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Abstract

There appear to be three challenges that any theory of dark matter must face:

(i) why is ΩDM of the same order as ΩBaryons ? (ii) what are the near solar

mass objects (∼ 0.5M⊙) observed by the MACHO microlensing project ? and

(iii) understanding the shallow core density profile of the halos of dwarf as well

as low surface brightness galaxies. The popular cold dark matter candidates,

the SUSY LSP and the axion fail to meet these challenges. We argue that in

the mirror model suggested recently to explain the neutrino anomalies, the

mirror baryons being 15-20 times heavier than familiar baryons, can play the

role of the cold dark matter and provide reasonable explanation of all three

above properties without extra assumptions.

I. INTRODUCTION

Dark matter constitutes the bulk of the matter in the universe and a proper understand-
ing of the nature of the new particle that plays this role has profound implications not only
for cosmology but also for particle physics beyond the standard model [1]. It is therefore not
surprising that one of the major areas of research in both particle physics and cosmology
continues to be the physics of dark matter.

Apart from the simple requirement that the right particle physics candidate must have
properties that allow it to have the requisite relic density and mass to dominate the mass
content of the universe, it should be required to provide a satisfactory resolution of three
puzzles of dark matter physics: (i) why is it that the contribution of baryons to the mass
density (Ω) of the universe is almost of the same order as the contribution of the dark
matter to it ? (ii) how does one understand the dark objects with mass ∼ 0.5M⊙ observed
in the MACHO experiment [2], which are supposed to constitute up to 20% of the mass [3]
of the halo of the Milky way galaxy and presumably be connected to the dark constituent
that contributes to Ω ? and, finally (iii) what explains the density profile of dark matter
in galactic halos; in particular, the evidence that the core densities of galactic halos remain
constant as the radius goes to zero.
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There are many particle physics candidates for dark constituent of the universe. Gen-
erally speaking, the prime consideration that leads to such candidates is that they yield
the right order of magnitude for the relic density and mass necessary to get the desired
ΩDM ≈ 0.2 − 1. This is, of course, the minimal criterion. It requires that the annihilation
cross section of the particles must be in a very specific range correlated with their mass.
The most widely discussed candidates are the lightest supersymmetric particle (LSP) and
the Peccei-Quinn particle, the axion. The first one is expected to have a mass in the range
of 100 GeV whereas the mass of the second would be in the range of ∼ 10−6 eV. The present
consensus seems to be that value of ΩCDM is around 0.2− 0.3, with ΩΛ making up the rest
of the energy density of the universe at the moment. Compare these values with ΩB ≃ 0.05.
The CDM contribution and the baryon contribution to Ω are roughly of same order. On
the other hand, the nucleon mass is very different from the masses of either the axion or the
SUSY LSP. So to understand within the SUSY or the axion models why ΩB ∼ ΩDM , one
needs to work in a special range for the parameters of the theory. In either of these pictures,
the MACHO observations must have a separate explanation.

Furthermore, in recent years it has been emphasized that the LSP and the axion may also
have difficulty in explaining the observed core density behaviour of dwarf speroidal galaxies
which are known to be dark matter dominated. The point here is that both the axions and
neutralinos, being collisionless and nonrelativistic, accumulate at the core of galactic halos,
leading to a core density ρ(R) which goes like R−2 rather than a constant which seems to
fit data better [4–7]. We will refer to this as the core density puzzle [8–10].

Spergel and Steinhardt [8] have recently revived an old idea [11], that dark matter may
be strongly self interacting, to resolve this puzzle. They argue that, for the right range of the
parameters of the particle, it may lead to a halo core which is much less dense and hence in
better agreement with observations. Specifically they note that if the dark matter particle
has mean free collision path of about a kpc to a Mpc, then the core on this scale cannot
“keep on accumulating” dark matter particles, since these will now scatter and “diffuse out”.
For typical dark matter particle densities of order of one particle per cm3, this requires a
cross section for scattering of σ ≃ 10−21

−10−24 cm2. Furthermore the properties of the dark
matter particle must be such that it must not allow for dissipation of the thermal energy
via emission of light particles; otherwise,the galactic core would cool and lead to an increase
in core density. If these considerations stand the test of time, a theoretical challenge would
be to look for alternative dark matter candidates (different from the popular ones described
above) and the associated scenarios for physics beyond the standard model.

A class of models known as mirror universe models have recently been discussed. These
are motivated theoretically by string theory and experimentally by neutrino physics. They
predict the existence of a mirror sector of the universe with matter and force content identical
to the familiar sector (prior to symmetry breaking) [12–15]. Symmetry breaking might either
keep the mirror symmetry exact or break it. This leads to two classes of mirror models: the
symmetric mirror model, where all masses and forces in the two sectors remain the same
after symmetry breaking [14] and the asymmetric mirror model [13] where the masses in the
mirror sector are larger than those in the familiar sector. The mirror particles interact with
the mirror photon and not the familiar photon so that they remain dark to our observations.
Since the the lightest particles of the mirror sector (other than the neutrinos), the mirror
proton and the mirror electron (like those in the familiar sector) are stable and will have
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abundances similar to the familiar protons and electrons, the proton being heavier could
certainly qualify as a dark matter candidate. We will show in the next section they can
indeed play this role.

It has been shown [16,17] that, consistent with the cosmological constraints of the mirror
universe theory, the mirror baryons have the desired relic density to play the role of dark
matter of the universe. The additional neutrinos of the mirror sector are the sterile neutrinos
that appear to be needed in order to have a simultaneous understanding of the three different
observed neutrino oscillations i.e. solar, atmospheric and the LSND observations. In fact,
one view of neutrino oscillation explanations of these phenomena fixes the ratio of familiar
particle mass to mirror particle mass thereby narrowing down the freedom in mirror sector
parameters. If indeed sterile neutrinos turn out to be required, mirror universe theory is
one of the few models where they appear naturally with masses in the desired range. If we
denote the mass ratio mp′/mp = ζ , then a value of ζ ∼ 10 − 30 is required to explain the
neutrino puzzles. What is more interesting is that for the same parameter range required to
solve the neutrino puzzles, mirror matter can also provide an explanation of the microlensing
observations [16]- in particular why the observed MACHOs have a mass very near the solar
mass and are still dark.

II. ASYMMETRIC MIRROR MODEL IN BRIEF

Let us start with a brief overview of the mirror matter models [13,14]. The basic idea
of the model is extremely simple: duplicate the standard model or any extension of it in

the gauge symmetric Lagrangian and allow for the possibility that symmetry breaking may be

different in the two sectors. (See table below) There is an exact mirror symmetry connecting
the Lagrangians (prior to symmetry breaking) describing physics in each sector. Clearly the
W ′s, γ′s etc in each sector differ from those in the other as do the quarks and leptons.
When the symmetry breaking scale is different in the two sectors, we will call this the
asymmetric mirror model [13]. The QCD scale being an independent scale in the theory
could be arbitrary. We will allow both the weak scale and the QCD scale of the mirror
sector to differ from those of the familiar sector [16] and assume the same common ratio ζ
for both scales i.e. < H ′ > / < H >= Λ′/Λ ≡ ζ .

u, d, e, νe ↔ u′, d′, e′, ν ′

e

W, Z, γ, G ↔ W ′, Z ′, γ′, G′

φ, νR, ... ↔ φ′, ν ′

R, ...

←Gravity→

It is assumed that the two sectors in the universe are connected by only gravitational
interactions. It was shown in [13,14] that gravity induces nonrenormalizable operators that
generate mixings between the familiar and the mirror neutrinos. This is one of the ingredients
in the resolution of neutrino puzzles. To get an idea of how this works, note that the lepton
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operators induced due to nonperturbative gravitational effects have the form LHLH
MPl

, LHL′H′

MPl

and L′H′L′H′

MPl

. After spontaneous breakdown (i.e. < H >= v and < H ′ >= v′, we get for the

mass matrix mixing the first generation neutrinos from each sector to have the form (in the
basis νe, ν

′

e):

M =
v2

MP l

(

1 ζ
ζ λζ2

)

(1)

where ζ ≡ v′/v defined above. To solve the solar neutrino puzzle via small angle MSW
solution, we will choose λ ∼ 1 and ζ ≈ 10 − 30. This gives the sterile neutrino mass of
order 10−3 eV or so, choosing MP l ≃ 1018 GeV, which is also in the right range to explain
the solar neutrino puzzle. Note that these are meant to indicate that the model leads to
numbers in the right ball park. Emboldened by this result, we will consider the asymmetric
version and look at its cosmological implications.

In discussing cosmology, we first note that both sectors of the universe will evolve ac-
cording to the rules of the usual big bang model except that the cosmic soups in the two
sectors may have different temperature. In fact the constraints of big bang nucleosynthesis
require that the post inflation reheat temperature in the mirror sector T ′

R be slightly lower
than that in the familiar sector TR (define β ≡ T ′

R/TR) so that the contribution of the light
mirror particles such as ν ′, γ′ etc. to nucleosynthesis is not too important. This is called
asymmetric inflation and can be implemented in different ways [18]. We will see that, if we
want the mirror nucleons to play the role of the dark matter, we will need a definite value of
β depening on the choice of ζ . This in turn will help us to predict a value for the equivalent
extra neutrinos at the BBN epoch (i.e. δNν).

Before detailed discussion, let us first note the impact of the asymmetry on physical
parameters and processes. First it implies that mi → ζ mi with i = n, p, e,W, Z. This has
important implications for the nuclear and atomic physics of the mirror sector [13,23]. For
instance, the binding energy of mirror hydrogen is ζ times larger so that the recombination
in the mirror sector takes place much earlier than in the visible sector. With β ≡ T ′

R/TR

as above, the mirror recombination occurs when the temperature of the familiar sector is
ζ/βTr where Tr is the recombination temperature in the familiar sector. The mirror sector
recombination takes place before familiar sector recombination; this means that density
inhomogeneities in the mirror sector begin to grow earlier and familiar matter can fall into
them later as in typical cold dark matter scenarios.

III. MIRROR NUCLEON AS DARK MATTER

One can also compute the contribution of mirror baryons to the mass density of the
universe as follows:

ΩB′

ΩB

≃ β3ζ (2)

Here we have assumed that baryon to photon ratio in the familiar and the mirror sectors are
the same as would be expected since the dynamics are same in both sectors due to mirror
symmetry. Eq. (2) implies that both the baryonic and the mirror baryon contribution to Ω
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are roughly of the same order, as observed. This provides a resolution of the first conceptual
puzzle. Furthermore if we take ΩB ≃ 0.05, then ΩB′ ≃ 0.2 would require that β = (4/ζ)1/3.
From this one can calculate the effective δNν using the following formula:

δNν = 3β4 +
4

7
β4(

11

4
)4/3 (3)

where the last factor (11/4)4/3 is due to the reheating of the mirror photon gas subsequent to
mirror e+

′

e−
′

annihilation. For ζ = 20, this implies δNν ≃ 0.6 and it scales with ζ as ζ−4/3.
Thus in principle the idea that mirror baryons are dark matter could be tested by more
accurate measurements of primordial He4, Deuterium and Li7 abundances which determine
δNν .

Clearly to satisfy the inflationary constraint of ΩTOT = 1, we need ΩΛ ≃ 0.7. These kinds
of numbers for cold dark matter density apparently emerge from current type I supernovae
observations. It is interesting to note that if one were to require that ΩCDM = 1, the
mirror model would require that ζ be much larger (more than 100) which would then create
difficulties in understanding both the neutrino data and the microlensing anomalies. Thus
mirror baryons seem to have just the right properties to be the cold dark matter of the
universe.

IV. EXPLAINING THE MICROLENSING ANOMALY

Let us now turn to show how the mirror model accounts for the microlensing observations.
We start with the four equations of stellar structure:

dP/dr = −Gρ(r)M(r)/r2 (4)

dM(r)/dr = 4π r2ρ(r) (5)

L(r)/4π r2 = −(16/3)σSB(T
3/ρκ)dT/dr (6)

dL/dr = 4π r2ǫ(r)ρ(r) (7)

where κ(r) is the opacity (cross section per unit mass) at radius r, σSB the Stefan-Boltzmann
constant, L(r) the luminosity at radius r, and ǫ(r), the rate of energy generation per unit
mass at radius r. We will need three terms in the equation of state (below) taken one or
two at a time:

P = (ρ/m)kT + (4σSB/3c)T
4 + (h2/2me)(3/8π)

2(ρ/m)5/3 (8)

where the three terms represent gas pressure, radiation pressure, and (non-relativistic)
degenerate electron pressure. m is the nucleon mass, me that of the electron. We have
neglected such niceties as keeping track of how many objects there are for each m of gas (2
for H, 3/4 for He, etc)
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We will make standard, illuminating if crude, approximations [19] in order to understand
the ζ behavior of the solutions to the above equations. First we write

P = ρGM/R, ρ = 3M/4π R3 (9)

where P and ρ are roughly core averages. HereM and R are mass and radius of the star.This
gives the useful relation

P = (4π/3)1/3GM2/3ρ4/3 (10)

To find the maximum mass of a (main sequence) mirror star, which is of interest to us, we
note that as the mass of the star gets bigger, the core temperature rises. Therefore, of the
three terms in the expression for the pressure in the Equation 8, we expect Pg and Pr to
dominate. Following Phillips [19], we parameterize them as fractions of the total pressure
P as below:

Pg = β P, Pr = (1− β)P (11)

We eliminate T and solve for P from this parameterization to obtain

βP = [(ρ k/m)4(β−1
− 1)/(4σSB/3c)]

1/3 (12)

Using Equation (10) again then gives

Mmax ∼ [(1− β)c/σSB]
1/2G−3/2(k/m)2/β2 (13)

As β approaches 1, the energy density is increasingly dominated by photons (relativistic
particles) and stars become unstable. Taking a cutoff around β ∼ 1/2 gives a maximum
stellar mass around 70M⊙. Thus the range for stars is roughly 0.07M⊙ to 70M⊙. From
Equation (13) one sees, in the approximation that instability sets in at the same β indepen-
dent of ζ , that Mmax varies as ζ−2. For ζ = 15, we get for the maximum mass of the mirror
star 0.5M⊙, which is of the same order of mass as the MACHO microlensing events. Our
model therefore provides a resolution of the microlensing anomaly that avoids the strong
constraints of Freese et al [20] for familiar sector white dwarfs.

We want to point out here that we do not expect all of mirror dark matter to condense
to form mirror stars. Instead, we would expect it to be in the form of a mixture of mirror
dust and mirror stars. In this connection, it has been noted recently [21] that current upper
limits to scattering optical depths for Thomson scattering in early universe suggests that
compact objects of any kind cannot be the main dark matter constituent. This would also
suggest a mixed picture of the kind mentioned.

V. SELF INTERACTION OF MIRROR MATTER AND HALO CORE DENSITY

PROBLEM

As noted in the introduction, there appear to be indications from the core density profile
of dwarf and low surface brightness galaxies [5,6] that the dark matter may need to be en-
dowed with a significant self interaction. According to the analysis of Spergel and Stenhardt
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[8], the self interaction must be such that the collision cross section of dark matter particles
should be of order 10−23(m/GeV ) cm2 for a one GeV particle corresponding to a DM mean
free path of order of λss = 300 kpc in a gas with number density given by ρDM/m. Also we
note that the cross section would scale linearly with the mass of the dark matter particle.
The mean free path requirement cannot be met by the neutralino or the axion but is met
quite naturally by the mirror dark matter forces [22].

Two obvious kinds of self interactions are the self interactions due to inter-atomic forces
and nuclear forces. The latter are not very effective as can be seen by the following crude
argument. From pure ζ scaling, we can infer that σN ′N ′ ≈ σNNζ

−2. The value of ζ = 20
would put the mirror nucleon cross section to be of order 10−26 cm2, which is much too
small. Note that for ζ = 20, one would need a cross section of order 10−22 cm2 to get
λ = λss. On the other hand, one would expect that there can be scattering of the dark
matter particles (mirror atoms) due to inter-atomic forces. A crude estimate of such cross
sections is given by σH′H′ ≈ π (a′0)

2, where a′0 is the Bohr radius of the mirror hydrogen
atom. One can then estimate the mean free path of the dark matter particles in the mirror
model to be λDM ≈ 3πζ3 × 1016 cm. For ζ = 20, this gives λDM ≈ 0.3 kpc, which is not
far below the required values for explaining the halo core density profile. Note that Spergel
and Steinhardt [8] require λDM ≈ kpc to mpc. On the other hand, one could take the value
of ζ = 30 and thereby get λ ≈ one kpc.

We thus feel that mirror dark matter presents the best scenario for understanding the
halo core density profile using a self interacting dark matter model. Of course more detailed
numerical work is needed to confirm these qualitative conclusions.

VI. STRUCTURE FORMATION

Finally, we use the remainder of this article to make plausible that, in spite of the ζ2

decrease in cross sections for most processes, the facts that (a) structure formation begins
earlier for the mirror sector (because recombination occurs before matter-radiation equality)
and (b) the higher mirror temperatures for the same processes, than familiar temperatures,
permit formation of galactic and smaller structures. In doing this, we will make use of our
previous work in [23] and [16], as well as that of Tegmark et al [24].

Much of the work of [23] can be carried over to the present work, after suitable mod-
ification to take into account the fact that, in the current model, the proton mass scales
as ζ . Here, we will assume that primordial perturbations are ”curvature” or ”adiabatic”
perturbations. This means that the scale of the largest structures are set by mirror Silk
damping [25]. γ′ diffusion wipes out inhomogeneities until the γ′ mean free path,

λ′ = [σT ζ
−2n

′

e]
−1 (14)

where ζ−2σT is the mirror matter Thomson cross section and n′

e is its electron number
density, becomes greater than one third the horizon distance (ct). Silk damping turns off
because the λ′ increases as z−3 while ct only increases as z−2.

First, we compute, from Silk damping, the masses of the largest structures in this picture.
Structure formation starts with mirror sector particles, and familiar sector particles later
fall into these. For numerical values below, we will take, h = 0.7 and ΩB′ = 0.2. We pick
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t ∼ (z1/z)
2s with z1 = 4 × 109 and nB′ = ΩB′ρcz

3/(ζmp) with ρc = 1.9h2
× 10−29g/cm3.

Silk damping stops at around zsd ∼ 8ζ3 which gives

λsd ∼ 2.5× 1027/ζ6 cm (15)

Msd ∼ 1054/ζ9 gm

Note that, for ζ ∼ 10, this is about the mass (and size) of a large galaxy. This coincidence
could be an important factor in understanding galaxy sizes should this model correspond to
reality.

As in [23], we parametrize the separation of Msd from the expanding universe as taking
place at

zstop = zMzsd (16)

with

RG = λsd/zM (17)

After violent relaxation we have for the proton temperature

Tp = GMGζmp/RG ∼ 10−4zM/ζ2 ergs (18)

with ρ, outside the central plateau, given by

ρ(R) = A/R2
∼ 1026zM/(ζ3R2) gm/cm3 (19)

We now turn to the question of whether this isothermal sphere is likely to fragment and
form mirror stars. For this we compute the amount of mirror molecular hydrogen since
it is its collisional excitation (and subsequent radiation) that is believed to be the chief
mechanism that provides cooling for formation of stars. If the rate for this mechanism is
faster than the rate for free fall into the mass of the structure at issue, we can expect local
regions to cool fast enough to result in fragmentation of that structure. We do here a very
rough estimate of mirror galaxy fragmentation into mirror globular clusters, using the results
of [24], but leave to a more detailed work further fragmentation into the 0.5M⊙ structures
predicted in [16].

Reference [24] give a useful approximation to their numerical results for the fraction of
molecular hydrogen, f2 (f0 denotes its primordial value):

f2(t) = f0 + (km/k1)ln[1 + x0nk1t) (20)

where, as a first try, km can be taken as just the rate for H + e− → H− + γ (which they
conveniently give as about 2× 10−18T .88cm3s−1), while k1 is the rate for H+ + e− → H + γ
(2 × 10−10T−0.64cm3s−1). Equation (8) is the result of H2 production from the catalytic
reactions H + e− → H− + γ followed by H + H−

→ H2 + e− competing against the
recombination reaction that destroys the catalyst, free electrons, (approximately) as 1/t
(assuming constant density). Our goal here is to show from Equation (20) that it is plausible
that f2, the fraction of molecular hydrogen, rises from its primordial value of 10−6 to the
region above 10−4 where cooling tends to be competitive with free fall.
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First, we note that, if k =< vσ >∼ AT γcm3/s, for familiar e and p, we expect that, for
mirror e and p, scaling with ζ to go as ζ−(2+γ)AT γ, since σ must go as ζ−2, all factors of T
must be divided by some combination of me and Mp, both of which go as ζ (making this
model much easier to compute from than that of [23]).

We now estimate fragmentation. From Equation (18) we see that the galactic temper-
ature should begin at about 10 eV at a time when the cosmic temperature is about 1 eV
and the cosmic gamma number density is about 109/cm3. The rate for “compton cooling”
is very fast at this high density (unlike at later times for the familiar case) and there should
be rapid cooling to about 1 eV. We can now compute the Jeans length for fragments as a
function of distance R from galaxy central. We use

ρJ = (T/Gm)3/M2 (21)

If we set the Jeans mass, M , to 4πr3ρJ/3, we can solve for r obtaining (if we are careful
to convert T in Equation (6) from ergs)

r = R[10−7ζ2/zM ]1/2 ∼ 10−2R (22)

Now inserting into Equation (20) gives the coefficient of the log term on the order of
10−3.5 and the coefficient of t in the argument varying from 10−13 to 10−17 as R varies from
1 to 100 kiloparsecs while the free fall time ((Gρ)−1/2) varies from 1014 to 1016. This would
appear to indicate the likelihood of fragmentation of the original Silk damping structure
into smaller units, and the eventual formation of the 0.5Modot black holes that explain the
microlensing events of [16].

VII. CONCLUSION

We have argued that the asymmetric mirror model [13], originally proposed to solve
neutrino puzzles and subsequently advocated [16,17] as providing an alternative dark matter
candidate has the advantage of resolving the microlensing anomaly and possibly the core
density problem of dark halos. Possible tests of these models are to narrow the allowed
values of δNν from more accurate observation of deuterium, He4 and Li7 and observing
whether further accumulation of MACHO candidates lie in the mass between 0.1- 1 solar
mass. Needless to say that if the underground searches for the cold dark matter now under
way lead to a positive signal, mirror matter cannot be the dominant component of the dark
matter of the universe.

The work of R. N. M. is supported by the National Science Foundation grant under
no. PHY-9802551 and the work of V. L. T. is supported by the DOE under grant no.
DE-FG03-95ER40908.
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