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The spark-associated soliton model for pulsar radio emission
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ABSTRACT

We propose a new, self-consistent theory of coherent pulsar radio emission based

on the non-stationary sparking model of Ruderman & Sutherland (1975), modified by

Gil & Sendyk (2000) in the accompanying Paper I. According to these authors, the

polar cap ( with a radius rp ≃ 104P−0.5 cm ) is populated by about (rp/h)
2 sparks of a

characteristic perpendicular dimension D approximately equal to the polar gap height

scale h ∼ 5 × 103P 3/7 cm, separated from each other also by about h. Each spark

reappears in approximately the same place on the polar cap for a time scale much longer

than its 10 µs life-time and delivers to the open magnetosphere a sequence of e−e+ clouds

which flow orderly along a flux tube of dipolar magnetic field lines. The overlapping of

particles with different momenta from consecutive clouds leads to effective two-stream

instability, which triggers electrostatic Langmuir waves at the altitudes of about 50

stellar radii. This is the only known instability which can develop at the low altitudes,

where the observed pulsar radio emission originates. The electrostatic oscillations are

modulationally unstable and their nonlinear evolution results in formation of “bunch-

like” charged solitons. A characteristic soliton length along magnetic field lines is about

30 cm, so they are capable of emitting coherent curvature radiation at radio wavelengths.

A perpendicular cross-section of each soliton at radiation altitudes follows from a dipolar

spread of a plasma cloud with a characteristic dimension near the star surface of about

D ≈ h ≈ 50 meters. The net soliton charge is about 1021 fundamental charges, contained

within a volume of about 1014 cm3. For a typical pulsar, there are about 105 solitons

associated with each of about 25 sparks operating on the polar cap at any instant. One

soliton moving relativisticaly along dipolar field lines with a Lorentz factor of the order

of 100 generates a power of about 1021 erg/s by means of curvature radiation. Then the

total power of a typical radio pulsar can be estimated as being about 1027−28 erg/s. The

energy of the soliton curvature radiation is supported by kinetic energy of secondary

electron-positron plasma created by the primary beam produced by the accelerating

potential drop within the polar gap. A significant fraction of kinetic energy generated

by sparks is radiated away in form of the observed coherent radio emission.
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1. Introduction

Although more than 30 years have past since the discovery of pulsars, the mechanism of their

radio-emission still remains a mystery. This concerns both the fundamental problem of coherency,

and the specific modulation of pulsar radiation in the form of micropulses, subpulses and char-

acteristic stable mean profiles. Ruderman and collaborators in a series of papers (Ruderman &

Sutherland 1975; Cheng & Ruderman 1977a,b, 1980) have attempted to solve for both the mech-

anism of coherence of single particle radiation and the organization of emitting regions. Although

their two-stream plasma instability has proven inefficient in producing observable flux, the lat-

ter was partially successful in explaining details of pulsar radiation modulations. Recently, Gil

& Sendyk (2000; henceforth Paper I) have modified the spark model of Ruderman & Sutherland

(1975) and demonstrated that it explains naturally the single-pulse structure (including a subpulse

drift), the mean profile morphology and polarization. All the observed characteristics are deter-

mined by two basic pulsar parameters: period P and its derivative Ṗ , along with an observing

geometry (inclination and impact angles). They argued that the pulsar polar cap is populated by

a number of sparks with both characteristic dimension and distance between adjacent sparks equal

approximately to the polar gap height h ≃ 5× 103 P 3/7 cm, where P is pulsar period in seconds.

Therefore, the number of sparks on the polar cap is determined by the so-called complexity pa-

rameter a = rp/h ( Paper I), where rp ≃ 104 P−0.5 cm is the canonical polar cap radius. Recently,

Deshpande & Rankin (1999) have analyzed with unprecedented detail the driftbands of subpulses

in PSR B0943+10. They were able to determine both the radiation pattern and the observing

geometry corresponding to a peripheral sightline grazing the stable system of 20 spark-associated

subpulse beams which rotate around the pulsar beam axis. This finding is the strongest evidence

of a non-stationary sparking discharge of high potential drop in the polar cap acceleration region

(polar gap) in radio pulsars (Xu et. al 1999; Paper I).

Gil & Sendyk (Paper I) argued that one spark is anchored to the local pole of a non-dipolar

(presumable sun spot-like) surface magnetic field. This prevents sparks from fast motion along the

planes of field lines towards the pole, which allows them to reappear in approximately the same

places (modulo the slow E×B drift across the planes of field lines) on time scales much longer than

10 µs. If a spark reappears at least twice at one place on the polar cap, then a strong Langmuir

turbulence should occur due to the two-stream instability (Usov 1987; Ursov & Usov 1988; Gil et al.

1997; Asseo & Melikidze 1998). In fact, each spark emits a sequence of e−e+ plasma clouds flowing

orderly along a tube of spark-associated field lines, which can penetrate each other due to large

spread of momenta. Such a penetration ignites an efficient two-stream like instability, generating

strong Langmuir waves. In this paper we consider a nonlinear evolution of Langmuir electrostatic

oscillations generated by the two-stream instability within a spark-associated plasma column and

show that it leads to a soliton formation, capable of generating a ‘bunch-like’ coherent radiation,

with the all characteristic features of the observed pulsar radio emission.

The main and the most decisive problem for coherency of curvature radiation is the formation

and stability of the charged bunches. Despite many attempts there is no sufficiently well-grounded
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theory for bunch formation so far. The curvature radiation of charged particle bunches, themselves

produced by a linear plasma wave, has been proposed as a possible mechanism of pulsar radio

emission (e.g., Ruderman & Sutherland 1975; Cheng & Ruderman 1977a). However, as pointed

out by Lominadze et al. (1986), bunches produced by a linear electrostatic wave can exists only

over extremely short time scale. As the wave propagates along the magnetic field line, each fixed

spatial point senses the alternating electrostatic field as time elapses. After a half-period this field

changes direction and it begins to ‘bunch’ particles of the opposite sign. It is thus necessary that

the time scale of the process by which the bunches radiate must be significantly shorter than half

of the plasma oscillation period. At the very least, the condition ω
l
< ω must hold (where ω

l
and

ω are the frequencies of the plasma waves and the waves emitted by bunches, respectively). On the

other hand, for the radiation to be coherent, the linear characteristic dimension of bunches must

be shorter than about half wavelength of the radiated wave. Since in the linear approximation

the dimension of the bunch is determined by the half wavelength of the plasma waves, another

necessary condition k
l
> k should be satisfied (here k

l
and k are the wave vectors of Langmuir

waves and curvature radiation, respectively). If the radiated wave has a ‘vacuum’ spectrum ω ≈ kc,

then these conditions are incompatible with each other. Thus, the bunching associated with high

frequency linear plasma oscillations cannot be responsible for the coherent pulsar radio emission

(see also Melrose & Gedalin 1999). In this paper we propose a new promising model for bunch

formation due to slowly-varying nonlinear plasma processes. Our model is self-consistent and free

of fundamental problems mentioned above.

Asseo & Melikidze (1998) have recently studied possible instabilities in the non-stationary

spark-associated magnetospheric plasma. They have found that the two-stream instability within

spark-associated plasma clouds is the only one which can develop at altitudes below 10% of the

light cylinder, that is at altitudes about 50 stellar radii R = 106 cm, where pulsar radio emission

is expected to originate (e.g., Kijak & Gil 1997, 1998). As already stated above, Langmuir waves

generated due to these instabilities can not directly produce the observed pulsar radio emission. In

fact, their frequency ( about 100 GHz ) is much higher than the observed pulsar radio frequencies

(see Asseo & Melikidze 1998; Melrose & Gedalin 1999). Moreover, having an electrostatic nature

they can not escape from the plasma. However, as we will argue in this paper, they can form

a charge-separated solitons. A packet of plasma waves propagating in the relativistic electron-

positron plasma with phase velocities close to (but less than) the velocity of light is unstable from

the modulational standpoint, and its nonlinear evolution results in the formation of a nonlinear

solitary wave soliton. This process is described by the nonlinear Schrödinger equation, taking into

account the nonlinear Landau damping (Melikidze & Pataraya 1980a,b, 1984). The role of the

low-frequency perturbations in case of the electron-positron plasma (that is in the absence of ion

sonic waves) is played by the nonlinear beatings of plasma waves and the nonlinear dumping is

determined by the resonant interaction of the beatings with plasma particles. As we argue in this

paper, in condition prevailing within spark-associated pulsar magnetosphere, Langmuir soliton can

cause an effective charge separation for a period of time sufficiently long to provide a coherent

curvature radiation responsible for the observed pulsar radio emission.
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2. Coherent curvature radio emission in pulsars

2.1. Linear theory

The properties of the secondary electron-positron plasma created via Sturrock (1971) multi-

plication process by the primary positrons depend on the radius of curvature R of magnetic field

lines above the gap, where the accelerating electric field is negligible. We assume that R is almost

equal to the radius of curvature at the stellar surface R0 6 106cm (Ruderman & Sutherland 1975;

Paper I). Then, Sturrock’s multiplication factor κ > 104 and the Lorentz factor of the secondary

e−e+ plasma γp 6 100. In fact, let us consider a canonical maximum potential drop within the gap

(Sturrock 1971; Ruderman & Sutherland 1975)

V ∼ 1.7× 1012P 0.36Ṗ 0.5
−15

Volts, (1)

which holds for R6 = R/106 ≈ 1, where Ṗ−15
is period derivative in 10−15s s−1. Then, the

corresponding Lorentz factor of the primary particles should be γ
b
≈ V

(

e/mec
2
)

∼ 3 × 106 and

for average Lorentz factor of spark-generated plasma particles we have γp ≈ γ
b
/(2κ) ∼ 102. The

secondary plasma with a number density np ≃ κn
GJ

is penetrated by the beam of primary particles

with a Goldreich-Julian corotational number density (Goldreich & Julian 1969)

n
GJ

∼ 5. 6× 105

(

Ṗ−15

P

)0.5

R−3
50

cm−3, (2)

where R
50

= r/(50R) is the radial distance in units of 50 stellar radii R = 106 cm.

It is now well known that the interaction proposed by many authors (e.g., Lominadze et

al. 1986; Machabeli 1991; Kazbegi et al. 1991, 1992; Lutikov et al. 1999) between the primary

beam and magnetospheric plasma is too weak at low altitudes (say r ∼ 50R), since the instability

development requires that drift velocity of the primary particles becomes sufficiently high (Kazbegi

et al. 1992). As we already mentioned, there is only one instability which can produce a strong

initial turbulence at low altitudes. This instability is triggered by the non-stationary process of

plasma creation associated with sparking discharge of the acceleration region above the polar cap.

Before we start exploring the nonlinear effects, let us briefly summarize the results of the linear

approach performed by Asseo & Melikidze (1998). The plasma frequency and the frequency of

excited plasma waves are respectively

ωp ∼ 4. 2 × 109 R−1.5
50

κ
0.5
4

(

Ṗ−15

P

)0.25

rad s−1 (3)

and

ω
l
∼ 2 δω γp ωp ∼ 4.2 × 1011 R−1.5

50
κ
0.5
4 γ0.5

2

(

Ṗ−15

P

)0.25

rad s−1. (4)

In these expressions, δω is the parameter which has been calculated in Asseo & Melikidze (1998)

and estimated as ∼ 0.5, κ4 = κ/104, where κ ∼ γ
b
/γp, and γ

2
= γp/100. Here R

50
is an altitude
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of instability region, and for typical pulsars R
50

∼ 1. Also κ4 and γ
2
are regarded as being

close to unity (e.g., Ruderman & Sutherland 1975). Thus for typical values of pulsar parameters

ωp ∼ 1010 rad s−1 and ω
l
∼ 1012 rads−1.

The Langmuir waves with frequency ω
l
determined by equation (4) are generated by the

following simple mechanism (Usov 1987; Ursov & Usov 1988; Gil et al. 1997; Asseo & Melikidze

1998). The repeatable sparking creates a succession of plasma clouds moving along a tube of

magnetic field lines, each cloud containing particles with a large spread of momenta. Overlapping of

particles with different energies (detemined by γ
T
, see Appendix C and Fig.1) from adjacent clouds

ignites strong Langmuir oscillations, which may lead eventually to the generation of coherent pulsar

radio emission. Interestingly, this instability is the only one which, according to our knowledge,

develops at altitudes of the order of a few percent of the light cylinder radius, where the pulsar

radio emission is expected to originate (Cordes 1978; Cordes 1992; Kijak & Gil 1997, 1998). The

altitude R50 at which the two-stream instability can develop depends on the average Lorentz factor

of plasma γp . This has been estimated by Asseo & Melikidze (1998, their Fig. 6); see also a

kinematic estimate in equation (5) below. Specifically, if γ
2
= 0.5 then R

50
≃ 0.1− 0.5; if γ

2
= 0.75

then R
50

≃ 0.3 − 1.1; if γ
2
= 1 then R

50
≃ 0.5− 2.

The two adjacent secondary plasma clouds corresponding to the two consecutive sparks are

separated by about ∆t ∼ h/c (typically 10−7 s), where h ≃ 5× 103R
2/7
6 B

−4/7
12 P 3/7 cm is the polar

gap height, R6 = R/R and B12 = B0/10
12 (Ruderman & Sutherland 1975). Let us estimate

the time ∆T after which particles with different Lorentz factors will overcome each other. The

corresponding velocity difference is determined by the average Lorentz factor as ∆v ≃ c/(2γ2
p
). It

is easy to show that ∆T ∼ h/∆v ∼ 2γ2
p
h/c. The distance covered during this time r

in
∼ c∆T ∼

2γ2
p
h ∼ 108γ2

2
R

2/7
6 B

−4/7
12 P 3/7 ≫ R, and thus one can write the expression

R50 ∼ γ2
2
R

2/7
6 B

−4/7
12 P 3/7. (5)

This kinematic estimate of the altitude of the instability region agrees roughly with estimates of

the altitude of radio emission region r/R = 50 · R50 ∼ 50 · P 0.33±0.05 given by Kijak & Gil (1997,

1998).

The linear growth rate Γl, which should satisfy the condition Γl ≫ c/∆r, where ∆r ∼ 50 ·R50 ·

106 cm is characteristic longitudinal dimension of the instability region, can be written as

Γl ∼ 1.1 × 106 γ−1.5
2

R−1.5
50

(

Ṗ−15

P

)0.25

, (6)

and the above condition for the instability development in the resulting plasma cloud is

γ−1.5
2

R−1.5
50

(

Ṗ−15

P

)0.25

≫ 0.1, (7)

(Asseo & Melikidze 1998). It is obvious that for typical values of magnetospheric plasma parameters

(γ
2
∼ R

50
∼ Ṗ−15

∼ P ∼ 1) the growth rate of instability is high enough to provide a strong
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Langmuir turbulence, that is the condition (7) is well satisfied. In the following we will explore

a nonlinear evolution of this turbulence and argue that it results in formation of a ‘bunch-like’

charged soliton, capable of emitting coherent curvature radiation at radio wavelengths.

2.2. The nonlinear theory

It is obvious that the excitation of longitudinal electrostatic waves still does not explain the

observed radio emission of pulsars. We need some mechanism which leads to the generation of low

frequency waves capable of escaping from the pulsar magnetosphere in the form of coherent radio

emission. Karpman et al. (1975) were the first to propose Langmuir solitons as a possible bunching

mechanism. The net charge in their soliton was due to mass difference between protons and elec-

trons. Melikidze & Pataraya (1980b, 1984) have studied the same problem in the more realistic case

(for pulsars)of an electron-positron plasma and proposed two possible reasons for charge separation:

(i) small admixture of ions, (ii) difference in the distribution functions of electrons and positrons.

Such a difference occurs naturally in the case of the pulsar magnetospheric plasma, which will be

discussed later in this paper. Following Melikidze & Pataraya (1984), Asseo (1993) discussed the

possibility of curvature radiation of Langmuir soliton, but without a consideration of non-stationary

character of electron-positron plasma. The basic soliton parameters like dimensions, volume and

net charge are markedly different in Asseo (1993) as compared with this paper. Moreover, Asseo

(1993) calculates the power emitted by soliton using a single-particle curvature radiation scheme,

which is inapplicable as demonstrated in this paper (see eq.[12]).

A packet of plasma waves propagating through a relativistic electron-positron plasma with

phase velocities close to the velocity of light is unstable from the modulation standpoint, and its

nonlinear evolution results in the formation of a soliton. This process is described by a nonlinear

Schrödinger equation with nonlinear Landau damping (Melikidze & Pataraya 1980b, 1984). In the

case of electron-positron plasma the role of low-frequency perturbations is played by the nonlinear

beatings of plasma waves, and the resonant interaction of beatings with particles determine the

nonlinear damping.

In order to avoid confusion in the following discussion, we outline below the physics of the

modulational instability occurring in the pulsar secondary pair plasma associated with sparking

discharge of the polar gap. As already mentioned, the two-stream instability triggers linear plasma

waves in electron-positron clouds created by succesive sparks. Obviously, there is a small spread

∆ω of frequencies around the characteristic frequency ω
l
(eq.[4]) of excited plasma waves. Since

ω
l
≫ ∆ω, the amplitude of linear wave packet, containing waves with different frequencies near ω

l
,

will be modulated by low frequency beatings. The characteristic phase velocity of beatings ∆ω/∆k

is approximately equal to the group velocity of linear plasma waves vg = dω/dk. Therefore,

a resonant interactions of plasma particles with low frequency beatings (see the resonant factor

(v − vg )
−1 in eqs.[A8] - [A15]) will result in the modulational instability. Those low frequency

beatings which are in resonance with plasma particles will affect the amplitude of linear waves in
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the same way as the low frequency ion-sonic waves which affect the amplitude of Langmuir waves

in the well-known laboratory electron-ion plasma (Zakharov & Shabat 1972).

In places where the amplitude of linear waves increase/decrease the plasma density np decreases/in-

creases and, as a consequence, the characteristic frequency ω
l
∝ (np)

1/2 decreases/increases as well.

On the other hand, the phase velocity of linear waves v
f
= ω

l
/k increases/decreases with increas-

ing/decreasing frequency or with decreasing/increasing waves amplitude. Therefore, a spread of

phase velocities along wave packet exists. Let us consider a point where the wave amplitude is

a minimum and thus the phase velocity is a maximum at a given instant. The wave numbers

change differently in different directions in the vicinity of this point. In fact, in the direction of

waves propagation wavelengths λ will be shortened and in the opposite direction wavelengths will

be lengthened. This means thats starting from the point of minimum amplitude, the wave numbers

k = 2π/λ increase in the direction of wave propagation and decrease in the opposite direction.

The behaviour of the modulationally unstable wave packet is determined by the so-called

Lighthill condition (Lighthill 1967), which examines the sign of the product of coefficient G (de-

scribes dispersion; eq. [A5]) and q (describes grow of nonlinearity; eq. [A6]). If Gq > 0 then at

places where the linear waves amplitude is near maximum, it will grow even larger. This should

lead to self-condensation of the wave packet or soliton formation. Inspection of Figure 1 shows that

in pulsar magnetospheres both G and q are positive in wide range of parameters (see eq.[A20] and

Appendix C for definitions) and thus we can adopt that Gq > 0 in radio pulsars.

Let us check what effect the positive value of G ∝ dvg/dk (eq.[A5]) has on the system of

linear plasma waves in the vicinity of the point with minimum wave amplitude. Recall that wave

numbers increase on one side (in the direction of propagation) and decrease on the other side of

this point. Since G > 0, the group velocity vg increases/decreases with increasing/decreasing wave

number k. This means that energy of plasma waves flows out of the minimum amplitude region in

both directions towards regions of higher and higher amplitudes. As a result, the energy of plasma

waves gets packed into small regions where the amplitude grows even larger and the plasma density

decreases, forming a low density cavities. The effective force which sweeps plasma particles out

of the cavity is called ponderomotive force or the Miller force (Gaponov & Miller 1958), is just a

measure of difference of the high-frequency electromagnetic pressure between regions of high and

low amplitudes of plasma waves. This force is sensitive to mass and charge but insensitive to the

sign of charge of plasma particles. In the laboratory plasma the ponderomotive force causes the

effective charge separation due to huge difference in the inertia of ions and electrons (e.g. Sagdeev

1979). There have been many laboratory experiments confirming existence of the Miller force in

an electron-ion plasma (see also Petviashvili 1976, for evidence of charge separation in the Earth

ionosphere).
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Fig. 1.— Values of different parameters (see Appendix C for explanations and definitions) versus

thermal spread defined as γ
T
/γp , where γ

T
∼ p

T
is a Lorentz factor describing a degree of plasma

thermalization and γp is average Lorentz factor of ambient plasma particles, for four different

values of relative shift of electron and positron distribution functions ∆γ/γp = 0.5, 1.0, 1.5, 2.0,

respectively.

Let us then examine an influence of the Miller force on the electron-positron pair plasma. If

the distributions of electrons and positrons are identical, then the Miller force affects electrons and

positrons in the same rate, and effective charge separation will not occur. This can be directly

noticed from equation (A19). However, in the pulsar magnetospheric plasma fe 6= fp. As demon-

strated by Cheng & Ruderman (1977a) the difference between fe and fp is a result of variation

of the product Ω · B(r) along a flux tube of dipolar magnetic field lines. Since the numbers of

electrons and positrons are equal, therefore the difference is in the average Lorentz factors of pair

plasma components. One can show that ∆γ/γp ≃ ∆σγ3
p
/γ

b
(e.g. Asseo & Melikidze 1998), where

∆γ is the difference of average Lorentz factors of electrons and positrons, and ∆σ = σ/σ
0
− 1

is the normalised difference of the opening angles σ = arccos (Ω ·B(r)/(ΩB)) between the point

under consideration (σ) and the stellar surface (σ
0
) along a given dipolar field line (see Appendix

C for definitions of γp and γ
b
). For a typical pulsar at altitudes of about 50 stellar radii δσ ∼ 0.5.

Thus for canonical values of Lorentz factors γp ∼ 100 and γb ∼ 106 we have ∆γ/γp ∼ 0.5, which

is just enough to cause significant charge separation due to effective relativistic mass difference be-

tween electrons and positrons (see Fig. 1 for the parameter Q
d
appearing in eq.[18]). If the surface

magnetic field is non-dipolar, then ∆γ/γp can be even larger.
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If a difference between the electron and positron distribution functions is small (that is ∆γ/γ ∼

1), the dispersion of linear waves and the coefficients of the nonlinear Schrödinger equation remain

almost unchanged with respect to the well-known case for which ∆γ = 0 (Melikidze & Pataraya

1980a, 1984). Full details of derivation of the nonlinear Schrödinger equation for electrostatic waves

in the relativistic electron-positron plasma associated with succession of spark-generated clouds are

presented in the Appendix A. Below we outline the main results and discuss their implications for

effective mechanism of pulsar radio emission.
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  ρ

Fig. 2.— Normalized charge density ρ (eq.[8]) versus length in units of ∆ (eq.[10]) of a spark-

associated soliton (see Fig. 3 for the model of charge distribution).

As argued above, the soliton charge separation due to relative motion of electrons and positrons

is supported by the pondemotorive or so called the Miller force (Gaponov & Miller 1958). In

the LFR (Appendix A) the value of the charge density contrast associated with solitons can be

determined by means of evaluating integrals in (A19) and substituting into it equation (A18). The

expression for slowly varying charge density inside the soliton has the form

ρ ∼ np e χ2 cosh2 ζ − 2

cosh3 ζ
ρd cm− 3

2 g
1

2 s−1, (8)

where e is a fundamental charge, np is a number density of unperturbed ambient plasma, ρd is

dimensionless parameter about ∼ 0.3 (Fig.1),

ζ =
z − vgt

∆
, (9)

χ is defined by equation (A23) as a ratio of Langmuir waves and plasma energy densities, and

∆ ≈ γ−1
0

K−1
m ∼ 36 γ0.5

2
κ
−0.5 R1.5

50
∆d χ−0.5 P 0.25 Ṗ−0.25

−15
cm (10)

is the characteristic soliton length scale, i.e. its longitudinal (along the magnetic field lines) di-

mension in LFR, where γ
0
is a Lorentz factor of relative motion of WFR and LFR (Appendix A),
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Km is the wave vector of low frequency perturbation (A17), and ∆d is a dimensionless parameter

shown in Figure 1. As one can see, the range of characteristic soliton dimension ∆ is between 10

and 100 cm in the LFR, so they should be capable of emitting coherent curvature radiation at radio

wavelengths.

Figure 2 presents schematically a charge distribution corresponding to equation (8). This kind

of charge distribution can be modeled as a system of three charged bunches (Fig.3) coupled to each

other and moving along the circular trajectory with a radius of curvature rc = R. The value of the

central charge is Q, but the whole system is neutral as each of the two side charges has value equal

to −1
2Q (an estimate of Q will be given later in the paper). The ratio of the soliton charge density

(8) and Goldreich-Julian charge density ρ
GJ

can be estimated as

ρ

ρ
GJ

∼ κ χ2 ρd, (11)

where κ ∼ 104, χ ∼ 0.1 (see discussion below eq.[A23]) and ρd ∼ 0.3 (see Figure 1). Thus, the

soliton charge density is about 10 times the Goldreich-Julian corotational value ρ
GJ

= en
GJ

(eq.[2])

or about 10−3 of the secondary (Sturrock multiplicated) ambient plasma charge density np (see

eq.[8]).

Fig. 3.— A simple model for the soliton with charge density shown in Fig. 2. The characteristic

soliton length ∆ = ϕorc, where rc is a local radius of curvature of the soliton trajectory.

Now let us examine the coherent curvature radiation of a centimeters long (in LFF) soliton

bunches. The equation (B21) for the infinitesimal radiation intensity dIn differs from the well-known

equation for single particle curvature radiation intensity only by a term [1− cos (nϕo)]
2, which does

not depend on the solid angle σ. According to detailed calculations presented in Appendix B, the

spectral power of our soliton is

Iω =
Q2

c
ω

0
F

(

ω

ωc

)[

1− cos

(

a
ω

ωc

)]2

=
Q2

c
ω

0
F

(

ω

ωc

)[

1− cos

(

2π

c

∆

λ

)]2

, (12)

where ωc =
3
2γ

3
0
ω

0
≈ γ3

0
c/R is the characteristic frequency of single-particle curvature radiation, λ
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is an emitted wavelength, the function

F (x) = x

∞
∫

x

K 5

3

(x)dx, (13)

where K 5

3

(x) is the modified Bessel function and the parameter a = ∆
Rγ3

0
≪ π

2 (Appendix B) or

a ≈ 8× 10−2 γ3.5
2

κ
−0.5
4 R

50
y3 ∆d χ−0.5 P−0.25 Ṗ−0.25

−15
. (14)

Here y = γ
0
/γp is a dimensionless parameter describing the ratio of the Lorentz factors of solitons

and bulk plasma particles in the radio emission region which is about unity for typical pulsar

parameters.

To calculate the spectral power Iω (eq.[12]) we have to find the soliton charge Q by integrating

the charge density ρ (eq.[8]) over the soliton characteristic volume V ∼ S⊥∆. Here S⊥ is a soliton

cross section, which we can estimate assuming that the perpendicular (with respect the magnetic

field) size of the spark-associated plasma clouds at the stellar surface is about the gap height

h ≃ 5× 103P 3/7 cm ( Paper I) and increases with a radial distance as r3. Therefore

S⊥ ∼ 3× 1012 R3
50

P
2

7 Ṗ
− 4

7

−15 cm2, (15)

and

V ∼ 1014 γ0.5
2

κ
−0.5
4 R4.5

50
∆d χ−0.5 P 0.54 Ṗ−0.82

−15
cm3, (16)

which is about 1014 cm3. Thus, a soliton charge Q ≃ 10ρ
GJ

V, where ρ
GJ

= en
GJ

∼ e106 cm−3 at

the altitudes of about 50R (eq.[2]), which gives Q ≃ e1021. Therefore,

Iω ∼ 1.4 × 1018γ
2
κ4R

2.5
50

χ3P−0.43Ṗ−0.64
−15

Q2
d F

(

ω

ωc

)[

1− cos

(

a
ω

ωc

)]2

erg rad−1. (17)

Consequently, the power radiated by one soliton L1 =
∫

Iωdω ≃ 4 νc Iν , where νc ∼ γ3
0
c/R (see

Fig.4) is the characteristic frequency of curvature radiation, is about

L1 ∼ 1022 γ4
2
κ4 R2

50
P−0.93 Ṗ−0.64

−15

[

y3 χ3 Q2
d Io (a)

1.2× 10−4

]

erg s−1, (18)

where Qd and Io (a) =
∫

F (x) [1− cos(ax)]2 dx depend on the parameters of the plasma and their

values for different cases are shown in Figures 1 and 5, respectively. This power is radiated mainly

in the narrow frequency band around

νm ∼ 4.4× 107 γ3
2
y3 R−0.5

50
P−0.5 Hz, (19)

which is about 4 times more than νc = ωc/2π (see Fig.4). Apparently, for R
50

∼ 2, γ
2
∼ 1 and

y ∼ 2.3 this maximum frequency is close to 400 MHz, around which pulsars appear brightest.
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Fig. 4.— Normalized spectral power Iω versus ω/ωc, where ω is the frequency of curvature radiation

and ωc = 1.5γ3
0
c/rc (Appendix C) for: (1) single particle curvature radiation, and soliton curvature

radiation with (2) a = 0.1, (3) a = 0.2, (4) a = 0.3 and (5) a = 0.5, where a is described in equation

(14). The cases (1), (2), (3) and (4) are multiplied for clarity of presentation by a factor of 2000,

100, 10 and 1, respectively (see eqs.[12-18]) Notice that the frequency νm for which spectral power

reaches maximum is about 4 times higher for solitons than for single particle curvature radiation.

The total number, Nt, of solitons contributing to pulsar radiation at any instant can be cal-

culated as the number of sparks Nsp on the polar cap multiplied by the number of solitons Nsl

associated with each spark. Since, as it is clear from figures 2 and 3, Nsl ≃ ∆r/(10∆), where

∆r ∼ R
50
× 50R and ∆ is a soliton length scale expressed in equation (10). Thus

Nsl ∼ 1.4× 105 γ−0.5
2

κ
0.5
4 R−0.5

50
∆−1

d χ0.5 P−0.25 Ṗ 0.25
−15

. (20)

The number of sparks on the polar cap with a radius rp ∼ 104P−0.5 cm is approximately equal

to (rp/h)
2, where rp is the polar cap radius and h ∼ 5 × 103P 3/7 cm is the polar gap height (for

details see Paper I). Thus

Nsp ∼ 25 P−1.3 Ṗ 0.57
−15

(21)

and

Nt ∼ Nsp ×Nsl ∼ 3.5× 106 γ−0.5
2

κ
0.5
4 R−0.5

50
∆−1

d χ0.5 P−1.54 Ṗ 0.82
−15

. (22)

Consequently, the total power Lt = L1 Nt radiated by a pulsar can be estimated as

Lt ∼ 1028 γ3.5
2

κ
1.5
4 R1.5

50
P−2.47 Ṗ 0.18

−15

[

6y3 χ3.5 Q2
d Io (a)∆

−1
d × 104

]

erg s−1. (23)

Since the expression in square brackets is of the order of unity, it is clear from equation (23) that

the power radiated by the spark-associated solitons can easily explain the observed radio emission

of pulsars. In fact, for a typical pulsars the apparent luminosity is in the range 1025 − 1029 erg s−1

(see also Table 1).
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3. Discussion

In this paper we propose a new, self-consistent theory of pulsar radio emission based on the

modified non-stationary sparking model of Ruderman & Sutherland (1975). As argued by Gil &

Sendyk in the accompanying Paper I, the polar cap with radius rp ∼ 104P−1/2 cm is populated

with about (rp/h)
2 sparks of a characteristic dimension approximately equal to the polar gap

height h ∼ 5× 103P 3/7 cm. Each repeatable spark delivers to the open magnetosphere a sequence

of e−e+ clouds, flowing orderly along dipolar magnetic field lines. Overlapping of particles with

different momenta from consecutive sparks leads to a two-stream instability, which triggers a strong

electrostatic Langmuir waves at the altitudes of about 50 stellar radii. This is the only known

effective instability which can develop at low altitudes, where the narrow-band pulsar radiation

originates (e.g., Kijak & Gil 1997, 1998). These oscillations with a characteristic frequency of

about 100 GHz, are modulationally unstable and their nonlinear evolution results in the formation

of ‘bunch-like’ charged solitons. A characteristic soliton length along the magnetic field lines is

about 30 cm as viewed by a distant observer, so they are capable of emitting coherent curvature

radiation at radio wavelengths. A perpendicular cross-section of each soliton at radiation altitudes

results from a dipolar spread of a plasma clouds with a characteristic dimension of about h ∼ 50 m

near the neutron star surface. The net soliton charge Q is about 1021 fundamental charges e,

contained within a volume of about 1014 cm3. For a typical pulsar (P ∼ 1s, Ṗ ∼ 10−15), there

are about 105 solitons associated with each of about 25 sparks operating on the polar cap at any

instant. Since one soliton moving along dipolar field lines with a Lorentz factor γ of the order of 100

generates a power of about 1021 erg s−1, then a total power of typical pulsar can be estimated as

about 1027 erg s−1. The degree of coherence for radio wavelengths is highest for smallest solitons.

On the other hand, the net charge increases with the soliton size. This implies that the pulsar

radiation should have a maximum intensity at some intermediate wavelength between 20 and 70

centimeters. This is really observed in most pulsars (e.g. Malofeev et al. 1994).

One of the reasons for such a huge net charge is that the soliton volume is large. Although

only 30 cm in length along field line, it spans the entire transverse of the spark-associated plasma

column. We make an implicit assumption that the soliton is transversely stable, at least over a

time interval during which its curvature radiation is emitted towards an observer. Wheatherall

(1997, 1998) has shown that an extremely strong plasma wave turbulence originating within the

two-stream instability suffers rapid collapse transverse to the magnetic field. However, this effect is

not relevant to our theory, since soliton amplitudes are limited by the non-linear Landau damping.

As far as millisecond pulsars are concerned, we cannot perform luminosity calculations for the

following reason: the surface magnetic field inferred from P and Ṗ values is very small, typically

Bs
12 ∼ 10−4. This implies very large canonical gap height h ∼ 5× 103R

2/7
6 B

−4/7
12 P 3/7 cm, typically

close to 105 cm. Consequently, the spark-generated two-stream instability region would be located

outside the light-cylinder and our theory can not be applied in the present form to the millisecond

pulsars. However, it is quite possible that the surface field of millisecond pulsars is much stronger

than the value inferred from the magnetic dipole braking law (see arguments by Cheng et al. 1998;
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Cheng & Zhang 1999; Gil & Mitra 1999, and references therein). If this is the case, then everything

scales properly and millisecond pulsars are not different from normal pulsars within the framework

of our theory. We will present detailed intensity calculations for millisecond pulsars in a separate

paper.

In our approach, contrary to those taken in previous studies, the problem of the formation

of charged bunches is resolved automatically and self-consistently. The key feature of our picture

is an existence of short-living (∼ 10−5 s) sparks with both a characteristic dimension and typical

distance between them equal approximately to the polar gap height h ∼ 5×103P 2/7 cm ( Paper I).

As a result of their repeatable operation in approximately the same place, a two stream instability

develops at low altitudes below 10% of the light cylinder radius, which generates high-frequency

(ν ∼ 100 MHz) Langmuir electrostatic waves within the spark-associated plasma columns.

The soliton formation due to nonlinear development of strong Langmuir electrostatic waves

is warranted by the hydrodynamical type of the linear instability, in which half of the energy of

streaming charges can be transferred to the plasma turbulence. Because of the relative motion

of centers of mass of electrons and positrons, the pondemotorive force acts on them differently,

redistributing charges over the soliton volume. This results in a net soliton charge, consisting in

fact from a system of three coupled localized charges. The soliton curvature radiation is much less

effective than the curvature radiation of single small bunch with the same charge. However, since

the soliton charge is huge, its curvature radiation is powerful enough to account for the observed

pulsar radio emission. It is worth emphasizing that this radiation is supported by the kinetic energy

of secondary e−e+ plasma with γp ∼ 100, created via magnetic pair production by the primary

beam with γ
b
∼ 106 produced by the accelerating potential drop near the polar cap. It should

be realized that a significant fraction of kinetic energy produced by sparks is radiated away in the

form of soliton curvature radiation at radio wavelengths. In fact, the maximum kinetic luminosity

associated with Nsp sparks (eq.[21]) is Lm ≃ Nsp Ṅs e f V , where Ṅs ≃ 7×1010P
1/2
−15P

−1/2πh2c is the

particle energy flux associated with a single spark. Here 1 > f > F , where F = 0.1R
−5/21
6 B

1/7
12 P 1/7

is the filling factor (see Paper I) such that the actual accelerating potential of the developing spark

is ∆V = f V , where V is described by the maximum potential drop expressed in equation (1).

Therefore, Lm = 2.4× 1030fR
8/7
6 B

−9/7
12

(

Ṗ−15/P
)15/14

erg s−1, and thus for R8/7B
−9/7
12 ∼ 0.1 and

f ∼ 0.25, we can write approximately

Lm ≈ 5× 1028Ṗ−15P
−1 erg s−1, (24)

which is about an observable pulsar total radio luminosity.

In Table 1 we present results of the luminosity calculations from equation (23) for a number

of pulsars with different values of period P and period derivative Ṗ = 10−15Ṗ−15. As one can see,

it is easy to obtain the total luminosity Lt close to the observed luminosity L
R

∼ 3.5 × 1025+x,

where x = Log (L) is taken from Table 4 in the pulsar catalog (Taylor et al. 1993), for a narrow

range of parameters γ
2
= γp/100 and y = γ

0
/γp (Fig.1). This means that the pulsar luminosity

LR ∼ Lt is determined mainly by the values of P and Ṗ , similarly to the morphological properties
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of single pulses and average profiles ( Paper I). The fraction f = LR/Lsp, where Lsp = 3.8 ×

1031Ṗ−15P
−3 erg/s is the pulsar spindown luminosity (Taylor et al. 1993), is a small number between

10−9 − 10−3, increasing towards longer periods, as observed. This is easy to understand bearing

in mind that the soliton pulsar radiation is supported by the kinetic energy generated by the

accelerating potential drop within the polar gap. In fact, if a significant fraction (say 30%) of spark

maximum luminosity Lm (eqs.[23] and [24]) is converted to the soliton curvature radio emission,

that is LR ∼ Lt ∼ 0.3Lm, then LR/Lsp ∼ 0.3× 10−4 P 2. This ratio is about 3× 10−8 for the Crab

pulsar, 2 × 10−7 for Vela pulsar, 3 × 10−5 for one second pulsar, 4 × 10−4 for long period (3.75

s) pulsar and 2 × 10−3 for longest period (8.5 s) pulsar J2144-3933 (Young et al. 1999), in good

agreement with data presented in Table 1.

In the framework of the soliton model presented in this paper, the frequency of radiated waves

is much smaller than the characteristic frequency of the ambient plasma. For small angles between

the wave vector and the external magnetic field, which is the case of the curvature radiation, spectra

of these waves is ω = kc(1− δ), where δ ∝
(

ωp/ωB

)2
is negligibly small in the inner magnetosphere

(e.g., Lominadze et al. 1986). Also Kazbegi et al. (1991) considered wave propagation in relativistic

electron-positron pulsar magnetospheric plasma with ∆γ = γ+ − γ− 6= 0 and showed that, in the

case of propagation nearly along curved magnetic field lines there exist two elliptically polarised

almost electromagnetic waves (with very small potential components). Therefore the curvature

radiation at frequencies well below ω
l
generated by relativistic soliton embedded in a surrounding

plasma do have a dominating electromagnetic feature and can propagate through plasma, like in a

vacuum.

Since the characteristic longitudinal dimension of our solitons is smaller than the emitted

radio wavelengths, the polarization properties should be the same as in the case of single-particle

curvature radiation modulated by the spark-associated envelope function (Gil & Snakowski 1990a),

that is: (i) relatively high linear polarization with a position angle swing across the plane of the

source motion and moderate circular polarization with sense reversals in the same plane (Michel

1987; Gil & Snakowski 1990b; Gil et al. 1993; Gangadhara 1997, 1999); (ii) the core components

should differ from the conal components polarization-wise as a result of subpulse drift and/or scatter

in conal parts of the mean profile (Gil et al. 1995; Paper I). In particular, the position angle in the

core components should swing faster than predicted by the rotating vector model (Radhakrishnan &

Cooke 1969), while in conal components the mean position angle curve should follow the rotating

vector model more closely. On the other hand the circular polarization should typically change

sense near the intensity maximum of core components, while in the conal components the circular

position should be rather weak and mostly of one sense. All these specific properties are really

observed (Rankin 1983; Lyne & Manchester 1988; Rankin 1990, 1993; Gil & Lyne 1995).

This paper is supported in part by the KBN Grant 2 P03D 015 12 of the Polish State Committee

for Scientific Research. GIM was also supported by the INTAS Grant 96-0154. We thank D.

Lorimer, K.S. Cheng and D. Mitra for helpful discussion and E. Gil for technical assistance.
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A. Nonlinear Schrödinger equation

The nonlinear Schrödinger equation is accepted as the fundamental equation to describe the

nonlinear wave modulation in various kinds of the dispersive media (Karpman & Krushkal 1969;

Taniuti & Yajima 1969; Zakharov & Shabat 1972). Usually when studying the nonlinear evolution

of the Langmuir waves, the low frequency perturbation due to ion-acoustic waves is considered

(e.g., Zakharov & Shabat 1972). But in the case of electron-positron plasma there is no such

low frequency perturbation. An important effect associated with the resonance effects of particles

moving at the group velocity was investigated by Ichikawa & Taniuti (1973) and they derived a

nonlinear Schrödinger equation taking into account the nonlinear Landau damping. Contributions

of the resonance particles at the group velocity of the wave modifies drastically the structure of the

nonlinear Schrödinger equation in two respects. One is the appearance of a nonlocal-nonlinear term,

which indeed arises from the nonlinear Landau damping process associated with the resonance at the

group velocity of the wave. The other is the fact that the coupling coefficient of the local-nonlinear

term is also modified by the contributions of these resonant particles. The relativistic case of this

problem (when the plasma particle velocities are near the speed of light) was studied by Melikidze

& Pataraya (1980a). They found that the resonant interaction between the nonlinear beatings

and particles is of the primary importance in the case of electron-positron plasma (Melikidze &

Pataraya 1980b).

Let us introduce two reference systems: the first system is connected with the neutron star

and we will call it a laboratory frame of reference (LFR), the second one is moving with respect to

the LFR with the velocity equal the group velocity of the of the Langmuir waves. We will call this

system the wave frame of reference (WFR). We can study a one-dimensional case, which is correct

for the pulsar magnetosphere as long as the magnetic field is strong enough to control the plasma

motion. Let us assume that the external magnetic field is directed along the z-axis and that all

perturbations are directed along the magnetic field. The z and time t-coordinates in the WFR is

connected with LFR by the following formulas

z′ = γ
0
(z − vgt) , t′ = γ

0

(

t−
vg
c2

z
)

. (A1)

Here vg = ∂ω
l
/∂k

l
is the group velocity of Langmuir waves and γ

0
=
(

1− v2g/c
2
)−1/2

. Thus,

vg and γ
0
are directly related with solitons propagating in an ambient secondary plasma with an

average Lorentz factor γp (Table 1). In order to describe a nonlinear behavior of the wave packet

we introduce the following representation of a distribution function and fields

F = F (0) +
∞
∑

m=−∞

∞
∑

n=1

εnF (n)
m (ξ, τ) exp

(

il
(

k′
l
z′ − ω′

l
t′
))

, (A2)

where k′
l
is a component of the wave vector along the magnetic field, ω′

l
is the frequency of plasma

waves in the WFR, ε is a small parameter of the perturbation theory and

ξ = εz′, τ = ε2t′. (A3)
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This procedure separates slow and fast perturbations of plasma and wave parameters. Consequently,

we are assuming that ∂/∂τ → ε2 and ∂/∂ξ → ε. To get a nonlinear Schrödinger equation it is

sufficient and enough to derive a current of third order. Therefore we keep the sum in equation

(A2) for values: n = 1, 2, 3 and m = ±1,±2,±3. Substituting equations (A1 - A3) into the well-

known kinetic Vlasov equation as well as satisfying the Maxwell equations, we obtain in the above

approximation the so called nonlinear Schrödinger equation

i
∂

∂τ
E

(1)
‖ +G

∂2

∂ξ2
E

(1)
‖ + q

∣

∣

∣
E

(1)
‖

∣

∣

∣

2
E

(1)
‖ + s

1

π

∮

∣

∣

∣
E

(1)
‖ (ξ′, τ)

∣

∣

∣

2

ξ − ξ′
dξ′E

(1)
‖ = 0. (A4)

This equation is written in the WFR, but of course the electric field E
(1)
‖ does not change when

the frames are moving along the z-axis. The coefficients of the equation (A4) are following:

G =
1

2

d2ω′
l

dk′2
l

=
1

2
γ3
0

d2ω
l

dk2
l

, (A5)

q = −
(ω

l
− k

l
vg)

2k
l

{

(

A2

6k
l

+
B

2

)

− k
l

(

(

W 2 − V 2
)

H + 2WV U

H2 − V 2
+ C

)}

, (A6)

s =
(ω

l
− k

l
vg)

2k
l

(

(

W 2 − V 2
)

U − 2WVH

H2 + V 2
+D

)

, (A7)

where

W =
∑

α

ω2
pα

∮

1

(ω
l
− k

l
v)2

dv

dp

1

(v − vg)

dfα
dp

dp , (A8)

V =
∑

α

ω2
pα

∫

1

(ω
l
− k

l
v)2

dv

dp

dfα
dp

δ (v − vg) dp , (A9)

A =
∑

α

ω2
pα

∫

1

(ω
l
− k

l
v)

d

dp

(

1

(ω
l
− k

l
v)

dfα
dp

)

dp , (A10)

B =
∑

α

eαω
2
pα

∫

1

(ω
l
− k

l
v)

d

dp

{

1

(ωl − k
l
v)

d

dp

(

1

(ωl − k
l
v)

dfα
dp

)}

dp , (A11)

C = −
∑

α

eαω
2
pα

∮

1

(ω
l
− k

l
v)2

dv

dp

1

(v − vg)

d

dp

(

(v − vg)

(ω
l
− k

l
v)2

dfα
dp

)

dp , (A12)

D =
∑

α

eαω
2
pα

∫

1

(ω
l
− k

l
v)2

dv

dp
δ (v − vg)

d

dp

(

(v − vg)

(ωl − k
l
v)2

dfα
dp

)

dp , (A13)

H =
∑

α

ω2
pα

∮

1

(v − vg)

dfα
dp

dp , (A14)

U =
∑

α

ω2
pα

∫

δ (v − vg)
dfα
dp

dp . (A15)
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Here α defines the sort of particles, ω
l
, k

l
and v are defined in the LFR. It should be mentioned

that the equation (A4) is written in WFR, but all the values in the integrals are defined in LFR.

In this paper we use dimensionless momentum normalized to mec.

Nonlinear evolution of the waves described by the equation (A4) is well known (e.g., Ichikawa

et al. 1973). The maximum growth rate Γm of the modulational instability is defined as

Γm =
(

q2 + s2
)

1

2

∣

∣

∣
E

(1)
‖o

∣

∣

∣

2
, (A16)

and a corresponding wave vector of low frequency perturbation is

Km =

(

q2 + s2

Gq

∣

∣

∣
E

(1)
‖o

∣

∣

∣

2
)

1

2

. (A17)

In the case when |q| ≫ |s| the equation (A4) has the following solution

E(1)
‖

(ξ, τ) = E(1)
‖o

sech

(

E(1)
‖o

√

q

2G
(ξ − uτ)

)

exp

{

i

(

u

2G
ξ −

u2

4G
τ +

1

2
qτ
(

E(1)
‖o

)2
)}

. (A18)

The slowly-varying charge density associated with developing soliton is given by the following

formula

ρ′ =

∑

α
eαω

2
pα

∮

1
(v−vg)

d
dp

(

(v−vg)

(ωl
−k

l
v)

2

dfα
dp

)

dp

4π
∑

α
ω2
pα

∮

1
(v−vg)

dfα
dp dp

×
∂2

∂ξ2
| E

(1)
‖ |2, (A19)

where E
(1)
‖ is defined by the equation (A18). Let us note that this is a solution of the kinetic

equation corresponding to the slowest mode only (l = 0 in eq.[A2]), thus describing a charge

distribution within an envelope soliton. Since the distribution functions of electrons fe and positrons

fp appearing in equation (A19) are not equal, the resulting charge density contrast associated with

the soliton will be substantially non-zero.

It is known that if q G > 0 (the so-called Lighthill condition; Lighthill 1967), then the equa-

tion (A18) describes a soliton-like solution. For pulsar magnetospheric plasma the coefficients of

equation (A4) are

G =
1

4

γ2
p
c2

ωp
Gd,

q =

(

e

mec

)2 1

γ2
p
ωp

q
d
,

s =

(

e

mec

)2 1

γ2
p
ωp

s
d
, (A20)

in the LFR, where Gd, qd and s
d
depend on the distribution function of plasma as shown in Fig-

ure 3. Obviously, the product q G > 0 for a wide range of parameters, so the Langmuir high
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frequency oscillations modulated by the low-frequency beatings resulting from the range of linear

wave frequencies, will evolve into the solitary waves. We are modelling the distribution function as

fα ∼ exp

(

−

(

p− pα

p
T

)2
)

, (A21)

where pα for pe ≈ γp . In numerical calculations we are using pp/γp = (0.5− 2), p
T
/γp = (0.5 − 1.5)

and dimensionless momentum p
T

describes a degree of plasma thermalization. The maximum

growth rate of modulational instability can be written as

Γm ∼ 2.7 × 107R−1.5
50

(

Ṗ−15

P

)0.25

γ−1.5
2

(

q2
d
+ s2

d

)
1

2 χ, (A22)

where

χ ≡

∣

∣

∣
E

(1)
‖o

∣

∣

∣

2

4πγpmec2no
≪ 1 (A23)

which describes a ratio of energy densities of Langmuir waves and plasma. The nonlinear growth

rate becomes equal to the linear one when χ ∼ 0.04. Typically χ ∼ 0.1, so the instability can

easily develop with growth rate high enough to satisfy equation (7). The linear instability is of the

hydrodynamical type, meaning that half of the particle’s energy can be transferred to the plasma

turbulence.

B. Coherent curvature radiation

In order to calculate a power of the coherent curvature radiation of the soliton modeled as a

system of three coupled charged bunches presented in Figure 3, let us express the current in the

form

J (r, t) = Q

(

dr0
dt

δ (r− r0)−
1

2

dr1
dt

δ (r− r1)−
1

2

dr2
dt

δ (r− r2)

)

, (B1)

where r0 is the radius vector of the central bunch, and r1 and r2 are the radius vectors of the side

bunches, respectively. The Cartesian components of radius vectors are

r0x = rc cos (ωot) , r0y = rc sin (ωot) ,

r1x = rc cos (ωot+ ϕo) , r1y = rc sin (ωot+ ϕo) ,

r2x = rc cos (ωot− ϕo) , r2y = rc sin (ωot− ϕo) , (B2)

where rc is the radius of an effective circular orbit, ϕo = ∆/rc is the angle between the central and

peripheral particle’s radius vectors, and ω
0
= v/rc is the particles angular velocity (an effective

gyro-frequency). The origin of the coordinate system is chosen in the center of the curvature,

z-axis is directed perpendicular to the plane of the curvature, and y-axis is tangent and x-axis
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is perpendicular to the local magnetic field, respectively. In our case rc = R in the radiation

generation region, where the radius of curvature of dipolar field lines

R ∼ 7× 108R1.5
50

cm. (B3)

According to a well-known method (e.g., Landau & Lifshitz 1962) we can calculate electromagnetic

field of the charged system far from it, in the so-called ‘wave zone’. Let us start with the standard

determinations of the current Fourier components and vector potential. The current is

J (r, t) =

∞
∑

n=−∞

Jn (r) e
−iω

0
nt, (B4)

where

Jn (r) =
1

T

T/2
∫

−T/2

J (r, t) eiω0
ntdt. (B5)

The Fourier component of the vector-potential is defined as

An =
exp (ikR0)

cR0T

∞
∫

−∞

T/2
∫

−T/2

J (r, t) ei(ω0
nt−kr)drdt, (B6)

where R0 is a distance from the radiating system to observer. In our case the current is just a

motion of three small charged ‘bunches’. The bunches are moving along the circular trajectory. In

this configuration the central bunch has a charge Q and two other have the charge −1
2Q each. This

configuration is symmetric with respect of the central bunch. The axes are chosen as follows: The

particles’ trajectory lies in the plane X0Y , z-axis is perpendicular of this plane. k-vector lies in

the plane Z0Y . Consequently from equations (B1) and (B6) we obtain

An = Q
exp (ikR0)

cR0T

T/2
∫

−T/2

(

dr0
dt

ei(ω0
nt−kr0) −

1

2

dr1
dt

ei(ω0
nt−kr1) −

1

2

dr2
dt

ei(ω0
nt−kr2)

)

dt, (B7)

where

kr0 = krc cos(θ) sin (ω0
t) ; kr1 = krc cos(θ) sin (ω0

t+ ϕo) ; kr2 = krc cos(θ) sin (ω0
t− ϕo) . (B8)

Here θ is the angle between the k-vector and y-axis, T = 2π/ω
0
, and we assume that v ∼ c,.

Therefore, we have from equation (B7) for x and y components

Axn = −Qrcω0

exp (ikR0)

cR0T

T/2
∫

−T/2

{sin (ω
0
t) exp [iω

0
nt− ikrc cos(θ) sin (ω0

t)]−

−
1

2
sin (ω

0
t+ ϕo) exp [iω0

nt− ikrc cos(θ) sin (ω0
t+ ϕo)]−

−
1

2
sin (ω

0
t− ϕo) exp [iω0

nt− ikrc cos(θ) sin (ω0
t− ϕo)]}dt. (B9)
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Ayn = Qrcω0

exp (ikR0)

cR0T

T/2
∫

−T/2

{cos (ω
0
t) exp [iω

0
nt− ikrc cos(θ) sin (ω0

t)]−

−
1

2
cos (ω

0
t+ ϕo) exp [iω0

nt− ikrc cos(θ) sin (ω0
t+ ϕo)]−

−
1

2
cos (ω

0
t− ϕo) exp [iω0

nt− ikrc cos(θ) sin (ω0
t− ϕo)]}dt. (B10)

Introducing the following variables

ϕ = ω
0
t, z = krc cos(θ) (B11)

and using

π
∫

−π

{sin (ϕ± ϕo) exp [inϕ− iz sin (ϕ± ϕo)]} dϕ = 2πi exp (∓inϕo)J
′
n (z) ; (B12)

π
∫

−π

{cos (ϕ± ϕo) exp [inϕ− iz sin (ϕ± ϕo)]} dϕ = 2π exp (∓inϕo)
n

z
Jn (z) , (B13)

we obtain the components of the vector potential in the form

Axn = −2πi

(

Qrc
exp (ikR0)

cR0T

)

[1− cos (nϕo)]J
′
n (z) ; (B14)

Ayn = 2π

(

Qrc
exp (ikR0)

cR0T

)

[1− cos (nϕo)]
n

z
Jn (z) , (B15)

where Jn (z) is the Bessel function of the first order. For the radiation intensity with frequency

ω = nω
0
emitted within the solid angle dσ we have

dIn =
c

2π
|k×An|

2R2
0dσ, (B16)

where

|k×A|2 = A2
xk

2 +A2
yk

2 sin2 (θ) . (B17)

So finally we obtain

dIn =
c

2π

[

A2
xnk

2 +A2
ynk

2 sin2 (θ)
]

R2
0dσ =

= 2πck2
(

Qrc
cT

)2

[1− cos (nϕo)]
2

(

J ′
n (z)

2 +
n2

z2
Jn (z)

2 sin2 (θ)

)

dσ. (B18)

Taking into account that ω
0
= v/rc, T = 2π/ω

0
and kc = nω

0
, we find

dIn =
n2c

2πr2c
Q2 [1− cos (nϕo)]

2

{

J ′
n (z)

2 +
(n

z

)2
Jn (z)

2 sin2 (θ)

}

dσ. (B19)
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Using v ∼ c and writing
n

z
=

n

krc cos(θ)
≈

1

cos(θ)
, (B20)

where we make the approximation z = krc cos(θ) ≈ n cos(θ), we obtain

dIn = Q2n
2ω2

0

2πc
[1− cos (nϕo)]

2
{

J ′
n (z)

2 + tan2 (θ)Jn (z)
2
}

dσ. (B21)

Since the part of the above equation in the square brackets does not depend on the solid angle σ

and the integral of the part in the braces is well known in the relativistic case (Landau & Lifshitz

1962), the integral of (B21) is straightforward. Using ω = kc, Iω = Indn = Indω/ω0
, and

nϕo =
ω

ω
0

∆

rc
=

3

2
γ3
o

∆

R

ω

ωc
= a

ω

ωc
, (B22)

where a = γ3
0
∆/R and ϕ0 is marked in Figure 3, we can integrate expression (B21) which leads to

equation (12) in the main body of the paper describing a spectral power emitted by solitons. From

the condition for coherency ∆ ≪ λ/2, where λ ∼ πR/γ3
0
is a wavelength of the coherent radiation

emitted by a soliton with characteristic size ∆, it follows that a ≪ π/2.
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Fig. 5.— Values of the integral Io(a) (eq.[18]) versus parameter a (eq.[14]).

C. Definitions

a = γ3
0
∆/R - dimensionless parameter (see eq.[14]).

B12 = B0/10
12 G - value of the surface magnetic field in units of 1012 Gauss.

D - characteristic perpendicular spark dimension in cm (approximately equal to h).

∆ - characteristic soliton size along dipolar field lines (see eq.[10]).

∆d - dimensionless parameter shown in Figure 1.



– 23 –

∆γ - difference between the average Lorentz factors of electrons and positrons.

δω ∼ 0.5 - dimensionless parameter calculated in Asseo & Melikidze (1998).

fα - distribution function of type α plasma particles (see eq.[A21]).

G - cefficient of equation A4 (see eq.[A5]).

Gd - dimensionless parameter shown in Figure 1 (eq.[A20]).

Γl - linear growth rate (see eq.[6]).

Γm - growth rate of modulational instability (see eq.[A16]).

γ
0
= (1− v2g/c

2)−1/2 - Lorentz factor corresponding to solitons (see eq.[A1]).

γ
b
∼ 106 - average Lorentz factor of the primary beam particles (see eq.[1]).

γp ∼ 100 - average Lorentz factor of the plasma particles.

γ
2
= γp/100.

γ
T
∼ p

T
- characteristic thermal spread of the plasma particles (eq.[A21]).

h ≃ 5× 103 R
2/7
6 B

−4/7
12 P 3/7 cm - polar gap height.

Iω - spectral power of coherent curvature radiation of a soliton (see eq.[17]).

κ ∼ γ
b
/γp - Sturrock’s multiplication factor (for typical pulsar κ ∼ 104).

κ4 = κ/104, κ4 ∼ 1.6/γ
2
(see eq.[1]).

L1 - power radiated by a single soliton (see eq.[18]).

Lm - maximum kinetic spark luminosity (see eq.[24])

Lsd - pulsar spin-down luminosity.

Lt - total power radiated by all solitons (see eq.[23]).

Nsl - number of solitons associated with a single spark (see eq.[20]).

Nsp - number of sparks on the polar cap (see eq.[21]).

Nt - total number of solitons (see eq.[22]).

νm - characteristic (maximum) frequency of the soliton curvature radiation (see eq.[19]).

ωo = v/rc - angular velocity of a particle.

ωc = 1.5 ωoγ
3
0
- characteristic frequency of single particle curvature radiation.

ω
l
≃ 2δωγpωp - characteristic frequency of the excited Langmuir waves (see eq.[4]).

ωp =
(

4πe2n/me

)1/2
- plasma frequency (see eq.[3]).

P - pulsar period in seconds.

Ṗ−15
- period derivative in units of 10−15 s s−1.

Q - charge of the central bunch in the soliton wavelet (see Fig.3).

Qd - dimensionless parameter shown in Figure 1.

q - coefficient of local-nonlinear term in equation A4 (see eq.[A6]).

q
d
- dimensionless parameter shown in Figure 1 (see eq.[A20]).

R
50

= r/(50R) - distance from the stellar surface in 50 stellar radii R = 106 cm.

R ∼ 7× 108R1.5
50 cm - curvature radius of the dipolar magnetic field lines.

R6 = R/R - curvature radius of the magnetic field lines at the polar cap region in units of 106 cm.

r - radial coordinate (absolute value of radius vector).

rc ∼ R - curvature radius of particles trajectory.

r
in

≃ R
50
R - linear instability altitude.
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rp ∼ 104P−0.5 cm - polar cap radius.

∆r - characteristic longitudinal dimension of linear instability region.

ρ - slowly-varying charge density inside soliton (see eq.[8]).

ρd - dimensionless parameter shown in Figure 1.

S⊥ - cross-section of spark-associated soliton (see eq.[15]).

s - coefficient of non-local nonlinear term in equation A4 (eq.[A7]).

s
d
- dimensionless parameter shown in Figure 1 (eq.[A20]).

V - canonical maximum potential drop within the gap in Volts.

V - volume of spark-associated soliton (see eq.[16]).

vg = ∂ω
l
/∂k

l
- group velocity of Langmuir waves in LFR.

y = γ
0
/γp - dimensionless parameter shown in Figure 1.
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Table 1. Observed and calculated pulsar luminosities.

PSR P [s] Ṗ−15 Lsd [erg/s] L
R

erg/s Lt [erg/s] y γ
2

B0531+21 0.033 421 4.6 × 1038 1.3× 1029 1.7 × 1029 1.5 1

B0833−45 0.0893 125 6.9 × 1036 4.3× 1028 8.0 × 1028 1.6 1

B1610−50 0.232 493 1.6 × 1036 2.8× 1028 7.7 × 1028 2 1

B0950+08 0.253 0.229 5.6 × 1032 2.3× 1026 6.6 × 1026 1.5 0.65

B1133+16 1.188 3.73 8.8 × 1031 7.4× 1026 9.6 × 1026 2 0.9

B1746−30 0.61 7.9 1.4 × 1033 3.0× 1028 9.4 × 1028 2.2 1

B0525+21 3.75 40 3.0 × 1031 1.1× 1028 1.5 × 1028 2 1.2

J2144−39∗ 8.51 0.48 3.0 × 1028 5.0× 1024 7.2 × 1024 2.2 0.9

.

Note. — PSR name, P - pulsar period in seconds, Ṗ−15 - period derivative

in 10−15s s−1, Lsd = 3.8 × 1031Ṗ−15P
−3 erg s−1 - spindown luminosity, LR =

3.5 × 1025+x erg s−1 - observed radio luminosity, where x = Log L in mJy kpc2

from the pulsar catalog, Lt - total pulsar luminosity calculated from equation

(23), parameters y and γ
2
used in calculations (see Appendix C and Figure 1 for

explanations). ∗ - data for PSR J2144 − 3933 are taken from Young et al. (1999)


