the Hii regions formed around each halo,
weighted by the number of such halos per unit volume as
given by the Press-Schechter theory. (Later we will use the
halo mass function measured directly from an N-body sim-
ulation to calculate Ffill — see Fig. 14). Ffill will exceed 1 if
more ionizing photons have been produced than are needed
to completely reionize the universe. We show results for our
three models for fesc,gas, and for three different assumptions
about fclump.

If we ignore the effects of dust, we find that the model
with a constant escape fraction of 10% reionizes the Universe
by z = 7.9 if fclump = 1 but only by z = 6.6 if fclump =

f
(halos)
clump . In order to reionize the Universe by z = 5, escape
fractions of 1.4% and 3.7% are needed for fclump = 1 and

fclump = f
(halos)
clump respectively. When we include the effects

of dust, we find that gas escape fractions of 3.3% and 9.3%
are needed to reionize by z = 5 for these two cases.

If, instead of assuming a constant gas escape fraction,
we use the more physically motivated DS94 model, we find
reionization occurs at z = 6.1 if fclump = 1, but only at

z = 4.5 if fclump = f
(halos)
clump (both estimates including dust).
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Figure 10. The filling factor, Ffill, as a function of redshift de-
termined using three different models for the absorption of ioniz-
ing photons by gas inside galaxies: constant gas escape fraction

of 10% (solid lines), DS94 (dotted lines) and DSGN98 (dashed
lines). All models include the effects of dust on the escape frac-
tion. The three panels show the filling factors for three different
assumptions about the IGM clumping factor, fclump: no clumping
(top panel), clumping due to virialised halos (middle panel) and
clumping estimated from the Peacock & Dodds (1996) non-linear
power spectrum (bottom panel).

In the latter case, the ionized filling factor at z = 5 is only
76%. If we assume OB associations are distributed as the gas
in the DS94 model (as opposed to lying in the disk mid-plane
as in our standard model) then a filling factor of 117% (i.e.
full reionization) is achieved by z = 5. The DSGN98 model,
which predicts much lower escape fractions than the DS94
model at all redshifts, is able to reionize only ≈ 2% of the
IGM by redshift 3, and full reionization never occurs even if
fclump = 1.

We note that in the DS94 model, approximately 90% of
the photons required for ionization are produced at z < 10.
Thus our neglect of radiative feedback effects (which may
reduce the number of ionizing photons produced at higher
redshifts) is unlikely to seriously effect our determination of
the reionization epoch.

As both the DS94 and DSGN98 models predict quite
low escape fractions, we have also considered a much more
extreme model which simply assumes that fesc = β/(1+β),
where β is the feedback efficiency as defined by eqn. (1). This
toy model, which we will refer to as the “holes scenario”,
produces very high escaping fractions for galaxies with low
circular speeds, and low escaping fractions for those with
high circular speeds. A behaviour for fesc of this general
form might result if photons are able to escape through holes
in the galaxy disk which have been created by supernovae.
Since dust would also be expected to be swept out of these
holes we do not include any dust absorption in this model.
The holes scenario produces very different results compared
to our two physical models for the escape fraction. In this
model fesc ≈ 1 for z > 10, dropping to 45% by z = 0.
Not surprisingly therefore, this model succeeds in satisfying
the Gunn-Peterson constraint, reionizing the Universe by
z = 11.7 if fclump = 1 and by z = 10.6 if fclump = f

(halos)
clump .

While this model is only a very crude attempt to consider
a dynamically disturbed gas distribution in galaxy disks,
it clearly demonstrates that such effects may be of great
importance for studies of reionization.

We have also computed the filling factor in our model
using the clumping factors calculated by Gnedin & Ostriker
(1997) and Valageas & Silk (1999) (as given in Fig. 9). Of
course, this is not strictly self-consistent, as their clumping
factors are calculated from their own models for galaxy for-
mation and reionization, which differ from ours. Using either
of these with the DS94 model gives a reionization redshift
comparable to that obtained using fclump = f

(halos)
clump : we find

reionization at z = 3.6 using the Gnedin & Ostriker (1997)
clumping factor, and z = 4.9 using that of Valageas & Silk
(1999).

In Fig. 11 we show the total number of ionizing photons
which have escaped into the IGM per unit comoving volume
by redshift z, nγ , divided by the total number of hydrogen
nuclei in the IGM per unit comoving volume, nH (which is
fIGM times the total number density of hydrogen nuclei).
When this number reaches one, just enough photons have
been emitted by galaxies to reionize the IGM completely
if recombinations are unimportant. This criterion has been
used previously to estimate when reionization may occur.
Since our model includes the effects of recombinations in the
IGM, we can judge how well this simpler criterion performs.
If we ignore the effects of absorption by gas and dust on the
number of ionizing photons escaping from galaxies, we find
that, in this cosmology, our model achieves nγ/nH = 1 by
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Figure 11. The ratio of the total number of ionizing photons
which have escaped into the IGM per comoving volume by red-
shift z to the comoving number density of hydrogen nuclei in the
IGM. The dot-dash line assumes that all ionizing photons can
escape from their galaxies into the IGM. Three models for the
gas escape fraction are also shown (each also includes the effects
of dust): fixed escape fraction of 10% (solid line), DS94 (dotted

line) and DSGN98 (dashed line).

z ≈ 12. When we account for the effects of dust and gas
in galaxies, we find that the redshift at which nγ/nH = 1
is significantly reduced, the exact value depending on the
model for the escape fraction. With a fixed gas escape frac-
tion of 10%, nγ/nH = 1 by z ≈ 7, whilst for the DS94 model
nγ/nH = 1 is achieved at z ≈ 6. In the DSGN98 model
nγ/nH = 1 has not been achieved even by z = 0. When
we include recombinations in the IGM, the model with con-
stant gas escape fraction reaches Ffill = 1 only by z = 6.7
for fclump = 1, and by z = 5.1 for fclump = f

(halos)
clump , as shown

in Fig. 10, showing how reionization is delayed.
Note that while the cosmology considered here is sim-

ilar to Model G of Baugh et al. (1998), the parameters of
the semi-analytic model used are somewhat different. Specif-
ically, Baugh et al. (1998) used a model in which feedback
was much more effective in low mass halos than in our model,
since they required their models to produce a B-band lumi-
nosity function with a shallow faint end slope. As a result,
the epoch at which nγ/nH = 1 was much later in Model G
of Baugh et al. (1998) than in our current model.

In summary, we see that, even for a specific model of
galaxy formation, the predicted epoch of reionization is sen-
sitive to the uncertain values of the escape fraction fesc
and the clumping factor fclump. If the clumping factor is

as large as f
(halos)
clump , then in the case of a constant gas es-

cape fraction fesc,gas, we need fesc,gas >∼10% in our model
to ionize the IGM by z = 5, if absorption by dust is in-
cluded, and fesc,gas >∼4% if dust is ignored. With the more
physically-motivated DS94 and DSGN98 models, and the
same clumping factor, at most 76% of the IGM is reionized
by z = 5, which would be inconsistent with observations of

the Gunn-Peterson effect. For the extreme case of a uniform
IGM, reionization occurs by z = 6.1 even with the DS94
model for fesc. Our “best estimate” is based on combining
the DS94 model with f

(halos)
clump for the IGM clumping factor.

As already stated, this model narrowly fails to satisfy the
Gunn-Peterson constraint at z = 5 (unless we assume that
OB associations are distributed as the gas, rather than lying
in the disk mid-plane), suggesting that additional sources of
ionizing radiation are required at high redshift, either more
stars than in our standard model, or non-stellar sources (e.g.
quasars). However, given the theoretical uncertainties in fesc
and fclump, we consider that this is not yet proven.

5 SENSITIVITY OF RESULTS TO MODEL
PARAMETERS

We turn now to test the robustness of our results to varia-
tions in the parameters of our galaxy formation model. To
do this, we have varied key parameters of the models and
determined the ionized hydrogen filling factor in each case.
We consider several different models. The variant models
which we consider are listed in Table 2. In each case, we
give the value of the parameter which is changed relative to
the standard model given in Table 1.

Benson et al. (2000) have shown that normalising mod-
els to the z = 0 B-band luminosity function allows robust
estimates of the z = 0 galaxy correlation function to be
made. Here we choose a similar constraint, forcing all mod-
els to match the z = 0 Hα luminosity function of Gallego et
al. (1995) at LHα = 4× 1041h−2 ergs/s (note that at these
luminosities the Gallego et al. luminosity function agrees,
within the errorbars, with that of Sullivan et al. 2000).
This is achieved by adjusting the value of the parameter
Υ (which determines the fraction of brown dwarfs formed
in the model). The z = 0 Hα luminosity functions for all
models considered are shown in Fig. 12. Dotted lines show
those models with Hα luminosity functions that are signifi-
cantly different from that of the standard model (at either
the bright or faint ends).

In Table 2 we list escape fractions and filling factors in
the variant models for the fixed and DS94 models for fesc
for the case fclump = f

(halos)
clump . Values of Ffill may exceed

unity, as, in some models, by z = 5 more ionizing photons
have escaped into the IGM than are required to reionize the
universe.

The standard choice for the feedback efficiency, β,
makes feedback highly efficient in galaxies with low circular
velocities. In this model β = f−αhot

V , where fV = Vdisk/Vhot.
The fraction of cold gas which is reheated by supernovae
after infinite time (a quantity with direct physical interpre-
tation) is then

β

1−R + β
=

f−αhot

V

1−R + f
−αhot

V

. (8)

Thus as Vdisk → 0 all gas is reheated and no stars are formed.
For the modified feedback model, we adapt this form such
that even in arbitrarily small potential wells not all the gas
is reheated by supernovae. We choose

β

1−R + β
=

arf
−αhot

V

1−R + f−αhot

V

, (9)
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Table 2. Results of the variant models at z = 5. Models marked by a † are those which have very different Hα luminosity functions
compared to the standard model (see Fig. 12). The second column lists those parameters which differ from the standard model. The third
column lists the value of Υ required for each model to match the Hα luminosity function. Columns 4–5 list the mean escape fraction
(including the effects of dust) in the fixed and DS94 models. Finally, columns 6–7 list the filling factors at z = 0 in the fixed and DS94

models, for the case fclump = f
(halos)
clump

. Note that filling factors will exceed 1 if more photons than required to reionize the universe have
been produced.

fescape(%) Ffill

Model Parameter change(s) Υ Fixed (fesc,gas = 0.1) DS94 Fixed DS94

Standard None 1.53 3.9 2.7 1.08 0.76
1† Ωb = 0.04 2.87 1.7 0.8 0.29 0.13
2† Ωb = 0.01 0.36 6.4 7.6 6.49 7.60
3† αhot = 0.5 1.22 2.8 1.6 1.54 0.87
4† αhot = 4.0 1.66 3.2 2.0 0.49 0.32
5† Vhot = 300 km/s 0.95 5.5 4.6 1.22 1.03
6† Vhot = 50 km/s 0.91 2.2 1.3 2.01 1.13
7† ǫ⋆ = 0.020 1.74 3.9 3.3 1.25 1.07
8 ǫ⋆ = 0.005 1.19 3.9 2.4 1.02 0.60

9 fdf = 5.0 1.47 4.0 2.9 1.14 0.83
10 fdf = 0.2 1.49 2.6 1.7 1.04 0.68
11† fellip = 0.05 0.86 2.8 2.0 1.78 1.27
12 fellip = 0.60 1.63 4.0 2.9 1.02 0.72
13 fdyn = 5.0 1.53 4.0 2.8 1.08 0.77
14 fdyn = 0.1 1.53 4.0 2.9 1.08 0.77
15† p = 0.04 1.20 3.0 2.4 1.01 0.78
16† p = 0.01 1.46 5.1 3.3 1.47 0.96
17 R = 0.50 1.86 3.9 2.7 0.89 0.63
18† R = 0.10 1.23 4.1 3.0 1.34 0.96
19 hz = 0.5 1.53 4.0 1.6 1.08 0.42
20† Feedback: modified (ar = 0.75) 0.58 2.7 1.5 3.25 1.82
21 S2 = 20.0× 1050 photons/s 1.53 4.0 3.4 1.08 0.91
22 S2 = 0.5× 1050 photons/s 1.53 4.0 1.4 1.08 0.36
23 Starbursts: Not included 1.60 4.0 2.9 1.04 0.73
24 IMF: Salpeter (1955) 1.45 4.0 2.8 1.06 0.75
25† Gas profile: SIS 1.59 2.7 1.7 1.00 0.64
26† Recooling: allowed 1.27 3.3 2.2 1.50 0.97

where ar is an adjustable parameter. Now, as Vdisk → 0
a fraction ar of gas is reheated, whilst a fraction 1 − ar

forms stars. The standard feedback model is recovered when
ar = 1. For the alternative feedback models considered here
a value of ar = 0.75 is used.

It should be noted that the variation having one of the
greatest influences on the predicted filling factors is that of
Model 20, where we use the alternative form for feedback
given above. This model produces an Hα luminosity func-
tion with a very steep faint end slope, since feedback never
becomes highly efficient, even in extremely small dark mat-
ter halos. More ionizing photons are produced than in the
standard model and higher filling factors are achieved.

Other models which alter the strength of feedback (i.e.
Models 3, 4, 5 and 6) also cause large changes in the filling
factors. Models with weaker feedback (i.e. Models 3 and 6)
result in larger filling factors as they allow more star forma-
tion to occur in low mass galaxies (these models again pro-
ducing a steep slope for the faint end of the Hα luminosity
function). The value of Ωb also has a strong influence on the
filling factors as demonstrated by Models 1 and 2. Finally,
in Models 21 and 22 we consider two alternative values of S2

in the DS94 model. These values span the range of uncer-
tainty for the maximum OB association luminosity in our
own Galaxy (Dove & Shull 1994). These models demon-

strate that the filling factors predicted by the DS94 model
are uncertain by a factor of at least 2 simply because of
this uncertainty in the value of S2. There is, in fact, further
uncertainty introduced as it is not clear if S2 represents a
real cutoff in the luminosity function of OB associations, or
merely a turn-over in that function.

All of the models which significantly alter the predicted
filling factors are amongst those marked with a † in Ta-
ble 2, indicating that such models do not reproduce well
the z = 0 Hα luminosity function, and can therefore be
discarded as being unrealistic. With these models removed,
our predictions for Ffill are reasonably robust. Considering
all the realistic models we find that for the fixed gas escape
fraction of 10%, Ffill at z = 5 is 1.08+0.06

−0.19 (where the value
indicates the filling factor in the standard model and the
errors show the range found in the realistic variant models).
For the DS94 model we find Ffill = 0.76+0.15

−0.40 (leaving out
the models which vary S2 we find Ffill = 0.76+0.07

−0.34). Our
conclusion that with the DS94 escape fractions reionization
cannot happen by z = 5 if the clumping factor is as large as
f
(halos)
clump remains valid under all realistic parameter variations
considered here. On the other hand, if the clumping factor
is closer to the case of a uniform IGM, then reionization by
z = 5 is possible in the DS94 model (but not in the DSGN98
model).

c© 0000 RAS, MNRAS 000, 000–000



14 A. J. Benson, Adi Nusser, Naoshi Sugiyama and C. G. Lacey

Figure 12. The z = 0 Hα luminosity functions of our variant
models. The solid lines show the variant models, whilst the dotted
lines indicate the variants models marked with a † in Table 2.
Points with error bars are observational data from Gallego et al.
(1995) (filled squares) and Sullivan et al. (2000) (open circles).
These points include a correction for dust extinction.

So far we have considered a single cosmology, namely
ΛCDM. This choice was motivated by the work of Cole et al.
(2000) and Benson et al. (2000), who have shown that the
semi-analytic model is able to reproduce many features of
the observed galaxy population for this cosmology. However,
in order to explore the effects of cosmological parameters on
reionization, we have also considered a τCDM cosmology,
with Ω = 1, in which we use model parameters identical to
those of Benson et al. (2000). We note that Benson et al.
(2000) were unable to match the galaxy correlation function
at z = 0 for this cosmology.

We find that in the τCDM model, our basic results are
unchanged, i.e. with physical models for the escape fraction,
the IGM is reionized by z = 5 only if it is much less clumped
than in our halo clumping model with fclump = f

(halos)
clump . The

escape fractions in this cosmology are actually somewhat
higher than in the ΛCDM cosmology (due to a lower amount
of gas and dust in galaxies). At z = 5 the DS94 model pre-
dicts a mean escape fraction ≈ 16%, whilst the DSGN98
model predicts ≈ 0.1%. However, the filling factors are sig-
nificantly lower (for example, in the DS94 model Ffill = 0.24

at z = 5 when f
(halos)
clump is used as compared to Ffill = 0.76

in ΛCDM). This reflects the fact that many fewer ionizing
photons are produced in this cosmology (due to the fact that
a stronger feedback is required in order that the model fits
the properties of galaxies at z = 0), and that less of the gas
has become collisionally ionized in virialised halos in τCDM
than in ΛCDM. The only factor which works in favour of a
higher filling factor in τCDM is that the clumping factor is
somewhat lower. However, this is not enough to offset the
two effects described above.

6 SPATIAL DISTRIBUTION OF IONIZING
SOURCES AND CMB FLUCTUATIONS

6.1 Spatial distribution

We now consider the temperature anisotropies imprinted on
the microwave background by the IGM following reioniza-
tion. These depend on the spatial and velocity correlations
of the ionized gas. A fully self-consistent calculation of these
correlations on the relevant scales would require very high
resolution numerical simulations including both gas dynam-
ics and radiative transfer (e.g. Abel & Haehnelt 1999). No
such numerical simulation is yet available with the necessary
combination of volume and resolution to calculate the sec-
ondary CMB anisotropies on all angular scales of interest.
Therefore in this paper, we calculate the spatial and veloc-
ity distribution of the ionized gas in an approximate way, by
combining our semi-analytical galaxy formation model with
a high resolution N-body simulation of the dark matter.

We have used the same ΛCDM simulation as Benson et
al. (2000), described in detail by Jenkins et al. 1998, which
has Ω0 = 0.3, a cosmological constant Λ0 = 0.7, a Hubble
constant of h = 0.7 in units of 100km/s/Mpc, and which is
normalised to produce the observed abundance of rich clus-
ters at z ≈ 0 (Eke, Cole & Frenk 1996). Using the same
semi-analytic model as employed here, Benson et al. (2000)
were able to match the observed galaxy two-point correla-
tion function at z = 0 in this cosmology. The simulation has
a box of length 141.3 h−1 Mpc and contains 2563 dark mat-
ter particles, each of mass of 1.4× 1010h−1M⊙. We identify
halos in this simulation using the friends-of-friends (FOF)
algorithm with the standard linking length of 0.2, and then
populate them with galaxies according to the semi-analytic
model. We consider only groups consisting of 10 particles or
more, and so resolve dark halos of mass 1.4×1011h−1M⊙ or
greater. Sources in halos which are unresolved in the simula-
tions can produce a significant fraction of the total ionizing
luminosity, according to the semi-analytic models. To cir-
cumvent this problem, we add sources in unresolved halos
into the simulation in one of two ways. The first method is
to place the sources on randomly chosen dark matter parti-
cles which do not belong to any resolved halo. An alterna-
tive method is to place these sources completely at random
within the simulation volume. This makes the unresolved
sources completely unclustered and so is an interesting ex-
treme case. As we will be forced to construct toy models to
determine which regions of the simulation are ionized, the
exact treatment of these unresolved halos will not be of great
importance. The number of unresolved halos added to the
simulation volume is determined from the Press-Schechter
mass function, multiplied by a correction factor of 0.7 to
make it match the low mass end of the N-body mass func-
tion in ΛCDM at z = 3.

In order to calculate the correlations between ion-
ized regions that are needed to determine the tempera-
ture anisotropies induced in the CMB, a simulation with
at least the volume of this one is required. Unfortunately,
with present computing resources, this excludes the possi-
bility of an exact calculation of the shape and size of the
ionized regions, which would require much higher resolu-
tion, and also the inclusion of gas dynamics and radiative
transfer. Therefore we have used five toy models to deter-
mine which regions of the simulation are ionized, for a given
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distribution of ionizing sources. These models cover a range
of possibilities which is likely to bracket the true case, and
provide an estimate of the present theoretical uncertainties.

For each model, we divide the simulation volume into
2563 cubic cells, resulting in a cell size of 0.55h−1 Mpc. As
the gas distribution is not homogeneous, the volume of gas
ionized will depend on the density of gas in the ionized re-
gion. We assume that the ionizing luminosity from the galax-
ies in each halo all originates from the halo centre, and that
the total mass M of gas ionized by each halo is the same
as it would be for an IGM which is uniform on large scales,
but with small-scale clumping fclump, as given by eqn. (4).
We add to this the mass of any collisionally ionized gas in
the halo. We then calculate the volume of the ionized region
around each halo using M = nHmHV , where nH is the mean
IGM density within the volume V. We use several different
toy models to calculate the spatial distribution of ionized
gas in the simulations. In all cases, the total mass of hydro-
gen ionized is assumed to be the same as for a homogeneous
distribution with the specified clumping factor.

Model A (Growing front model) Ionize a spher-
ical volume around each halo with a radius equal to the
ionization front radius for that halo assuming a large-scale
uniform distribution of Hi. Since the Hi in the simulation
is not uniformly distributed, and also because some spheres
will overlap, the ionized volume will not contain the correct
total mass of Hi. We therefore scale the radius of each sphere
by a constant factor, f , and repeat the procedure. This pro-
cess is repeated, with a new value of f each time, until the
correct total mass of Hi has been ionized.

Model B (High density model) In this model we
ignore the positions of halos in the simulation. Instead we
simply rank the cells in the simulation volume by their den-
sity. We then completely ionize the gas in the densest cell. If
this has not ionized enough Hi we ionize the second densest
cell. This process is repeated until the correct total mass of
Hi has been ionized.

Model C (Low density model) As model B, but we
begin by ionizing the least dense cell, and work our way up
to cells of greater and greater density. This model mimics
that of Miralda-Escudé, Haehnelt & Rees (2000).

Model D (Random spheres model) As Model A
but the spheres are placed in the simulation entirely at ran-
dom rather than on the dark matter halos. By comparing to
Model A this model allows us to estimate the importance of
the spatial clustering of dark matter halos.

Model E (Boundary model) Ionize a spherical re-
gion around each halo with a radius equal to the ioniza-
tion front radius for that halo. This may ionize too much
or not enough Hi depending on the density of gas around
each source. We therefore begin adding or removing cells at
random from the boundaries of the already ionized regions
until the required mass of Hi is ionized.

Fig. 13 shows six slices through the N-body simulation.
The top left slice shows the density of all gas (which is as-
sumed to trace the dark matter), whilst the other slices show
only the density of ionized gas. Model A shows particularly
well the correlated nature of the ionizing sources (due to
the fact that galaxies form in the high density regions of the
dark matter), as the densest regions of the simulations are
the ones which have become most highly ionized.

In Fig. 14 we show the filling factor in the N-body sim-

Figure 14. Filling factors as a function of redshift in the N-
body simulation. Lines are plotted for the ‘fixed’ model with three
different values of fesc,gas: 0.05 (solid line), 0.20 (dotted line) and
1.00 (short-dashed line).

ulation for the fixed fesc,gas model with different values of

fesc,gas, for the case fclump = f
(halos)
clump . The filling factors cal-

culated from the simulation are always less (for a given value
of fesc,gas) than those calculated in §4.1 (see Fig. 10). This is
because the simulation contains fewer low mass dark matter
halos than predicted by the Press-Schechter theory, hence it
contains fewer ionizing sources.

6.2 CMB Fluctuations

The reionization of the IGM imprints secondary anisotropies
on the CMB through Thomson scattering off free electrons
(see, for example, Vishniac 1987; Knox, Scoccimarro & Do-
delson 1998; Hu 2000). These anisotropies result from the
spatially varying ionized fraction and from density and ve-
locity variations in the ionized IGM. The calculation of these
secondary effects involves correlation functions of density
fluctuations and velocity fields which are easily determined
in our models. To predict the form of these fluctuations,
we first calculate the two-point correlations between ionized
gas over the redshift range 3 to 18, assuming that gas in the
IGM traces the dark matter density and velocity. To do this,
we use the 2563 grid of ionization fractions, xe, described in
§6.1. We determine in each grid cell the value of

ζ =

[

xe (1 + δ)

〈xe(1 + δ)〉 − 1

]

vlos, (10)

where δ is the dark matter overdensity in the cell, vlos is the
component of the mean dark matter velocity in the cell along
the line of sight to a distant observer, and the averaging of
xe(1+ δ) is over all cells in the simulation volume. The dark
matter density and velocity in each cell are estimated by
assigning the mass and velocity of each dark matter particle
to the grid using a cloud-in-cell algorithm.

We then compute the correlation function

c© 0000 RAS, MNRAS 000, 000–000



16 A. J. Benson, Adi Nusser, Naoshi Sugiyama and C. G. Lacey

Fully ionized box Model A

Model B Model C

Model D Model E

Figure 13. The projected density of ionized gas in a slice through the ΛCDM N-body simulation at z = 3 shown as a greyscale image,
with the densest regions being black. The slice shown has dimensions of 141.3× 141.3× 8.0h−1 Mpc. The total (i.e. ionized plus neutral)
projected gas density is shown in the upper left hand panel. The remaining panels show the projected density of ionized gas in Models
A-E.
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Figure 16. The effect of varying the escape fraction, fesc,gas, on
the secondary CMB anisotropies. The curves shown are all com-
puted using Model E, with unresolved halos placed on ungrouped
particles. Gas escape fractions of 1.00, 0.70, 0.50, 0.20 and 0.05
are shown as indicated in the figure. The redshift of reionization
for each model is also indicated. The heavy solid line shows the
primary CMB anisotropies.

ξζζ(r) = 〈ζ(x)ζ(x+ r)〉x. (11)

This correlation function is all that is needed to determine
the spectrum of fluctuations imprinted in the CMB by the
reionization process. A detailed description of how this spec-
trum is computed is given in Appendix C.

In Fig. 15 we show the secondary CMB anisotropies
calculated as described above. The left-hand panel shows
the results for Model E with a fixed gas escape fraction
of 0.10, for the cases that unresolved halos are placed ei-
ther on ungrouped particles (solid line) or at random in
the simulation volume (dotted line). The clumping factor

is fclump = f
(halos)
clump , as will be used for all models considered

in this section. The particular choice of fclump is not impor-
tant for our conclusions about the CMB fluctuations, since
we will consider different values of fesc,gas. The choice of
placement scheme is seen to make little difference to the re-
sults, the two curves differing by ∼<10% for 250 < ℓ < 5000,
with the difference growing to 40% by ℓ = 20000. The size
of the grid cell used in our calculation of the ionized gas
correlation function corresponds to ℓ ≈ 25000 at z = 3, and
the turnover around ℓ = 104 is simply due to the cell size.
As such, our method is unable to determine the form of the
CMB fluctuations at higher ℓ.

The right-hand panel of Fig. 15 shows the variations in
our estimates of Cℓ which arise from using the five Models
A-E. Here the differences between the curves are larger, with
Models B and C differing by a factor of ≈ 2.5 at ℓ = 104.
The amplitude of the curves is affected by the strength of the
correlations present in each model (e.g. the “high density”
model is the most strongly correlated and has the highest
amplitude, whilst the “low density” model has the weakest

correlations and hence the lowest amplitude). However, the
shapes of the curves are all very similar.

Figure 16 examines the effect on the secondary
anisotropies of varying the escape fraction fesc,gas. The trend
is for increasing amplitude of anisotropy with increasing es-
cape fraction (which results in a higher reionization red-
shift). If, however, we boost the number of photons produced
by increasing fesc,gas above 1 (this of course being unphysi-
cal, but a simple way of examining the effects of producing
more ionizing photons), little further increase in amplitude
is seen.

The form expected for the CMB anisotropies produced
by patchy reionization has been calculated for a simple
model by Gruzinov & Hu (1998). In this model, reioniza-
tion of the universe is assumed to begin at some redshift, zi,
and is completed (i.e. the filling factor reaches unity) after a
redshift interval δz. Sources are assumed to appear at ran-
dom positions in space and to each ionize a spherical region
of comoving radius R. Once such an ionized region has ap-
peared it remains forever. In this model, the power ℓ2Cℓ/2π
is predicted to have the form of white noise at small ℓ, since
the ionized regions are uncorrelated.

We compare the simple model of Gruzinov & Hu (1998)
with our own results in Fig. 16. Since in our model reioniza-
tion has no well-defined starting redshift, and ionized regions
span a range of sizes, we simply choose values of R, zi and
δz in order to match the two models at the peak in the spec-
trum (even though the position of this peak in our results
is an artifact of our simulation resolution, we simply wish
to demonstrate here the difference in small ℓ slopes between
our model and that of Gruzinov & Hu 1998). The chosen
values of R = 0.85h−1Mpc, zi = 11 and δz = 5 are all plau-
sible for the ionization history and sizes of ionized regions
seen in our model (the mean comoving size of regions rang-
ing from 1.4h−1Mpc at z = 3 to 0.2h−1Mpc at z = 18).
Note that Knox, Scoccimarro & Dodelson (1998) calculate
a somewhat different form for the anisotropy spectrum for
this same model, in which the amplitude, A, is roughly half
that found by Gruzinov & Hu (1998), and the peak in the
spectrum occurs at slightly higher ℓ. Despite these differ-
ences both Gruzinov & Hu (1998) and Knox, Scoccimarro
& Dodelson (1998) agree upon the general form of the spec-
trum (sharp peak plus white noise at small ℓ), and this is
all we are interested in here.

The Cℓ declines much more rapidly as ℓ → 0 in the
Gruzinov & Hu (1998) model than in ours. Note that Model
D, the random sphere model, also shows the same behaviour
as our other models, indicating that it is not the correlated
positions of the ionizing sources in our model which produce
the excess power at small ℓ. If we force all halos in our model
to have equal ionized volumes surrounding them, whilst re-
taining the same total filling factor, we find that the excess
power above the white noise spectrum at small ℓ remains, so
neither is the excess due to the range of ionizing front radii,
R, present in our model. This excess power can therefore be
seen to be due to the correlations in gas density and veloc-
ity induced by gravity. In fact, if we repeat our calculations
but ignore correlations in the gas density field (i.e. we set
δ = 0 everywhere) we find a CMB spectrum which has a
slope for small ℓ which is much closer to the Gruzinov &
Hu (1998) white-noise slope, and which has an amplitude
over five times lower than when density correlations are in-
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Figure 15. The secondary CMB anisotropies generated measured from the simulation. The left hand panel shows the results for Model
E, with a fixed gas escape fraction of 0.10. The solid line indicates a model in which unresolved halos are placed on ungrouped particles,
whilst the dotted line shows a model with unresolved halos placed at random within the simulation volume. In the right-hand panel we
show the results for fesc,gas = 1.00 and with unresolved halos placed on ungrouped particles. The lines show the results from the five
different models as indicated in the figure. In each case, the heavy solid line shows the primary anisotropies in this cosmology.

Figure 17. The effect of varying Ωb on the secondary CMB
anisotropies. The curves shown are all computed using Model
E, with unresolved halos placed on ungrouped particles and a gas
escape fraction of 1.0. The solid line shows Ωb = 0.02 whilst the
dotted line shows Ωb = 0.04 (Model 1 in Table 2). The heavy
solid line shows the primary CMB anisotropies.

cluded. The remaining differences between our model and
that of Gruzinov & Hu (1998) in this case are due to the
correlated nature of ionized regions in our model.

The amplitude of the secondary anisotropies also de-
pends upon the assumed value of Ωb (as this determines the

optical depth for electron scattering). The preferred value for
our galaxy formation model of Ωb = 0.02 is relatively low
compared to estimates based on light element abundances
and big bang nucleosynthesis. Fig. 17 shows the effect of in-
creasing Ωb to 0.04. If the evolution of the ionized regions
were the same in both models, we would expect the ampli-
tude to increase by a factor of four (since it is proportional
to the square of the baryon density). The evolution of ion-
ized regions is actually quite similar in the two cases, and
so the factor of four increase is seen. With this higher value
of Ωb, the secondary anisotropies due to patchy reionization
would be potentially detectable above ℓ ∼ 3000.

We note that a similar approach to computing the spec-
trum of secondary anisotropies due to patchy reionization
has been taken by Bruscoli et al. (2000). Using a differ-
ent model of galaxy formation, Bruscoli et al. (2000) grow
spherical ionization fronts around dark matter halos identi-
fied in an N-body simulation, and from these they estimate
the spectrum of CMB anisotropies produced. The simula-
tions employed by Bruscoli et al. (2000) have higher reso-
lution (but much smaller volume) than the GIF simulations
used in our work. Bruscoli et al. (2000) therefore do not have
the problem of locating unresolved halos in their simulation,
but their calculation of secondary anisotropies is restricted
to smaller angular scales (roughly 5× 103∼<ℓ∼<2× 105) com-
pared to ours. Furthermore, Bruscoli et al. (2000) make
some approximations in calculating the anisotropies which
we do not, ignoring variations in the total IGM density, and
assuming that the ionized fraction is completely uncorre-
lated with the velocity field. Bruscoli et al. (2000) consider
only a single model for reionizing the simulation volume. As
we have shown, our five toy models for the distribution of
ionized regions lead to factors of 2–3 difference in the sec-
ondary anisotropy amplitudes, indicating that the results
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are not very sensitive to the model adopted for the distri-
bution of ionized regions or to the treatment of unresolved
halos in the simulation. Bruscoli et al. (2000) carried out
their calculations in a different cosmology to ours, also with
a different value of Ωb, but once these differences are taken
into account, their results seem reasonably consistent with
ours.

7 DISCUSSION AND CONCLUSIONS

We have outlined an approach to studying the reionization
of the universe by the radiation from stars in high redshift
galaxies. We have focussed on the reionization of hydrogen,
but the approach can be generalised to study helium reion-
ization (e.g. Giroux & Shapiro 1994), and also to include
radiation from quasars. Our main conclusions are:

(i) Using a model of galaxy formation constrained by
several observations of the local galaxy population, enough
ionizing photons are produced to reionize the universe by
z = 11.7. This assumes that all ionizing photons escape from
the galaxies they originate in, and that the density of the
IGM is uniform. Reionization is delayed until z ≈ 10.9 in the
case of a clumped IGM, in which gas falls into halos with
virial temperatures exceeding 104K. Galaxies can reionize
such a clumped IGM by z = 5 providing that, on average,
at least 4% of ionizing photons can escape from the galaxies
where they are produced. In the case of a uniform IGM, an
escape fraction of only 1.4% is sufficient to reionize by z = 5.

Using a physical model for the escape of ionizing radi-
ation from galaxies, in which photons escape through “Hii

chimneys” ionized in the gas layers in galaxy disks (Dove
& Shull 1994, hereafter DS94), we predict reionization by
z = 6.1 for a uniform IGM or by z = 4.5 for a clumped
IGM. Models which assume that all the gas in galaxy disks
remains neutral are unable to reionize even a uniform IGM
by z = 0. Using alternative estimates of the IGM clumping
factor from Gnedin & Ostriker (1997) or Valageas & Silk
(1999), we find reionization redshifts comparable with those
found using our own clumping model, i.e. in the range z =
4.5–5.0 with the DS94 model for the escape fraction.

(ii) Once the ionizing escape fraction and IGM clump-
ing factor have been specified, our estimates for the filling
factor of ionized gas in the IGM are reasonably robust, pro-
viding that we consider only models which are successful in
matching the Hα luminosity function of galaxies at z = 0.
By far the greatest remaining influences on the ionized fill-
ing factor come from the value of the baryon fraction Ωb and
the prescription for feedback from supernovae. However, we
have shown that altering these parameters also produces
large changes in the z = 0 Hα luminosity function.

(iii) We combined our model for reionization with N-
body simulations of the dark matter distribution in order to
predict the spectrum of secondary anisotropies imprinted on
the CMB by the process of reionization. The shape of this
spectrum is almost independent of the assumptions about
reionization, but the amplitude depends on the spatial dis-
tribution of the ionized regions, the redshift at which reion-
ization occurs and the baryon fraction. We find consider-
ably more power in the anisotropy spectrum at small ℓ than
predicted by models which do not account for the large-
scale correlations in the gas density and velocity produced

by gravity. Despite the uncertainty in the spatial distribu-
tion of ionized regions, we are able to determine the ampli-
tude of this spectrum to within a factor of three for a given
Ωb (the amplitude being proportional to Ω2

b). The results
found by Bruscoli et al. (2000) using a similar technique
are reasonably consistent with ours, once differences in Ωb

and other cosmological parameters are allowed for.
Detection of these secondary anisotropies, which would

constrain the reionization history of the Universe, would re-
quire fractional temperature fluctuations of ∼ 10−7 to be
measured on angular scales smaller than several arcminutes.
Although the Planck and MAP space missions are unlikely
to have sufficient sensitivity to observe such anisotropies,
the Atacama Large Millimeter Array is expected to be able
to measure temperature fluctuations of the level predicted
at ℓ ∼ 104 in a ten hour integration.

Previous studies of reionization have either used an ap-
proach similar to our own, i.e. employing some type of ana-
lytical or semi-analytical model (e.g. Haiman & Loeb 1996;
Valageas & Silk 1999; Chiu & Ostriker 2000; Ciardi et al.
2000), or else have used direct hydrodynamical simulations
(e.g. Gnedin & Ostriker 1997). While the latter technique
can in principle follow the detailed processes of galaxy for-
mation, gas dynamics and radiative transfer, in practice the
resolutions attainable at present do not allow such simu-
lations to resolve the small scales relevant to this problem.
Furthermore, the implementation of star formation and feed-
back in such models is far from straightforward.

There are two main uncertainties in our approach, as in
most others: the fraction fesc of ionizing photons that escape
from galaxies, and the clumping factor fclump of gas in the
IGM. Future progress depends on improving estimates of the
effects of clumping using larger gas dynamical simulations,
on better modelling of the escape of ionizing photons from
galaxies, and on better understanding of star formation and
supernova feedback in high redshift objects.
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APPENDIX A: CALCULATION OF THE ESCAPING FRACTION

A1 Escaping fraction in the DS94 model: Stars in mid-plane

In the model of Dove & Shull (1994), hereafter DS94, ionizing photons escape from galactic disks through “Hii chimneys”,
which are holes in the neutral gas layer ionized by OB associations. The OB associations are assumed to lie in the disk
mid-plane, and to have a distribution of ionizing luminosities dN/dS ∝ S−2 for S1 < S < S2, (dN/dS)dS being the number
of associations with luminosities in the range S to S + dS (Kennicutt, Edgar & Hodge 1989). The gas is assumed to have a
Gaussian vertical distribution with scaleheight hz. The fraction of Lyc photons escaping through chimneys on both sides of
the disk at radius r is (Dove & Shull 1994, eqn. 24)
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where Sm is defined as

Sm(r) = π3/2n2
0 exp (−2r/rdisk)h

3
zα

(2)
H , (A2)

Here α
(2)
H is the recombination coefficient for hydrogen for recombinations to all energy levels except the first, and we have

assumed an exponential disk with radial scalelength rdisk, so that the hydrogen gas density is

n(r, z) = n0 exp(−r/rdisk − z2/2h2
z), (A3)

r and z being the usual cylindrical polar coordinates.
Since Sm varies throughout the galactic disk we average the escape fraction over the entire disk, assuming that the local

rate of star formation is proportional to the column density of the disk (Kennicutt 1989; Kennicutt 1997) and that hz is
constant with radius.

The fraction of all ionizing photons produced by the galaxy which can escape into the IGM is then given by,

fesc,gas =
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where S0
m is the value of Sm calculated for r = 0. In Figure A1 we show this average escape fraction as a function of the ratio

S0
m/S2 for S2/S1 = 1000.

Our model of galaxy formation calculates the radial scale length of each galaxy’s disk and also the mass of cold gas present
in that disk, and we assume that hz/rdisk is constant. We can therefore determine n0 and the ratios S0

m/S2 and S0
m/S1. Hence

fesc,gas can be found using eqn. (A4).

A2 Escaping fraction in DS94 model: Stars tracing gas

In the DS94 model OB associations are assumed to lie in the midplane of the galaxy disk. If instead OB associations are
spread throughout the gas layer, having the same vertical distribution as the cold gas, then the resulting escape fraction will
be higher than that in the DS94 model. We assume the same density profile as before, given by eqn.(A3). Consider an OB
association emitting S ionizing photons per second, at position (r, z) in the disk. We make the assumption (as did DS94) that
the radial variations in density can be ignored for calculating the escape fraction at radius r (which will be a valid assumption
provided the size of the Hii region formed is much less than rdisk). In order for any photons emitted into a cone of solid angle
dΩ which makes an angle θ with the z-axis to escape the galaxy, the emission rate of photons into this cone must exceed the
total recombination rate in the cone. This occurs for an ionizing luminosity Sreq(θ), where,
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which can be written as S±
req(θ) = ±S0,±

req / cos3 θ (S+
req is the solution for cos θ > 0 and S−

req is the solution for cos θ < 0),
where
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Figure A1. The average escape fraction for a galactic disk in the DS94 model with OB associations in the disk mid-plane (solid line)
and distributed as the cold gas (dashed line). Both models assume S2/S1 = 1000. The dotted line (visible just above the solid line at
small values of S0

m/S2) shows the effects of accounting for radial variations in the gas density in the model where OB associations are
distributed as the gas. This line only differs noticeably from the dashed line at the lowest values of S0

m/S2.

This defines two critical angles, cos θ±c (S) = ±(S0,±
req /S)1/3, such that photons can escape the galaxy only if θ < θ+c (S) or

θ > θ−c (S).
The total escaping fraction from this OB association is then given by,
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Averaging this escape fraction over the assumed OB association luminosity function then gives a mean escape fraction of

fesc,gas =
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(A9)

This expression is then averaged over the galaxy disk, assuming a star formation rate proportional to the local gas density,
to derive the mean escaping fraction for the entire galaxy. This must be done numerically

Although we have ignored radial variations in the density of the gas when computing the escaping fraction from a single
OB association, we find by numerical solution that these variations make only a very small difference to the value of fesc,gas,
and then only for small S0

m/S2 (see Fig. A1).

A3 Escaping fraction in the DSGN98 model

In the model of Devriendt et al. (1998), DSGN98 the stars producing the Lyman continuum photons are assumed to be
uniformly mixed with the gas in the galaxy, which is distributed in an exponential disk. All of the hydrogen in the galaxy is
assumed to be in the form of Hi, allowing the optical depth for ionizing photons to be calculated.

We have calculated the escaping fraction in this model exactly, using the density profile given by eqn. (A3). As in the
case of the DS94 model with stars mixed uniformly with the gas, we begin by finding the escaping fraction as a function of
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Figure A2. Mean escape fraction for a galaxy disk in the DSGN98 model as a function of τ0.

position (r0, z0) and line of sight (θ, φ). For the DSGN98 model we therefore find the total optical depth in neutral hydrogen
along the line of sight, which is

τ(r0, z0, θ, φ) = σHi

∫ ∞

0

n(r, z)dl, (A10)

where σHi = 6.3 × 10−18cm−2 is the cross-section for hydrogen ionization at 912Å. The quantity exp(−τ ) is then averaged
over all r0, z0, θ and φ, assuming that the star formation rate is proportional to the local gas density, to obtain the final
escaping fraction. The average escape fraction for the entire galaxy depends only on the quantity τ0 = n0rdiskσH for a given
value of hz/rdisk, and is shown in Fig. A2 for hz/rdisk = 0.1.

A4 Escaping fraction in starbursts

In the case of a burst of star formation triggered by a major merger, we use the same fesc,gas as for quiescent star formation in
the the case where fesc,gas is assumed fixed, but in the DS94 and DSGN98 models we estimate the escape fraction by assuming
the burst has an approximately spherical geometry, throughout which star formation proceeds uniformly. We assume a sphere
of uniform hydrogen number density, n, given by

n =
3Mgas

4πr3burst1.4mH
, (A11)

where Mgas is the mass of cold gas in the burst, rburst is the radius of the region in which the burst occurs, and mH is the mass
of a hydrogen atom. The factor of 1.4 accounts for the presence of helium in the gas. We assume also that photons escape
only from an outer shell of thickness l, within which the optical depth is less than 1. Therefore,

nlσHi ≈ 1, (A12)

where σHi is the cross section for hydrogen ionization. The escape fraction is simply the fraction of the sphere’s volume in this
shell, i.e.

fesc,gas ≈ 4πr2burstl

4π/3r3burst
. (A13)

Substituting for l then gives

fesc,gas =
3

rburstnσHi

=
4πr2burst1.4mH

MgasσHi

. (A14)

We take rburst to be equal to 0.1rbulge where rbulge is the half-mass radius of the bulge formed by the merger. This choice
is motivated by observational fact which shows that starburst activity is usually confined to the nuclear region, the size of
which is much smaller than that of the galaxy as a whole (e.g. Sanders & Mirabel 1996 and references therein). Ricotti &
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Shull (1999) have carried out more elaborate calculations of escaping fractions from spherical galaxies. However, their results
are applicable to gas in hydrostatic equilibrium with an NFW dark matter profile and so are not well suited to the case of
starbursts.

The star formation rate in the burst is assumed to decline exponentially, with an e-folding time equal to fdyn times the
bulge dynamical time. Unless noted otherwise, we assume fdyn = 1 in all models. As the burst proceeds the mass of cold gas
present, Mgas, declines as it is turned into stars. The escape fraction, fesc,gas, therefore increases during the burst, reaching
unity as the amount of gas present drops to zero. However, as the star formation rate is declining exponentially during the
burst only a small fraction of photons are produced whilst fesc,gas is high.

APPENDIX B: CALCULATION OF CLUMPING FACTOR

To estimate the clumping factor of the photoionized IGM, we make the simplifying assumption that gas in the universe can be
split into three components — that which has fallen into dark matter halos and is collisionally ionized or is part of a galaxy,
that which has fallen into dark matter halos and is not collisionally ionized, and that which has remained outside halos and
is smoothly distributed. The first component makes no contribution to the clumping factor. We define the clumping factor as

fclump =
〈ρ2IGM〉
ρ̄2IGM

=
〈ρ2IGM〉
f2
IGMρ̄2

, (B1)

where ρIGM is the IGM gas density at any point in the universe (i.e. it does not include contributions from collisionally ionized
gas or galaxies), ρ̄IGM = fIGMρ̄ is the mean density of gas in the IGM and ρ̄ is the mean density of all gas in the universe
(here fIGM is the fraction of the total mass of gas in the universe which resides in the IGM, as defined in §2.2).

Let fm,clumped be the fraction of mass in halos above the Jeans halo mass, MJ, as calculated from the Press-Schechter
mass function for example. These halos occupy a fraction of the volume of the universe given by fv,clumped = fm,clumped/∆vir.
Here, ∆vir is the mean density within the virial radius of a halo in units of the mean density of the Universe. The smooth
component of gas is assumed to uniformly fill the region outside halos with M > MJ, and so has density

ρsmooth = ρ̄fm,smooth/fv,smooth, (B2)

where fm,smooth = 1− fm,clumped is the mass fraction of gas in this smooth component, and fv,smooth = 1− fv,clumped is the
fraction of the volume of the universe that it occupies.

Consider next the non-collisionally ionized gas in a single dark matter halo. Averaging over the volume of this one halo
we obtain

〈ρ2clumped〉 = fint(1− fgal)
2(1− xH)

2∆2
virρ̄

2, (B3)

where fgal is the fraction of the baryons which have become part of galaxies within the halo, xH is the ionized fraction for
the hydrogen in the halo gas assuming collisional ionization equilibrium (which we take from the calculations of Sutherland
& Dopita 1993), and fint is a factor of order unity which depends on the shape of the halo gas density profile and is given by

fint =

∫ rvir

0
ρ2(r)r2dr

∫ rvir

0
ρ̄2intr

2dr
. (B4)

Here rvir is the virial radius of the halo, ρ(r) is the density profile of the diffuse gas in the halo, and ρ̄int is the mean density of
this gas within the virial radius. We ignore any dependence of the density profile of the gas in the halo on the fraction which
has cooled to form galaxies. Our results should be insensitive to this assumption, as fgal ≪ 1 in halos where xH is significantly
less than unity.

To find the contribution of gas in halos to the clumping factor, we integrate the above expression over all halos more
massive than MJ, weighting by the volume for each halo. Adding the contribution from the smooth component, we then
obtain

fclump =
f2
m,smooth

fv,smoothf2
IGM

+
fint∆vir

f2
IGM

∫ ∞

MJ

〈(1− fgal)
2〉(1− xH)

2Mhalo

ρcΩ0

dn

dMhalo
dMhalo, (B5)

where we have used that fact that the comoving volume of a dark matter halo of mass Mhalo is Mhalo/(∆virΩ0ρc) (ρc being
the critical density of the universe at z = 0). Here 〈(1− fgal)

2〉 is averaged over all halos of mass Mhalo in our model of galaxy
formation.

We determine MJ by finding the mass of a dark matter halo which has a potential well deep enough that it can just hold
onto reionized gas. This gives us the minimum mass halo within which gas collects. For the halo to just retain its gas,

dP

dr
=

GMJ

r2vir
ρ(rvir), (B6)

where rvir is the virial radius of the halo and P is the gas pressure. We approximate this as

P

rvir
≈ GMJ

r2vir
ρ(rvir), (B7)
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and using the ideal gas law this becomes

kBT

µmH
≈ GMJ

rvir
=

4π

3
Gr2virρcΩ0∆vir(1 + z)3, (B8)

where we have used the relation MJ = 4πρcΩ0(1 + z)3∆virr
3
vir/3. The virial radius is therefore

rvir =

(

3

4π

kBT

GµmHρcΩ0∆vir

)1/2

(1 + z)−3/2, (B9)

and the minimum halo mass in which gas is retained is

MJ =
4π

3
ρc(1 + z)3Ω0∆virr

3
vir. (B10)

We evaluate fint for the case of an isothermal profile with core radius rc:

ρ(r) ∝ 1

r2 + r2c
. (B11)

The simulations of galaxy clusters by Navarro, Frenk & White (1995) and Eke et al. (1998) show that the gas density profile
is well described by this form. Substituting this in eqn. (B4), we find

fint =
1

6

(

rvir
rc

)3 [rvir
rc

− arctan
rvir
rc

]−2

[

arctan
rvir
rc

− rvir
rc

(

1 +
r2vir
r2c

)−1
]

. (B12)

For a typical value of rvir/rc = 10, we therefore find fint = 3.14.

APPENDIX C: THE SPECTRUM OF CMB SECONDARY ANISOTROPIES

In this paper, we concentrate on the kinematic Sunyaev-Zel’dovich effect which is induced by the peculiar motions (deviations
from pure Hubble flow) of free electrons in ionized regions (Sunyaev & Zel’dovich 1980; Vishniac 1987). There exist other
secondary sources of CMB anisotropies. However, on angular scales smaller than a few arc-minutes, the kinematic Sunyaev-
Zel’dovich effect is likely to provide a dominant contribution. For example, it is known that the temperature anisotropies
caused by non-linear growth of density perturbations, which are often referred to as the Rees-Sciama effect or integrated
Sachs-Wolfe effect, are of order 10−7 or less (Seljak 1996). These anisotropies depend on the the baryon bulk physical
peculiar velocity, v, and the number density of free electrons, ne. In our calculations of the anisotropies we assume that the
v is equal to the bulk velocity of the dark matter and that ne in ionized regions is proportional to the dark matter density.

The temperature anisotropy Θ(γ) = ∆T
T

observed in a given line of sight direction γ is (e.g. Hu 2000)

Θ(γ, η0) = −
∫ η0

ηrec

dη

(1 + z)
γiv

i
Bτ̇ , (C1)

where η ≡
∫

(1 + z)dt is conformal time with its values at recombination and present denoted, respectively, by ηrec and
η0. In eqn. (C1) we have assumed an optically thin universe. In an optically thick universe these temperature fluctuations
are damped by a factor e−τ , where the optical depth is τ =

∫

dησTne/(1 + z), where σT is the cross section for Thomson
scattering. If the universe became instantaneously fully ionized after some redshift zi, the relation between the optical depth
τ (ηi, η0) and zi is approximately obtained as zi = 100Ω0 (0.025/Ωbh)

2/3 τ 1/3. Therefore, if the reionization takes place at

z ≪ 100Ω0 (0.025/Ωbh)
2/3, as is the case in our reionization model, then the damping factor can be neglected.

The usual procedure to obtain the angular correlation function of temperature anisotropies in eqn. (C1) is by means of
Limber’s equation in Fourier space (see for example Peebles 1980). However, in this paper, we work in real space since we have
the two point correlation functions of density and velocity fields directly measured in real space from N-body simulations.

The temperature angular correlation C(θ) can be written as

C(θ) = σ2
T

∫ η0

ηrec

dη

∫ η0

ηrec

dη′γiγ
′
j < vi(x, η)vj(x′, η′)ne(x, η)ne(x

′, η′) >, (C2)

where γiγ
′i = cos θ, and, x and x′ refer, respectively, to comoving coordinates in the past light geodesics in the directions γ

and γ
′ at η and η′. We write ne terms of density fluctuations δ as

ne(x, η) = n̄e(η)xe(x, η) [1 + δ(x, η)] , (C3)

where n̄e(η) is the mean total (free and bound) electron number density at time η, and xe(x), the ionization fraction, is unity
in ionized regions and zero otherwise. The correlation lengths of velocity and density fields are small compared to the Hubble
radius so that we can approximate ne(x

′, η′) = ne(x
′, η) and similarly for the v, in eqn. (C2).

ζ =

[

xe (1 + δ)

〈xe(1 + δ)〉 − 1

]

vlos, (C4)
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where vlos = γiv
i is the velocity component in the direction γ. Therefore C(θ) can be written in terms of the velocity

correlation function ξvv(y) ≡< vlos(x)vlos(x + y) > and the density-velocity correlation function ξζζ(y) ≡< ζ(x)ζ(x+ y) >,
both evaluated for fields at the same η.

C(θ) = σ2
T

∫ η0

ηrec

dη

1 + z

∫ η0

ηrec

dη′

1 + z′
n̄e(η)n̄e(η

′)〈xe(1 + δ)〉2
[

ξζζ(|x′ − x|) + ξvv(|x′ − x|) + 〈ζ(x)vlos(x′) + ζ(x′)vlos(x)〉
]

. (C5)

The dominant contribution to C(θ) is from the term involving ξζζ . The integration over ξvv yields to phase cancellation
(Kaiser 1984; Ostriker & Vishniac 1986; Vishniac 1987). The last term in the integrand also has negligible contribution⋆.
We have checked that the dominant term produces at least an order of magnitude larger anisotropies than the other terms.

In flat space we use the triangle relation, |x′ − x|2 = x2 + x′2 − 2xx′ cos θ, we first carry out the integration of eqn. (C5)
in terms of η′ for fixed η and θ. We compute ξζζ at an average redshift z̄ given by 1/(1 + z̄) = (1/(1 + z1) + 1/(1 + z2)) /2,
which is an appropriate approximation if the correlation length is negligible relative to the horizon scale. It is straightforward
to extend the calculation to an open geometry.

From the temperature angular correlation C(θ), we can obtain Cℓ as

Cℓ = 2π

∫ 1

−1

d cos θPℓ(cos θ)C(θ), (C6)

where Pℓ(cos θ) is the Legendre polynomial.

⋆ It is interesting that the contribution from the integral over ξζζ is still dominant even if we approximate ξζζ = ξδδξvv, i.e. if we ignore
any correlations between the density and velocity fields

c© 0000 RAS, MNRAS 000, 000–000


