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ABSTRACT

A supermassive rotating toroidal black hole (TBH) is proposed as the fundamental
component of quasars and other jet-producing active galactic nuclei. Rotating proto-
galaxies gather matter from the central gaseous region leading to the birth of massive
toroidal stars, the internal nuclear reactions of which proceed very rapidly. Once the
nuclear fuel is spent, gravitational collapse produces a slender TBH remnant. Tran-
sitory electron and neutron degeneracy stabilised collapse phases, although possible,
are unlikely owing to the large masses involved thus these events are typically the
first supernovae of the host galaxies. Given time, the TBH mass increases through
continued accretion by several orders of magnitude, the event horizon swells whilst
the central aperture shrinks. The difference in angular velocities between the accret-
ing matter and the TBH induces a magnetic field that is strongest in the region of
the central aperture and innermost ergoregion. Due to the presence of negative en-
ergy states when such a gravitational vortex is immersed in an electromagnetic field,
circumstances are near ideal for energy extraction via non-thermal radiation includ-
ing the Penrose process and superradiant scattering. This establishes a self-sustaining
mechanism whereby the transport of angular momentum away from the quasar by
relativistic bi-directional jets reinforces both the modulating magnetic field and the
TBH/accretion disc angular velocity differential. Continued mass-capture by the TBH
results in contraction of the central aperture until the TBH topology transitions to
being spheroidal, extinguishing quasar behaviour. Similar mechanisms may be oper-
ating in microquasars, supernovae and sources of recurrent gamma-ray bursts when
neutron density or black hole tori arise. In certain circumstances, long-term TBH sta-
bility can be maintained by a negative cosmological constant, otherwise the classical
topology theorems must somehow be circumvented. Preliminary evidence is presented
that Planck-scale quantum effects may be responsible.

Key words: black hole physics – stars: neutron – supernovae: general – galaxies:
active – quasars: general – gamma-rays: bursts.

1 INTRODUCTION

The commonly cited method of producing ultra-relativistic
bi-directional jets as observed in quasars is the mechanism
described by Blandford & Znajek (1978), whereby magnetic
field lines thread the poles of a rotating BH as they descend
towards the event horizon. Rotational energy may be ex-
tracted from the BH by this technique which is ejected in
the form of radiation and matter travelling at high velocity
along the BH’s spin axis. Critical assessments by Ghosh &
Abramowicz (1997) and Livio, Ogilvie & Pringle (1999) sug-
gest that the role of the Blandford-Znajek mechanism has
been generally overestimated and inadequately accounts for
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the larger double radio lobe structures. Numerical simula-
tions indicate that the observed gamma ray energy release
along quasar jets is four orders of magnitude more energetic
than the Blandford-Znajek mechanism predicts. Issues that
are difficult to reconcile with this model are the variability of
jet dispersion angles, the finite quasar lifetime and the mul-
tiplicity of red-shifts in the very metallic absorption spectra.
Any viable alternative model must simultaneously cater for
all features.

Speculation concerning the fundamental processes gov-
erning quasars invariably involves discussion of compact
massive central bodies, the consensus being that these are
rotating spheroidal BHs of mass 106–109M⊙. Profiles of stel-
lar orbital velocities within AGN haloes lend weight to the
premise that massive objects reside at the galactic nuclei. In-
active galactic nuclei (IGN) have yielded comparable veloc-
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2 R. J. Spivey

ity profiles, suggesting that the masses of AGN and IGN are
similar, if not identical. The vastly differing activity levels
could signify an inherent defect with current AGN models.
Little theoretical progress seems to have been made over
past decades towards a full explanation for these exceed-
ingly energetic phenomena. Closer inspection and revision
of existing theories may be necessary to attain a consistent
understanding of quasars and AGN. The crucial test of any
theory is the correspondence between predictions and obser-
vations, it is argued that existing models are struggling in
this respect. The purpose of this discussion is to advocate a
new model and describe how, with relatively minor theoret-
ical embellishments, compelling explanations for AGN and
anisotropic gamma-ray bursts accompanying core-collapse
supernovae can be developed. Possible mechanisms respon-
sible for originating, accelerating and collimating jets are
then discussed.

The well known black hole uniqueness theorems rest on
the classical theory of general relativity. It is thought that
any non-distorted and asymptotically flat black hole space-
time can be represented by the Kerr-Newman set of solu-
tions. But, while an ultimate theory remains elusive, one
cannot be entirely sure of the validity of the uniqueness the-
orems. Hence, it is important to explore possibilities beyond
those anticipated by purely classical calculations. Small de-
partures from classical physics, e.g. of quantum mechanical
origin, might lead to profound macroscopic changes, even
to the extent that the topology of black hole horizons can
be altered. Similarities between a rotating toroidal black
hole (TBH) at the galactic centre accreting matter from its
surroundings will be compared with observational evidence
from quasars, Seyferts, BL Lacertae and blazars, which have
long been suspected to be manifestations of the same under-
lying astrophysical phenomena. Attention will be paid to the
formation of such a TBH, its long-term stability in our uni-
verse, jet production and its evolution with time. The pos-
sibility is examined that quasars may have been present at
some stage of almost every galaxy’s development in the early
universe. A diagram encapsulating the life-cycles of toroidal
BHs, in qualitative agreement with those of quasars is finally
presented.

2 ROTATING TOROIDAL BLACK HOLES

AND THEIR FORMATION

It is proposed that the central component of the quasar
mechanism is a rapidly rotating black hole with a toroidal
event horizon. First, the possible embryonics of formation
are addressed. The constituent stars of most observable
galaxies are concentrated in the plane of galactic rotation.
Direct observations of the cosmic microwave background by
the COBE satellite indicates that matter was very evenly
distributed throughout the cosmos in earlier times. There-
after, on the scale of inter-galactic distances, matter must
have collapsed under the action of gravity, triggering the
emergence of protogalaxies composed of low-density hydro-
gen and helium gas. Because most galaxies are observed to
rotate, these protogalaxies would generally have possessed
angular momentum.

Protogalactic gas clouds then draw towards the plane of
rotation. Molecules have random velocities but collisions are

relatively infrequent owing to low particle densities. Those
with small velocities tend to accumulate at the galactic cen-
tre due to net gravitational attraction. However, these parti-
cles gain kinetic energy as they proceed towards the centre,
preventing the majority from occupying orbits confined to
the centremost regions of the galaxy. Instead they tend to
cluster in elliptical orbits of larger radii resulting in a rel-
ative underabundance of particles at the core, see Fig. 1,
curve labelled t = 1. For a given instant in time, the den-
sity within the galactic plane is at a local minimum at the
centre, increases with radius to a maximum and thereafter
tapers off. As time progresses, the gas distribution becomes
more pronounced and collisions between molecules more fre-
quent. The evolution of the distribution in this scenario is
qualitatively depicted by the series of gas density curves in
Fig. 1. The curve labelled t = 4 represents what may be
identified as a toroidal gas cloud. This ultra-low metallic-
ity toroidal proto-star continues to condense as more gas
molecules amass until the density and pressure are sufficient
for nuclear fusion. The toroidal stars of this model, Fig. 2(a),
will exhaust their nuclear fuel exceedingly rapidly as regions
suitable for fusion occupy a greater volumetric fraction of
toroidal stars than of spherodial stars.

By comparison with the upper size and mass limits for
spheroidal neutron stars, an upper limit can be estimated
for the minor radius R2 of a neutron torus above which col-

lapse to a TBH will result†. Simplifying assumptions are
employed. First, the density of neutron degenerate material
is assumed to remain constant and independent of pressure
as for an incompressible fluid. Hydrostatic equilibrium is
reached whereby the pressure of the fluid counteracts gravi-
tational compression at all locations. Newtonian approxima-
tions will be used to derive the surface gravity. The torus is
assumed to have a major radius much larger than the minor
radius, R1 ≫ R2, so that an infinitely long cylinder approxi-
mation is valid. Rotation is neglected. The gravitational field
within a sphere of constant density tails off linearly from the
surface to the centre, even according to general relativity. It
is useful to confirm that gravity within an infinitely long
solid cylinder of constant mass density is linearly related to
the radial distance from the axis according to a Newtonian
analysis.

For points external to spherically symmetric objects,
the gravity is known to be equivalent to that of a point
particle of equal total mass located at the centre of sym-
metry, regardless of any radial density variations. Similarly,
the external gravity of an infinitely long cylindrically sym-
metric mass is equivalent to that of a line mass of infinite
length located on the axis. To prove this, assign an outer
radius to the cylinder of RT, a longitudinal coordinate x
along the cylinder’s length and angular coordinate ϑ. The
gravitational field strength at some radius a < RT inside
the cylinder with longitudinal coordinate x = 0 and angu-
lar coordinate ϑ = 0 is sought. This location is external to
a cylinder of radius a and internal to a cylindrical shell of

† At the time of publication, this TBH formation route seemed to
me the most likely, avoiding the need for an SBH→TBH transi-
tion. Since then, I am of the opinion that the transition can occur
in either direction and that the toroidal progenitor is merely an
interesting possibility, not an essential ingredient of the model.
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Quasars: a toroidal black hole interpretation 3

Figure 1. Evolution of a rotating, initially collisionless dust cloud. Axial densities decrease with time since these regions can only
accommodate particles with both minimum kinetic and gravitational potential energies. Otherwise, the particles are drawn to the
equatorial plane and a toroidal structure inevitably develops. Dissipative processes diminish the ellipticity of orbital trajectories.

radial thickness b− a. Because Newtonian gravity obeys the
principle of superposition it is first demonstrated that the
gravitational field vanishes at all points located within an
infinitesimally thin and infinitely long cylindrical shell with
constant mass per unit area σ. Then, by integrating the grav-
itational contribution of internal cylindrical shells, gravity
inside an infinite homogeneous cylinder is observed to vary
linearly with radius, as is the familiar variation within ho-
mogeneous spheres.

Let the thin cylindrical shell have radius b > a. Integrat-
ing the radially directed gravitational field contributions of
elemental masses of constant radius b over the integration
variables x and ϑ, an expression is obtained of the form:

g(a)= 2Gσ

∫ π

0

∫ +∞

−∞

b(a− b cosϑ)

(a2 + b2 − 2ab cos ϑ+ x2)3/2
dx dϑ (1)

Integrating with respect to x gives:

g(a) = 2Gσ

[

x√
x2 + a2 − 2ab cos ϑ+ b2

]+∞

−∞

×
∫ π

0

(

ab− b2 cosϑ

a2 − 2ab cos ϑ+ b2

)

dϑ

thus, g(a) = 4Gσ

∫ π

0

ab− b2 cos ϑ

a2 − 2ab cosϑ+ b2
dϑ (2)

Splitting the integral in two, integrating with respect to
ϑ and recalling that b > a yields:

g(a) = 4πGσab

(

1

|b2 − a2| −
1

b2 − a2

)

= 0 (3)

It is therefore possible to ignore the gravitational con-
tribution of cylindrical shells with radii larger than a and
consider only the internal cylinder of radius a. When the
previous integral is recalculated for the case where a > b it
is found that:

g(a) =
4πGσb

a
(4)

To transform to a volumetric calculation, σ is replaced
by a three-dimensional mass density ρ and g is summed over
cylindrical shells from b = 0 to b = RT to find the surface

gravity of a torus in an infinite cylinder approximation:

gT =

∫ RT

0

4πGρb

RT

db = 2πGρRT (5)

which also shows that the gravity within an infinite cylinder
varies linearly with radius. Mass density ρ is assigned to
both the toroidal and spherical neutron stars. The radius
of the neutron sphere is R S and the minor radius of the
neutron torus RT. For a sphere, surface gravity g S can be
immediately calculated:

g S =
GMsphere

R2
S

=
4π GρR S

3
(6)

By calculating the pressure at the centre of the sphere
(P SC) and torus (PTC), then equating the two values, it will
be possible to compare the limiting radii at which further
gravitational collapse takes place. The surface pressures are
assumed to be zero and integration is performed over in-
finitesimally thin (spherical or cylindrical) shells of matter.
The pressure difference between the inner and outer surface
of a shell is given by the weight of the shell divided by the
area of the inner shell surface. Noting that the weight of the
shell depends on the local value of gravity, which is constant
throughout the shell and a linear function of radius from
zero at the centre to g S or gT at the surface, one can write:

P SC =
ρg S

R S

∫ R S

0

r dr =
ρg SR S

2
=

2πGρ2R2
S

3
(7)

PTC =
ρgT

RT

∫ RT

0

r dr =
ρgTRT

2
= πGρ2R2

T (8)

Equating P SC and PTC allows the determination of an
upper limit for the minor radius of a neutron torus in terms
of the maximum neutron sphere radius. Note that this result
is independent of the density of neutron star matter and that
the reliability of the result is improved by the balancing of
the Newtonian approximations:

RTmax =

√

2

3
×R Smax ≈ 8.5 km (9)

As might be expected, the minor radius of an infinitely
long neutron cylinder must be smaller than the maximum
spherical radius. In circumstances where the infinite cylinder
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approximation is invalid, the minor radius will be further
constrained. If general relativity were to be used then the
pressure gradient for a spherical star would be given by the
standard equation describing hydrostatic equilibrium:

dP

dr
= −G (ρ+ P/c2)[m(r) + 4πr3P/c2]

r[r − 2Gm(r)/c2]
(10)

Here P is the pressure at some radius r and m(r) is the
mass enclosed by the 2-sphere defined by r, whose internal
density may vary with radius according to a chosen equation
of state. General relativity requires larger neutron degener-
acy pressures if gravity is to be resisted, but the estimate of
(9) is adequate for the present discussion.

Confining the discussion to those toroidal stars whose
gravitational implosion directly results in a TBH rather than
intermediate white dwarf or neutron density phases, the pre-
collapse seed star is assumed to be incompressible and of
solar density ∼ 1400 kgm−3. For the purposes of approxi-
mation, the surface areas of extremal Kerr BH event hori-
zons are equated with the surface areas of TBHs with equal
mass, alternatively this may be viewed as equating the en-
tropy of the BHs. The TBH is assumed to have an angular
momentum equal to the extremal Kerr BH of equal mass.
In addition, the TBH geometry will be taken to be that of
an Euclidean torus parameterised by the major and minor
radii R1 and R2 respectively. This crude model permits the
preparation of order of magnitude estimates.

An extremally rotating Kerr BH has r+ = m so its area
is A = 4πr2+ = 4πm2. The surface area of an Euclidean
torus is A = 4π2R1R2 so, to a good approximation, the
rotating TBH mass is related to the TBH area by equat-
ing these two expressions for area and, after restoring the
natural constants (r+ = Gm/c2), it is found:

MTBH ≈ c2

G

√
πR1R2 (11)

Now consider a (low density) toroidal star (TS) of Eu-
clidean geometry whose major radius is R1 as before, but
with a minor radius R3. Evidently R3 > R2 otherwise the
TS is a TBH and R3 < R1 ensures the star is toroidal. The
TS undergoes gravitational collapse once its nuclear fuel is
exhausted and the resulting TBH is assumed to have the
same major radius R1 as the TS. Since the volume of the TS
is VTS = 2πR1R

2
3, and the TS is composed of constant den-

sity material ρ ∼ 1400 kgm−3 then the mass of the toroidal
star will be MTS = 2πρR1R

2
3. Following a supernova (SN)

implosion of the star, typically most of the mass will have
been ejected. A parameter η represents the fraction of the
original TS mass remaining in the TBH after the SN. The
remaining mass is identified with the mass of the resultant
TBH so that:

c2

G

√

R2

4πR1

≈ ρ ηR2
3 (12)

Having already determined the maximum minor radius
of a neutron torus in (9) this implies:

R1 > R2 >∼ 8.5 km (13)

Taking the limit as R3 → R1 with R3 < R1 in (11) and
using the relation MTBH = ηMTS with η = 0.1 (90% mass
ejection) gives a limit for TBH formation:

R5
1

R2

>
c4

4πρ2η2G2
≈ 7.4× 1048 m4 (14)

Allowing R2 → 8.5 km with this condition gives a lower
bound for R1:

R1 >∼ 36× 109 m (15)

If the TS grows too large and too massive, then it will
become a TBH without an implosion or electron/neutron
degeneracy supported phases. Since the area of the TS is
larger than the area of a TBH of the same mass, then R3 >
R2 because R1 is common to both. Consideration of (12) in
the case where R3 → R2 then leads to:

R1R
3
2 <

c4

4πρ2η2G2
≈ 7.4 × 1048 m4 (16)

The SN is assumed to shed 90% of the original star’s
mass during the implosion (this assumption is the least reli-
able and easily dominates the combined errors of the remain-
ing assumptions). In special cases where R2 approaches R1

and the inequalities hold then almost no mass is lost because
the star does not collapse much before the event horizon en-
gulfs it. Since it has been assumed that the major radius is
unchanged during collapse, conservation of angular momen-
tum dictates that the angular velocity of the resulting BH
will match that of the seed star. Hence, less mass ejection is
anticipated than in more familiar SN events wherein a star
collapses to form a spheroidal BH with very high angular
velocity. For a given R2/R1 ratio, the permissible range of
toroidal star masses which can gravitationally collapse to
form a TBH range is typically quite broad (Fig. 9). This
issue is returned to later.

These massive toroidal stars would have rapidly ex-
hausted their nuclear fuel. Regions suitable for fusion re-
actions occupy a much larger proportion of the total stellar
volume in toroidal stars than in spherical stars. The end
result would be a supernova-like implosion, most likely the
first SN event of its host galaxy, presumably localised to one
portion of the torus initially, Fig. 2(b). Because the implo-
sion is limited by the speed of light, it could take several
hours for the implosion to propagate around the torus in
both directions, Fig. 2(c), until the implosion fronts meet
at the opposite end of the torus. During the implosion a
thin tubular event horizon expands along the torus, eventu-
ally encountering itself and sealing to provide a stable TBH,
Fig. 2(d). The illustrations of Fig. 2 are not based upon pre-
cise physical calculations, they are merely intended show the
progression of the gravitational implosion around the torus.

The mass of the toroidal star is such that if as much as
90% of its mass is outwardly expelled during the SN implo-
sion, there will still remain enough mass to construct what
must inevitably become a BH rather than a neutron star
remnant. Suppose that much more of the mass is ejected
during the SN, perhaps 99%, then what may remain could
conceivably be a toroidal white dwarf or toroidal neutron
star. In either case, turbulence and dissipative processes
are unlikely to leave these delicate structures unchanged. If
macroscopic axisymmetry is retained, e.g. through electro-
magnetic confinement of the torus, then after a brief period
the torus will evolve to a smaller major radius. As this oc-
curs, an increase in either its minor radius, its density or,
more likely both ensues. Therefore, toroidal white dwarves
could become toroidal neutron stars and toroidal neutron
stars could become toroidal black holes. Toroidal neutron
stars of masses ∼ 106M⊙ are precluded as serious AGN

c© 2000 RAS, MNRAS 316, 856-874



Quasars: a toroidal black hole interpretation 5

Figure 2. Gravitational collapse of a toroidal star to a TBH. Collapse initially localised to one region of the torus (b) propagates
bi-directionally around the torus until implosion fronts meet and the TBH topology is established.

candidates by their limited lifespan, slender geometry and
inability to endure sustained accretion. Smith and Mann
(1997) have recently investigated gravitational collapse as a
TBH formation mechanism starting with collisionless parti-
cles of random velocities but zero net angular momentum.

Quasar observations yield spectra with very strong
metallic absorption lines. The population II stars of the
galactic centre would mainly consist of Hydrogen and He-
lium, which has previously troubled spheroidal BH quasar
models. Because SNe are efficient at generating heavy ele-
ments, the TBH creation SN would have scattered a substan-
tial amount of metallic elements into the ambient galactic
environment, imparting its signature on the radiation spec-
trum of the central engine.

3 STABILITY OF ROTATING TOROIDAL

BLACK HOLES

For some time, following the work of Hawking (1972) and
Hawking & Ellis (1973), it was thought that TBHs were un-
stable, albeit marginally. This somewhat contra-intuitive re-
sult assumed that Einstein’s cosmological constant (Λ) was
zero. Numerical computations of collisionless particles re-
sulting in a transient toroidal event horizon (terminating in a
sub-extremal Kerr BH) and assuming Λ = 0 were performed

by Abrahams et al (1994), Hughes et al (1994) and Shapiro,
Teukolsky & Winicour (1995). These results were consistent
with the topological censorship theorem of Friedman, Schle-
ich & Witt (1993) which implies that a light ray cannot
pass through the central toroidal aperture before the topol-
ogy becomes spherical. More recently, papers by Huang &
Liang (1995), Aminneborg et al (1996), Mann (1997), Vanzo
(1997) and Brill (1997) have provided mathematical descrip-
tions of TBHs within the framework of general relativity.
These equations assume that the cosmological constant is
negatively valued to admit stability for the TBH and is lit-
erally constant throughout the spacetime described, which
has an anti-de Sitter (AdS) background. The Vanzo paper
claims that a TBH can exist in a virtually flat spacetime
because the TBH size is determined by the mass and con-
formal class of the torus, not by the cosmological constant.
Rotating charged black (cosmic) strings have been described
by Lemos & Zanchin (1996). A spacetime metric for a rotat-
ing, uncharged TBH presented by Klemm, Moretti & Vanzo
(1998), is hereafter referred to as the KMV metric. This
metric is not unique, but it is the first generalisation to ad-
mit rotation of TBHs. Holst & Peldan (1997) showed that
rotating Banados-Teitelboim-Zanelli (BTZ) BHs cannot be
described in terms of a 3+1 split of spacetime, instead space-
times of non-constant curvature are required.

c© 2000 RAS, MNRAS 316, 856-874
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Physical measurements to date have been unable to es-
tablish conclusively whether Λ is positive or negative. The
accelerating cosmological recession of distant SNe favours a
positive value, though whether this recession is attributable
to a cosmological constant is the subject of continuing de-
bate. Arguments against TBH stability have assumed that in
our universe, the constant is precisely zero everywhere. The
weak energy condition is assumed to be satisfied, although
it is known to be violated in certain situations e.g. Casimir
effect and Hawking radiation. Topological BHs in anti de-
Sitter spacetimes are now known not to conflict with the
Principle of Topological censorship, for a recent discussion,
see Galloway et al (1999). Intuitively, rotating TBHs are not
dissimilar to Kerr BHs in that both contain ring singulari-
ties whose radii are determined by the angular momentum
assuming constant BH mass. One extra parameter is nec-
essary to characterise a stationary TBH in addition to the
mass, angular momentum and charge of the Kerr-Newman
metric. This parameter determines the exact geometry of
the torus and can be expressed as the ratio of the minor
and major radii R2/R1 (as used here) or the ratio akin to a
Teichmüller parameter presented by the KMV paper. Sta-
tionarity is preserved only when this parameter achieves a
balance with the TBH mass and angular momentum, and
to a lesser degree the charge.

It was demonstrated by Gannon (1976) that for non-
stationary BHs in asymptotically flat spacetimes, the topol-
ogy of the event horizon must be either spherical or toroidal.
A rotating TBH located at the centre of a galaxy sur-
rounded by accreting matter is manifestly non-stationary.
The stationary BH metrics containing physical singularities
are acutely idealised, the Kerr metric contains a ring singu-
larity surrounded by vacuum i.e. a universe devoid of other
matter. This is a gross simplification of what would be found
in nature. Inside the inner event horizon r−, particles are not
compelled to collapse towards the singularity, but are free
to explore all radii 0 ≤ r ≤ r−. Suppose a Kerr BH forms
by the collapse of a non-rotating neutron star. The matter
at the surface of the neutron star can reach the singularity
in a finite proper time. On the other hand, viewed from in-
finity, this matter never crosses the event horizon, less still
reaches the singularity. According to distant observers, the
matter is frozen fractionally above the event horizon. Just
as infalling matter experiences the crossing of outer then in-
ner event horizons in finite time, it also witnesses the end
of the external universe before nearing the singularity. The
only possible answer to the question: “when does the BH be-
come stationary to distant observers?” is never. Indeed, one
might venture that truly stationary spacetimes are forbid-
den. It is dangerous to be guided by predictions about BH
stability which rely on stationarity as one of the underlying
assumptions.

Perhaps there is some deeper significance underlying
the unobtainability of stationarity. Consider a closed uni-
verse approaching a big crunch and contracting rapidly in
all directions. The surface defining the outer reaches of this
universe could be considered as the event horizon of a BH
beyond which spacetime does not exist in the usual sense.
This is a BH that could conceivably approach stationarity
in a short and finite time as measured by the clocks of all
internal observers, there being no external observers. A sin-
gularity develops which is accessible to all the infalling mat-

ter. The outermost layers of the imploding universe catch
up with the innermost layers at the Cauchy horizon, the
surface of infinite blue shift. A vacuum develops in the re-
gion surrounding the singularity as it swiftly becomes devoid
of matter and stationarity is achieved. The singularity now
contains the entire mass of the pre-collapse universe and the
Pauli exclusion principle does not participate in the physics
of the singularity. What grounds are there for discarding
the Pauli exclusion principle? This principle has successfully
predicted the existence of white dwarfs and neutron stars.
Could quark degeneracy arise? What might string theory
predict? There are obvious similarities between the Pauli
exclusion principle and the premise that stationary BHs are
forbidden. If it is true that BHs truly abhor stationarity then
presumably re-expansion would be the only option.

Suppose that a TBH with a substantial central aperture
is rotating in asymptotically flat space with a near maximal
angular momentum (event horizon velocity approaching the
speed of light). In principle, there is no reason why the rota-
tional energy of this TBH cannot be arbitrarily larger than
the TBH’s rest mass, whereas a Kerr BH can only hold at
most 29% of its total energy in rotational form, the remain-
der being the irreducible mass. According to topological cen-
sorship, the TBH must become spheroidal before a light ray
can traverse the aperture. The fate of the excess rotational
energy is something of a conundrum. Is the excess energy
hastily expelled by some undiscovered mechanism? Is topo-
logical censorship flawed? Would the TBH break up into
multiple co-rotating spheroidal BHs? Does the Kerr BH ro-
tate above the extremal limit, and if so is the singularity
revealed? These problems can be circumvented for now by
assuming a negative Λ.

It seems somewhat coincidental that the cosmological
constant is so nearly zero and not very much larger in value,
on purely theoretical grounds a value 120 orders of magni-
tude greater than observational limits might have been ex-
pected. One plausible suggestion was proposed by Coleman
(1988). According to the author, macroscopic cancellation
mechanisms operate on the zero point energies under nor-
mal circumstances and these result in a zero expectation for
Λ. The situation is, however, complicated in the presence of
intense gravitational fields generated by BHs, particularly
in the immediate vicinity of the singularities residing within
the event horizons. Under such conditions, the cancellation
of zero point energies operates imperfectly and gives rise
to what may be considered a localised but substantial cos-
mological ‘constant’. By this means, TBH stability could
be ensured within a universe where elsewhere Λ is small.
It was also suspected that zero point energy might play a
part in the physics of curved spacetimes because of imper-
fect cancellations complicating the assumptions underlying
the quantum mechanical technique of renormalization (Mis-
ner, Thorne & Wheeler 1973). It comes as little surprise
that quantum effects may play a prominent role when the
spacetime of classical general relativity becomes singular,
the stability of the TBH structure could prove to be the
only direct evidence of this.

The KMV metric has axial symmetry and the hori-
zons are Riemannian surfaces of constant gravity that obey
the familiar BH entropy-area laws. Utilising the membrane
paradigm approach (Thorne, Price & MacDonald 1986) sim-
plifies the consideration of the physics of these BHs out-
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Quasars: a toroidal black hole interpretation 7

side the event horizon. The fact that these objects are ther-
modynamically well behaved, whilst interesting, is of little
relevance to the present discussion. Parallels between ro-
tating TBH solutions and the Kerr solutions for spinning
spheroidal BHs may be drawn, for instance both have er-
goregions external to their event horizons and the maximum
angular momentum of each is bounded for a given mass.
Conservation of mass and angular momentum is known to
be satisfied. A maximally rotating Kerr BH has a static limit
extending to 2m, double the radius of the outer event hori-
zon. The equator of the static limit surface circles with the
speed of light at extremality. The ergoregion occupies the
region between the static limit and the event horizon within
which everything is compelled to co-rotate with the BH due
to the spacelike character of the time coordinate. Similarly,
the maximal KMV metric determines the ratio rs/r+ to be
1.59. Orbits within 300% of the extremal Kerr event horizon
radius are unstable and matter (the accretion disk) tends to
be drawn towards the BH. For a maximally rotating BH, en-
tering the ergoregion becomes impossible because incoming
particles would have to travel ‘faster’ than light and possess
an infinite amount of energy. Similarly, if the BH is rotat-
ing slightly below this rate then only a tiny fraction of the
external particles will penetrate the ergoregion, those with
very high kinetic energies.

An ergoregion enshrouds the toroidal event horizon of
the KMV metric. Fig. 3 depicts a cross-sectional view of a
rotating TBH. The event horizon will be enshrouded by an
ergoregion which, depending upon the precise geometry of
the TBH, might entirely seal the central aperture. Beyond
the ergoregion lies what is sometimes referred to as a zone of
unstable orbits within which particles are unable to establish
repeating orbital patterns by following geodesic pathways.
The ergoregion does not intersect the event horizon at any
point, as it does at the poles of a Kerr BH. Particles can-
not penetrate the ergoregion of a maximally rotating TBH,
whichever trajectory is attempted. The maximal rotation
rate will not be achieved in practice because the BH is able
to reduce its rotation rate by several methods which are rele-
vant to jet formation and several theoretical reasons such as
the fact that the internal singularity would become naked,
even as viewed from infinity.

4 METRIC OF ROTATING TOROIDAL

BLACK HOLE

The KMV metric of an uncharged rotating TBH in asymp-
totically anti de-Sitter (AdS) spacetime is tentatively for-
warded as a model for the naturally occurring TBH. The
primary reservations concerning the physical applicability
of the topological BH metrics in AdS gravity are that Λ is
assumed to be independent of location and, contrary to the
most reliable observations, negative in value. Given the un-
certainty regarding the role of quantum mechanics in BH
physics, these assumptions may be invalid. The metric de-
scribes a vacuum solution of Einstein’s equation which has
reached equilibrium after an infinite coordinate time has
elapsed. It possesses a ring singularity, but no provision for
accreting matter has been made. Indeed, a massive accre-
tion disk may act as a stabilising influence on a TBH within
an asymptotically flat spacetime (further discussed in ap-

pendix B). A negative cosmological constant may be thought
of as contributing a cosmological attraction. In its absence,
the combination of a host galaxy’s matter and the nearby
massive accretion disk surrounding the outer periphery of a
TBH located within a galactic nucleus may provide a natu-
ral substitute for the stabilising negative Λ used in the AdS
metrics.

With these considerations in mind, attention is focused
on the KMV metric which, for convenience, is now recalled:

ds2 = −N2dt2 +
ρ2

∆r
dr2 +

ρ2

∆P
dP 2 +

Σ2

ρ2
(dφ− ω dt)2 (17)

where the following relations apply:

ρ2 = r2 + a2P 2 (18)

Σ2 = r4∆P − a2P 4∆r (19)

∆r = a2 − 2mr + r4/l2 (20)

∆P = 1 +
a2P 4

l2
(21)

N2 =
ρ2∆P∆r

Σ2
(22)

ω =
∆rP

2 + r2∆P

Σ2
a (23)

Here, the angular velocity is ω, the equatorial angle is
φ, P is another angular variable with some period T , r is
a pseudo-radial coordinate, a is the angular momentum per
unit mass and l is defined as

√

−3/Λ. The ratio of T to 2π
is analogous to the Teichmüller parameter describing a flat
torus in Riemannian geometry. TBH mass by the ADM def-
inition is M = mT/2π and angular momentum J = Ma.
The coordinate r, as in the Boyer-Lindquist form of the
Kerr metric, is only a true radial coordinate as r → ∞ with
r = 0 the location of a ring singularity not corresponding
to zero radius. Unlike the Kerr BH, as r → −∞ within the
equatorial plane, this point is outside the event horizon. It
would be preferable to introduce a coordinate transforma-
tion whereby r′ = f(r) such that f(∞) = ∞, f(0) = a
(say) and f(−∞) = 0 and select f(r) such that r′ is an
affine parameter, but this is beyond the scope of the present
discussion.

In order for the metric to describe a torus, P is a peri-
odic variable with period T and is covered by four patches
P = λ sinϑ at ϑ = 0 and ϑ = π, and P = λ cos ϑ at ϑ = π/2
and ϑ = 3π/2 where λ is a constant such that T = 2πλ.
Between these points the behaviour is defined by cosϑ be-
ing some C∞ function (infinitely differentiable) of sinϑ and
vice versa.

Upon inspection of the metric, (17), it can be seen that
∆r in (20) becomes zero at the event horizon. Inner and
outer event horizons exist as real and positive roots of the
quartic equation with real coefficients: r4−2ml2r+a2l2 = 0
along with two other physically less meaningful complex con-
jugate roots. For the extremally rotating case, a = ac =√
3 × 3

√

lm2/4 and these two roots coincide. It is straight-

forward to verify that the real roots are r± = 3
√

ml2/2.
The ergoregion is defined as the region between the

outer event horizon and the static limit hypersurface at
which the metric coefficient of dt2 vanishes altogether, i.e.
g tt = ω2Σ2/ρ2 −N2 which is solved for r by another quar-
tic r4 − 2ml2r − a4P 4 = 0. This polynomial has one real
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8 R. J. Spivey

Figure 3.Meridional section of a rotating TBH producing jets when matter accretes from a surrounding disk illustrating the approximate
form of the ergoregion and limiting boundary for stable orbits.

and positive root, one real and negative root and two com-
plex conjugate roots. The real positive root has a minimum
value of

3
√
ml2 for P = 0 which is larger than r+ by a fac-

tor of 1.59. The static limit hypersurface is well separated
from the event horizon and, unlike the poles of the Kerr sit-
uation, these surfaces are nowhere contiguous. Therefore, a
substantial ergoregion is observed.

Examining the equatorial plane by setting dP = P = 0
the metric reduces to:

ds2 = −
(

r2

l2
− 2m

r

)

dt2 +

(

r2

l2
− 2m

r
+
a2

r2

)−1

dr2 (24)

In order to determine the trajectories of null geodesics
within this hypersurface use can be made of the Euler-
Lagrange equations with K = ds2/2 :

∂K

∂xa
− d

du

(

∂K

∂ẋa

)

= 0 (25)

the overdot denoting differentiation with respect to some
affine parameter u. The equatorial metric (24) may be par-
tial differentiated with respect to t and φ respectively then
integrated with respect to u to give:

(

2m

r
− r2

l2

)

ṫ− aφ̇ = α (26)

r2φ̇− aṫ = β (27)

Where α and β are constants of integration. A third con-
stant γ = α/β can be defined and used to relate both equa-
tions:

(

2m

r
− r2

l2

)

ṫ− aφ̇ = γ(r2φ̇− aṫ) (28)

which upon rearrangement reads:

dφ

dt
=
φ̇

ṫ
=

2ml2 − r3 + γarl2

arl2 + γl2r3
(29)

Next, boundary conditions are imposed by considering
the extremal case a = ac for which the angular velocity at

the event horizon r+ is, using the expressions for ac and r+
and noting that ω = a/r2 in the equatorial plane.

dφ

dt

∣

∣

∣

r=r+

= ΩH =
ac
r2+

=

√
3

l
=

2ml2 − r3+ + γar+l
2

ar+l2 + γl2r3+
(30)

Some algebra reveals that the constant of proportional-
ity γ obeys the relations:

γ =
3 3
√
2ml − 2

√
3a

3
√
ml2√

3 3
√
2ml2 + 2al

3
√
ml2

=
3r2+ −

√
3al√

3lr2+ + al2
(31)

So now the rate of change of φ with respect to coordi-
nate time t is fully determined. Following straight from the
metric and the condition that ds = 0 for null geodesics:
(

2m

r
− r2

l2

)

ṫ2+

(

r2

l2
− 2m

r
+
a2

r2

)−1

ṙ2+r2φ̇2−2 a φ̇ ṫ = 0 (32)

Dividing throughout by (dt/du)2 eliminates the affine
variable allowing dr/dt to be found using the previously de-
rived expression for dφ/dt:

dr

dt
=

√

[

2a
dφ

dt
− r2

dφ

dt

2

+
r2

l2
− 2m

r

][

r2

l2
− 2m

r
− a2

r2

]

(33)

It would be possible to continue this analysis by inte-
grating with respect to t for each variable r and φ, resulting
in cumbersome mathematical terms. It is sufficient for now
to say that these equations allow the null congruences of
the equatorial plane to be readily determined by numerical
methods.

5 ROTATING TOROIDAL BLACK HOLE IN

ASYMPTOTICALLY FLAT SPACE

In order to visualise a TBH in asymptotically flat space and
its effect on local spacetime, a method which approximates
the time dilation at locations in space surrounding arbitrar-
ily complex mass configurations is now introduced. First,
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Quasars: a toroidal black hole interpretation 9

the time dilation is derived for the Schwarzschild spacetime
with metric:

ds2=

(

1− 2m

r

)

dt2−
(

1− 2m

r

)−1

dr2−r2(dϑ2+ sin2ϑdϑ2) (34)

The event horizon of this static spacetime occurs when
grr becomes infinite, or r+ = 2m in geometrical units. Con-
sider the time dilation of a stationary particle located at
some constant r, ϑ and φ. The metric interval ds can be in-
terpreted as the proper time of particles travelling on time-
like paths so that dτ = ds. The time dilation may be read
from the metric at once as:

dτ

dt
=

√

(

1− 2m

r

)

=

√

(

1− r+
r

)

=
√

ψ (35)

where ψ =

(

1− 2m

r

)

(36)

As r → ∞ notice that dτ/dt = 1 whilst dτ/dt decreases
towards zero as the event horizon is approached, as expected.
Now, the particle is allowed to undergo radial motion dr 6=
0, dϑ = dφ = 0. The metric is divided throughout by dt2 and
the particle’s radial velocity in local coordinates is given by
vp = dr/dτ . This yields a similar equation to the last but
with the introduction of a vp dependent term:

dτ

dt
=

ψ
√

ψ + v2p
(37)

For the Schwarzschild BH, the event horizon and sta-
tionary limit coincide at r = r+ and dτ/dt becomes zero
there. A radial velocity can affect the time dilation but can-
not alter the location of the hypersurface at which the time
dilation approaches zero. Conversely, in the Kerr case which
is now briefly addressed, dτ/dt becomes zero for stationary
particles outside the event horizon on the stationary limit,
the outermost boundary of the ergosphere. Particles motion-
less with respect to distant observers will appear to freeze at
the static limit but particles in prograde orbits can both pen-
etrate and escape the ergosphere in a finite coordinate time.
For retrograde orbits, the time dilation approaches zero at
radii beyond the static limit so the location of the station-
ary limit is meaningful only for particles with zero coordi-
nate velocity. The ergosphere is a zone where some particles
are able to travel on spacelike trajectories — these trajecto-
ries becoming increasingly probable close to the outer event
horizon. Whereas negative energy states are only available
within the ergosphere of a Kerr BH, a charged Kerr-Newman
BH offers negative energy states beyond the static limit.

Returning to the Schwarzschild metric, situations where
the particle undergoes transverse (azimuthal) motion are
examined by setting dr = 0 and dϑ = 0. Noting that
vp = r2dφ/dτ this leads to:

dτ

dt
=

√

ψ

1 + v2p
(38)

The next task in this analysis is to derive approxima-
tions for the time dilation experienced by observers nearby
a moving point mass where the clock at infinity is motion-
less relative to the nearby observers. This cannot be read
directly from the Schwarzschild coordinates since the mass
of the singularity is stationary with respect to observers at
infinity. By taking the limit as m → 0 one obtains ψ → 1

and both the previous equations reduce to the time dilation
of special relativity when two objects are in relative motion.
These limits are used to introduce a contribution to the time
dilation equivalent to inducing a motion of the clocks at in-
finity. The situation then describes clocks at infinity mov-
ing with velocity vp, clocks of local observers moving with
velocity vp and a motionless point mass. Since all inertial
frames are equivalent, one can think of this as stationary
clocks and a moving mass with velocity vp in the opposite
direction. The various possibilities are depicted in Fig. 4.
Condition 6 has been determined by taking the ratio of the
expression in condition 4 with the expression in condition
2. Likewise, condition 7 has been determined by taking the
ratio of the expression in condition 5 with the expression
in condition 3. By taking these ratios, Lorentzian boosts
are applied which remove the time dilation contributions of
expressions 4 and 5 which were purely due to the relative
motions of the clocks. What remains are motionless clocks
in the presence of a moving point mass.

The expressions in conditions 2 and 3 are identical im-
plying that time dilation between observers in the absence of
gravity is independent of the direction of motion. Conditions
2 and 3 are limiting cases of conditions 4 and 5 respectively
in the absence of matter. The parity between the expressions
of conditions 1 and 7 suggests that only the component of
the mass’s velocity towards the local clock (not the clock at
∞ since this is always unaffected by the mass) contributes
to the time dilation of the local clock relative to the clock at
infinity. Condition 6 can then be used to calculate the time
dilation precisely in more general circumstances providing
that vp is the velocity component towards the local clock.
Note also that there is no requirement for the clocks and the
mass to be aligned as they are in Fig. 4, the expressions pre-
sented are valid for all configurations owing to the perfect
spherical symmetry of the Schwarzschild geometry.

Suppose the Schwarzschild point singularity is subdi-
vided into N smaller but not necessarily equal masses, each
point mass being located at r = 0, the same spatial po-
sition as the parent singularity. In order to accurately re-
cover the time dilation of (35), one is obliged to perform
N summations of the ratios r+/r where r+ relates to the
Schwarzschild radius of the mass of each child singularity in
turn according to the equation r+ = 2mchild. This will be
generalised for the purposes of approximation such that the
point masses are not coincident but are located separately
in space. Thus the distance r will in general be different for
each point mass. Restoring natural constants, the following
equation is obtained:

dτ

dt
=

√

1− 2G

c2
×

∑

n

Mn

Rn
(39)

This may be thought of as a pseudo-principle of super-
position and these results may be used to approximate an
asymptotically flat spacetime containing a ring singularity.
Firstly, the discussion is confined to a momentarily station-
ary ring singularity i.e. one with zero angular velocity and
a radius R1 whose derivative with respect to time is mo-
mentarily zero. An expression for the time dilation relative
to observers at infinity experienced by a spatially fixed ob-
server due to the momentarily motionless ring singularity is
derived. The singularity is assigned a constant mass per unit
length b and radius a such that the total mass is 2πab. The
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10 R. J. Spivey

Figure 4. Relative time dilation in Schwarzschild gravity for local (2m < r < ∞) and remote (r → ∞) clocks under various limiting
circumstances. Time dilation for stationary clocks in the presence of a moving mass depend on the velocity and direction of the black
hole’s motion.

time dilation within the plane of the ring is first considered.
By symmetry, the only independent coordinate is the radius
r and the time dilation dτ/dt at that point is approximated
by:

dτ

dt
=

√

1− 2abG

c2

∫ 2π

0

dφ
√

r2 + a2 + 2ar cos φ
(40)

Setting ϕ = φ/2 the time dilation can be expressed in

terms of a complete elliptic integral of the first kind, K(k):

dτ

dt
=

√

1− 8abG

(a+ r)c2

∫ π/2

0

dϕ
√

1− k2 sin2 ϕ
(41)

or
dτ

dt
=

√

1− 8abG

(a+ r)c2
K(k) where k =

2
√
ar

a+ r
(42)

The point at the centre of the ring (r = 0) is a special
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Quasars: a toroidal black hole interpretation 11

case which is readily integrated to give:

dτ

dt
=

√

1− 4πbG

c2
(43)

In order to describe a TBH, the ring density b must be
smaller than c2/4πG. By writing (

√
a − √

r)2 ≥ 0 and ex-
panding it is found that k ≤ 1 in all cases of (42) satisfying
the requirements of the elliptic integral, k being the ratio
of the geometric and arithmetic means of the parameters r
and a. For the static case, the term within the square root
becomes zero at the event horizon. If rotation is allowed, the
time dilation will become infinite not at the event horizon
but at the static limit, the external boundary of the ergore-
gion where the invariant interval of motionless particles is
lightlike.

When the ring singularity rotates with constant angu-
lar velocity ω, the velocity of a point on the ring is taken
to be vr = aω. Consider the component of this velocity di-
rected towards the observer P situated at some radius r from
the centre of the ring and within the equatorial plane. This
component contributes to the time dilation experienced by
the observer according to the expression presented in condi-
tion 6 of Fig. 4. The terms within the square root causing
a deviation from parity of proper and coordinate time are
once more summed. The ring’s total mass 2πab as before.
Assuming the centre of mass to be located at the centre of
symmetry, the following estimate of the ring’s angular veloc-
ity shall be used: a2ω2 ≈ 2πbG so that the angular velocity
is ω ≈

√
2πbG/a. Recalling the expression for time dilation

of condition 6 and substituting ψ = 1− (2m/r) = 1− r+/r
then rewriting in such a way as to give a separate and inte-
grable deviation from unity within the square root gives:

dτ

dt
= ψ

√

1+v2p
ψ+v2p

=

√

1− r+
r

[

(1+2v2p)− r+
r
(1+v2p)

1 + v2p − (
r+
r
)

]

(44)

As r → r+, dτ/dt→ 0 which means only particles trav-
elling at the speed of light can remain on the horizon, as ex-
pected. As it stands, this formula allows the deviation from
unity within the square root to be summed for an arbitrar-
ily large number of point masses, regardless of the mass con-
tained by each. Simplification is possible if it is assumed that
all these point masses are infinitesimally small so that the
Schwarzschild radius of each is negligible compared to the
distance between each mass and the local clock where dτ/dt
is to be determined, r+ ≪ r. Implementing this simplifi-
cation and including the integration symbol to emphasise
the fact that the point masses should be vanishingly small
yields:

dτ

dt
=

√

1−
∫

r+
r

(

1 + 2v2p
1 + v2p

)

(45)

The time dilation relative to observers at spatial infin-
ity is now derived for points surrounding the rotating ring
singularity. These test points are assigned cylindrical coordi-
nates (r, φ, z), and are not confined to the equatorial plane.
By symmetry the φ coordinate is redundant. The result-
ing time dilation resembles the previously derived expression
containing an elliptic integral but with additional complex-
ity:

dτ

dt
=

√

1− 2ab

∫ 2π

0

I(φ)dφ (46)

substituting u = a2 + r2 + z2 the integrand reads:

I(φ)=
u+ 2ar cos φ+ 2a2r2ω2 sin2 φ√

u+2ar cosφ
(

u+2ar cos φ+a2r2ω2 sin2 φ
) (47)

Note that the time dilation at the centre of the ring
(r = 0, z = 0) is still given by (43) because the velocity of
each point mass is perpendicular to the line connecting the
point mass to the local observer and that this holds along
the entire axis of rotation. It would be possible, but more
complicated, to determine the approximate location of event
horizons using a similar method. One would need to trans-
form the local observers to those of a locally non rotating
frame (LNRF). This would be achieved in the equatorial
plane by relating the angular velocity of the ring to that of
the local observers. Starting with condition 6 of Fig. 4, one
would generalise to the case where the local clock and point
mass have separate (non-zero) velocities with respect to the
clock at spatial infinity by applying a Lorentzian boost to
the coordinate clock. Then, equivalents to the expression in
(43) and (45) would need to be found.

The time dilation can be computed numerically but
care is needed when selecting the ring’s angular velocity
ω otherwise the situation becomes unphysical with frame-
dragging velocities in excess of c. This formula was used
to determine the shape of the ergoregion in Fig. 3 when
viewed in cross section. Fig. 5 presents a 3-dimensional pro-
jection of the time dilation as viewed by observers located
at spatial infinity for the equatorial plane intersecting a ro-
tating TBH. This embedding diagram portrays local time
dilation (as viewed by distant observers) due to the pres-
ence of mass as the deviation from an otherwise flat plane
according to (47). The TBH drags local spacetime with it
in synchrony with the event horizon. Accordingly, inertial
test particles travelling within the equatorial plane along
initially radial geodesics from spatial infinity are compelled
to orbit the TBH until their angular velocity reaches that of
the event horizon. This occurs at the moment the horizon
is crossed. Colour is used to denote the angular velocity of
locally non-rotating observers as measured by distant ob-
servers, colours of longer wavelengths representing angular
velocities approaching that of the TBH. A section of the
outer funnel has not been plotted to provide visibility of
the TBH aperture region. The ergoregions have not been
identified here.

6 JET FORMATION FROM TOROIDAL

BLACK HOLES

The near-maximally rotating TBH undergoing accretion
provides an excellent mechanism for the formation of ultra-
relativistic (Lorentz factor ∼ 10) bi-directional jets as have
been observed in quasars. The purpose of this section is not
to explore the behaviour of the jets as they travel towards
the distant radio lobes, the magnetohydrodynamics of which
has been studied in great detail elsewhere, nor to analyse
the myriad of particle interactions capable of extracting ro-
tational energy from the TBH ergoregion. Rather, the essen-
tial differences between existing models and the accretion of
matter onto a rotating TBH shall be outlined. Supermassive
BHs have long been thought to reside at the heart of quasars
and active galactic nuclei. Though masses as large as 109M⊙
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12 R. J. Spivey

Figure 5. Embedding diagram for the simulated time dilation within the equatorial plane of a rotating TBH. A portion of the outer
funnel has been omitted revealing the central aperture. The rotation rate in equilibrium cannot be precisely estimated, but for any given
toroidal geometry, relativistic rotation acts to enhance the time dilation at all locations except the axis of rotation axis.

have been associated with these, a typical rotating galaxy
possesses ample angular momentum to spin up BHs of this
size to maximal rotation. An upper limit on rotational ve-
locity exists because the peak velocity of the event horizon
cannot exceed that of light. In practice, the maximum rota-
tion rate will not be reached, not least because the internal
singularity would be revealed. Transportation of angular mo-
mentum away from the TBH by jets imposes more practical
limitations. Hence the formation of jets, an intriguing fea-
ture of many AGN, is of paramount importance. Potential
mechanisms responsible for their origination are now pre-
sented within the framework of the TBH model.

A nascent galaxy may harbour a TBH whose spin rate
is increasing. Once the spin reaches a plateau after a short
delay (in cosmological terms), equilibrium is achieved and
the accretion process is balanced by the angular momen-
tum released by the TBH due to gravitational radiation,
the production of jets and growth through capture of mass
and angular momentum. Of these, the outflow of angular
momentum is typically dominated by jet generation pro-
cesses. This maintains a rapidly rotating TBH, but implies
that accreting matter rotates with greater angular velocity
than the spacetime near the TBH. Essentially, the inter-
action between this accreting mass and the enormous fly-

wheel of the rotating TBH constitutes the basis for jet en-
ergy release. Fig. 6 illustrates a rotating TBH surrounded
by an accretion disk. Since the TBH is able to shed any
excess angular momentum by several mechanisms, its an-
gular velocity is suppressed relative to the accretion disk
ωtbh < ωdisk. Apart from gradual mass accumulation, one
can picture the TBH as being largely unaffected during pe-
riods of sustained activity, acting somewhat like a catalyser
for the expulsion of angular momentum along the jet axis.
Jet formation can therefore progress for substantial periods
of time: 106 ∼ 109yrs.

Within the central aperture, spacetime is dragged in
concordance with TBH. The central aperture is a negative
gravitational potential well, a spacetime vortex containing
deeply negative energy states. Matter negotiating this cen-
tral aperture will be obliged to travel along geodesics which
appear to the external universe to be rotating. Particles ca-
pable of escaping to infinity require relativistic velocities
closely aligned to the axis of rotation. Matter is able to
travel in either direction along the rotational axis in order
to achieve this, and angular momentum is transported away
from the TBH equally by each jet. Of primary interest is a
TBH whose central aperture is sufficiently small to provide
powerful, collimated jets.
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Figure 6. The transport of angular momentum in AGN. Rotational energy is supplied by the accretion disk to the TBH which is
efficiently redistributed along axial jets by magneto-rotational mechanisms maintaining (i) the angular velocity differential between the
TBH and accretion disk and (ii) the net charge on the TBH.

Matter travelling through the aperture will undergo
gravitational slingshot and could be propelled outwards
along the jets, however the importance of this will be to
impart kinetic energy leading to frictional heating. Temper-
atures of at least several million degrees (and perhaps as
much as 1011◦K) will be realised in the aperture, transform-
ing the contained matter into a plasma emitting X-rays and
some gamma rays.

Ejection mechanisms such as the Penrose process (Pen-
rose 1969), superradiant scattering (photonic counterpart
of the Penrose process) and their analogues (e.g. due to
particle-particle collisions) could dominate in the formation
of jets. For convenience, the term Penrose process is used
loosely to refer to all variations. The Penrose process exploits
the existence of negative energy orbits inside the ergoregion
of a rotating BH, permitting the extraction of energy to in-
finity at the expense of the rotational/kinetic energy of the
BH. A particle travelling through the ergosphere might dis-
integrate into two particles, one of which plunges headlong
towards the event horizon whilst the other emerges from the
ergosphere and escapes to ‘infinity’, e.g. as part of a jet. En-
ergy is extracted if the emergent particle fragment has more
energy than the originally intact particle, with the captured
fragment carrying negative energy into the BH. The Penrose
process efficiency improves if the particles have relativistic
incident velocities, particularly those opposing the BH’s ro-
tation. A physical example of particle disintegration occurs
within a high energy plasma when neutral hydrogen atoms
are stripped of their electrons. More generally, ergoregional
particle-particle collisions in which angular momentum and
total energy are conserved may cause one of the resultant

particles to be ejected to infinity (Piran, Shaham & Katz
1975; Piran & Shaham 1977). Particles are always ejected
in a way that reduces the BH’s angular momentum and ro-
tational energy which increases the surface area of the event
horizon, in keeping with the entropy law. As has been de-
scribed by Wagh, Dhurandhar & Dadhich (1985) and Bhat,
Dhurandar & Dadhich (1985) the presence of an electro-
magnetic field and/or charged particles can dramatically in-
crease the efficiency of the Penrose process, easily to a level
where net rotational energy may be extracted from the BH.

The astrophysical significance of the Penrose process
has been traditionally questioned, partly because BHs of
spherical topology are not expected to retain significant elec-
trical charge. It is argued that tori exhibit a vital difference.
When a rotating torus accumulates charge, the circulating
current establishes a poloidal magnetic field. Lines of mag-
netic flux encircle the torus but nowhere intersect its surface.
Nearby the surface, flux lines are orthogonal to the current
flow and parallel to the surface itself. Sufficiently intense
magnetic fields constrain the motion of accreting plasma,
obliging its constituent particles to follow helical trajectories
which wind about lines of flux. Whereas charged spheroids
are rapidly neutralised by plasma guided directly towards
the surface by flux lines, neutralisation of charged tori is
strongly inhibited due to the absence of flux lines intersect-
ing the surface.

According to the membrane paradigm, one can imagine
the TBH’s (infinitesimally stretched) event horizon to be an
electrically conducting surface where electric fields incident
to this membrane are terminated by an appropriate surface
electric charge density. Also, the surface current will be such
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Figure 7. The magnetic field originated by a charged, rotating torus. The topology ensures that lines of magnetic flux never intersect the
surface - therefore individually charged particles of the accretion disk spiral along the flux into the central aperture without neutralising
the torus - in contrast, charged spheroids are easily neutralised since flux always terminates at the surface, typically in polar regions.

that the magnetic field parallel to the surface is terminated,
in this way there will be no parallel magnetic field inside the
event horizon. The effective surface resistivity will be of the
order of several hundred ohms. The accreting matter con-
tains neither magnetism nor net charge initially. The TBH
is, however, spinning and dragging local spacetime around
with it. The charged particles entering the ergoregions are
mainly electrons and protons. Low efficiency Penrose pro-
cesses will preferentially eject particles of larger charge/mass
ratios (the electrons) and a net positive circulating charge
will emerge hovering above the horizon. The toroidal mem-
brane rotates and drags these positive charges around with
it thus forming a circular electrical circuit. Current flowing
in the circuit gives rise to an axial magnetic field through
the central aperture, modulating the efficiency of particle
emissions via the Penrose process thereby reinforcing the
circulating charge and magnetic field. This magnetic field
also plays a role in collimating the jets as they are launched,
with charged particles spiralling along the magnetic field
lines generating synchrotron radiation. Similarly, the dipo-
lar magnetic field of the TBH channels free charged particles
from the outer accretion disk into the central aperture, spi-
ralling along the lines of magnetic flux.

The structure of the magnetic field encompassing a con-
ducting toroidal shell is shown in Fig. 7. Lines of flux are
illustrated which arise when a current circulates around the
toroidal shell. Because the aperture can become arbitrarily
small, if the total charge of the torus remains constant, the
flux density and hence magnetic field can become arbitrarily
large within this region. Computed plots of magnetic field
strength along the equatorial plane of the torus are given for
four separate toroidal geometries in Fig. 8(a). These have

been calculated using the usual Biot-Savart relations and
assume a constant and uniform surface current density J .
Analytically, the magnetic field strength perpendicular to
and within the equatorial plane at some displacement from
the axis a, making use of symmetry, is given by the double
integral:

B(a)=

∫ 2π

0

∫ 2π

0

µ0Jt(a cos φ− t cos 2φ)

4π(a2+t2+R2
2 sin

2ϑ−2at cos φ)3/2
dφdϑ (48)

where t = R1 +R2 cos ϑ (49)

The Biot-Savart law simplifies at the centre of a circular
current loop carrying a current I and it is straightforward
to verify that the field strength at that point is:

B(0) =
µ0I

2R1

(50)

Nearby the toroidal surface, Ampere’s circuital law (51)
states that the current enclosed by a closed path determines
the sum of the magnetic field along the same closed path so
the field strength is always finite at the shell’s surface.

∮

Bds = µ0 × I (51)

The same law demonstrates that the integral (48) is in-
dependent of R2 providing a < R1 − R2 or a > R1 + R2,
therefore some simplification is available by setting R2 → 0
whilst a constant current circulates. The integral of (47) can
be expressed in terms of multiple elliptic integrals. Numeri-
cal computations have been used to derive plots in Fig. 8(a)
which show that the field within the central aperture is gen-
erally stronger than in the outer periphery of the torus as
measured by local inertial observers. This is particularly
true for the geometries where R2 → R1 that would produce
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Figure 8. a) Magnetic flux density in the equatorial plane of a rotating, charged toroidal shell for four separate geometries. The flux
density can become arbitrarily large within the central aperture as the minor radius of the torus approaches the major radius.

tightly collimated jets. The charged particles spiral around
the strong field lines of the aperture achieving high veloc-
ities and alternate between contra-rotation and co-rotation
during each cycle of their spiral. During the contra-rotation
phase, they are especially likely to participate in ergore-
gional particle collisions in which energy and momentum
is transferred to the jets at the expense of the angular mo-
mentum of the TBH.

To better approximate the magnetic field of a charged
TBH, the gravitational time dilation must be taken into ac-
count. Restricting analysis to the time dilation generated by
a momentarily static ring singularity whose event horizon is
transiently toroidal, the horizon must coincide in the equa-
torial plane with the surfaces of the electrically conducting
toroidal shell. Essentially, this is achieved by precise adjust-
ment of the radius of the ring singularity (Rring > R1) and
the ring singularity’s mass per unit length. The magnetic
field strength plots of Fig. 8(a) are then recalculated, this
time taking account of the local time dilation (lapse func-
tion) relative to a distant observer. The situation is analo-
gous to earth based quasar observations because this mag-
netic field directly modulates the non-thermal radiation em-
anating mainly from within the TBH ergoregion. Note also,
the negative energy states within the ergoregion of the cen-
tral aperture will be more negative than elsewhere within
the ergoregion but that the increased time dilation coun-
teracts this. Results are presented in Fig. 8(b). Again, the
electrical surface current density J has been held constant
but the TBH mass is different in each case.

Several factors need to be considered which potentially
impact the results. Time dilation diminishes more rapidly
than flux density with axial displacement. Improved models
would involve non-uniform surface current densities for the
TBH membranes, a means of estimating the TBH charge

and a more accurate determination of the TBH angular ve-
locity, which may require a theory of quantum gravity.

These facts imply that the Penrose process will occur
predominantly within the central aperture of the TBH, and
less so in the outer regions. Ergoregional particle emissions
in the outer regions are largely reabsorbed by interactions
with the accretion disk, whereas the rarefied central aperture
allows relatively unimpeded passage to scattered particles.
Thus, the most visibly energetic TBHs will be those with
tightly focused jets.

As discussed previously, because charge neutralisation
is inhibited for tori, intrinsically stronger magnetic fields are
to be anticipated in the vicinity of a TBH as compared to
the rotating spheroidal BH situation. The presence of the
magnetic field and the plasma gives rise to a force-free mag-
netosphere within the TBH’s central aperture providing the
plasma is sufficiently rarefied. The accumulation of circu-
lating positively charged particles moderated by time dila-
tion nearby the TBH event horizon is, for present purposes,
identical to the situation where the TBH itself is charged.
Supposing that the equilibrium magnetic field stabilises at
large values ∼ 1012 G or larger, then vacuum breakdown
may play a part in the formation of jets. Energy stored in
the TBH magnetosphere would then be tunnelled quantum
mechanically, creating pairs of charged particles and anti-
particles. These virtual particles would then be separated by
the intense electromagnetic forces before they could silently
annihilate one another. The detection or otherwise of a sig-
nificant positron population in the jets is a useful tool for
resolving the issue of whether vacuum breakdown has a role
to play.

Energetic photons (X-rays and gamma rays) generated
by the plasma of the central aperture would be emitted in
all directions. Ergoregional processes would be capable of
promoting them to higher energies because they are trav-
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Figure 8. b) Magnetic flux density corrected for time dilation in the equatorial plane of a conservatively under-rotating, charged TBH
for four geometries. More realistic, rapid rotation does not affect the time dilation along the axis of rotation but can boost the time
dilation elsewhere, resulting in maximal effective flux densities located in the central aperture for all cases.

elling at the speed of light, often in retrograde trajecto-
ries about the TBH. Resulting photons could inhabit the
gamma ray spectrum at energies as high as the TeV range.
The Penrose process should also act on the high velocity
electrons and atomic nuclei of the high-energy plasma oc-
cupying the ergoregion of the aperture. At the expense of
the rotational energy of the TBH, bi-directional jets with
relativistic velocities are therefore likely to result. Matter
and radiation must necessarily emerge from either side of
the central aperture, where it begins its journey along one
of the two jets. Depending on the geometry of the TBH, the
jets could be tightly focused and penetrating or conversely,
spluttering weakly over a broad solid angle. Particles are
preferentially ejected in close alignment with the modulat-
ing magnetic field, in this case along the spin axis of the
TBH. The toroidally originated magnetic field provides for
deeper negative energy states within the ergoregion whilst
extending the region of occurrence well beyond the static
limit surface. Bhat, Dhurandar and Dadhich demonstrated
that when charged particles are involved in Penrose process
interactions there exists virtually no upper bound on the
efficiency of energy extraction.

The jets are to some extent able to collimate themselves
if they are sufficiently focused at the source by trapping
the magnetic field internally. Magnetohydrodynamic stud-
ies have had much success in explaining the characteristics
of these outflows which emerge supersonically and travel for
several millions of light years before ploughing into radio
lobes formed at the ICM/jet interface. The knots frequently
visible along jets are readily interpreted as the result of sub-
stantial short-term matter ingestion from stellar collisions
with the TBH or instabilities in the accretion flow, one fur-

ther possibility being that these knots may also be related
to rapid fluctuations in TBH charge and instabilities in the
TBH mechanism itself. The rotating jets will cause a net out-
flow of angular momentum from the TBH, which is counter-
balanced by the net inflow of angular momentum due to ac-
cretion around the TBH’s periphery. Jets transport angular
momentum from the TBH because particles ejected from the
ergoregions are rotating with the TBH having been launched
by the Penrose process within the ergoregion, thereby gen-
erating a decelerational torque (recoil) on the TBH. By the
mechanisms described, a significant portion of the mass and
kinetic energy of accreting matter and radiation is available
for jet production. For detailed analysis, numerical simula-
tions will be required.

The Penrose process reaches maximum efficiency when
one of the particles heads directly towards the event hori-
zon along the shortest path (i.e. it has the most negative
energy state possible). Similarly, when the negative energy
state arises due to the presence of charge on a particle, one
of the particles emerging from the collision ideally scatters
towards the event horizon along the shortest path. When the
trajectory of the other scattered particle is considered for the
purely gravitational Penrose process, the particle will head
directly away from the event horizon, which for the TBH
central aperture is typically a poor escape route. The situ-
ation is altered for electromagnetically dominated Penrose
process interactions as the potential of the charged parti-
cle within an electric field should be considered. In order to
recoil with maximal energy extraction, the charged parti-
cle will follow a path that leads towards greatest electrical
potential which, for the aperture of a charged and rotat-
ing TBH, is aligned axially with the magnetic field. These
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ejected particles will frequently collide with the accretion
flow streaming from the outermost periphery of the TBH.
The jets will be sufficiently strong to overcome this inward
accretion flow in the regions nearest the spin axis. An al-
most identical scenario was analysed (Blandford & Rees,
1974) wherein hot, relativistic plasma escapes anisotropi-
cally through orifices punctured in a cool surrounding gas
resulting in beams of collimated plasma.

Data gleaned from quasar observations is consistent
with the present TBH model. High energy gamma rays at
energies up to 20GeV ∼ 1Tev have been detected within
the jets. These may correspond to photons ejected by the
Penrose process, rather than by some secondary acceleration
mechanism within the jets. The variation in jet dispersion
angles is related to the R2/R1 ratio of the TBH and is natu-
rally accounted for by the opening angle of the TBH. Quasar
spectra can contain three separate red-shifted portions; the
TBH model displays a similar complexity:

• The plasma of the central aperture is buried in a deep
gravitational potential well.

• Jets travel relativistically in opposite directions, one of
which is usually not directly detectable.

• Radiation passes through the metal enriched clouds
generated by the SN of the TBH creation event.

• The remoteness of the QSO galaxy correlates to a cos-
mological recession and red-shift.

A carefully considered numerical study of gravitating
fluids (Marcus, Press & Teukolsky 1977) reveals a bifur-
cation from the Maclaurin ellipsoids to lower energy state
’Maclaurin toroids’ at high angular momenta which the au-
thors suggest may be stable against all small perturbations.
Alternatively, toroidal density distributions (TBHs or tran-
sient neutron tori) may develop in the dynamically collaps-
ing cores of moderately rotating progenitor stars (rotary core
collapse). Butterworth & Ipser (1976) demonstrated that
ergoregions can form when relativistic stars spin rapidly al-
though absolute event horizons are absent. With the notable
exception of long-term stability, charged neutron tori could
share many similarities with the charged TBH central engine
of quasars. Although the neutron torus could exhibit various
non-axisymmetric instabilities, it appears that the electro-
magnetic structure could significantly counteract these ef-
fects for core-collapse timescales if electrical charge gathers
on the torus. Moreover, stability will clearly be reinforced if
the composition of the torus becomes superfluidic and su-
perconducting, as is likely for the least soft equations of
state.

Rotating, electrically charged neutron tori are able to
generate immensely strong axial magnetic fields. When er-
goregions arise and accreting matter is available, relativis-
tic bi-directional jets should emerge. Given a steady sup-
ply of mass and angular momentum, as from an accretion
disk fuelled by a binary companion star, microquasar be-
haviour could result — though long-term stability argu-
ments favour a TBH engine. Certain explosive core-collapse
SNe (hypernovae) accompanied by anisotropic gamma-ray
bursts (GRBs) could be interpreted as the outcome of
a neutron/BH torus forming during rotary core collapse.
Metastable configurations can be envisaged in which a white
dwarf accretes matter from a companion star, the angular
momentum accumulates until the core eventually collapses

to a neutron torus causing a brief but intense outburst of
mass and angular momentum sufficient for the star to re-
sume its quiescent spheroidal white dwarf state. Recovery
from neutron to white dwarf densities is permitted, but event
horizons grow irreversibly. Rotary core collapse may curtail
the birth of TBHs at masses substantially below the lower
limits commonly adopted for BHs.

7 EVOLUTION BEYOND OPTICALLY

BRIGHT QSO PHASE

It is well documented that quasar populations decline
rapidly at co-moving red-shifts below z ∼ 2.5. What is not
easily explained by leading models reliant on a central su-
permassive spheroidal BH is why quasar activity terminates
so abruptly in recent times. This is especially puzzling given
that the BHs themselves cannot have altered other than gain
yet more mass from their surroundings. Ideas have been pro-
posed such as advection dominated accretion flow (ADAF),
the ‘spin’ paradigm and various ‘state transitions’ related to
accretion efficiency. A significant diminution of BH angular
momentum is unlikely given the tendency of accretion disks
to transfer rotational energy to a BH. If fundamentally dif-
ferent modes of accretion do operate, lower efficiency modes
will be obliterated whenever a massive body approaches
the disk/engine environment. Mass injection of this kind
would sporadically re-establish brief quasar behaviour in
previously dormant galaxies, including neighbouring galax-
ies which are observed to be emphatically inactive. Evidence
for such transient activity is absent both in local and distant
galaxies. This is exceedingly troublesome for standard AGN
models when accounting for the quiescent cores of nearby
giant ellipticals.

According to the present model, the TBH will transi-
tion to a spheroidal BH once accretion has inflated the event
horizon or decreased the angular momentum sufficiently.
This provides a natural mechanism for the termination of
quasar-like TBH activity within the universe and is am-
ply supported by observations. The swelling of the toroidal
event horizon due to mass capture generally overcomes the
increasing angular momentum of the TBH by the same pro-
cess. Although the major radius of the torus may be increas-
ing, the minor radius will eventually catch up leading to a
topological transition. Immediately prior to the extinction
of the TBH, the most energetic and tightly collimated jets
are anticipated to form, albeit with enhanced gravitational
red-shifts as seen from infinity.

Fig. 9 illustrates a number of features of the TBH
quasar model and has been constructed using the inequal-
ity relations (12) to (15) from section 2. The shaded wedge
represents the area within which TBHs can come into be-
ing directly from the implosion of a toroidal star. Here, it
has been assumed that the seed star has constant density
of ∼ 1400 kgm−3 and that 90% of the star’s mass is ejected
during the implosion (η = 0.1). TBH creation at radii R1

below about 36 × 109 m is prohibited because electron or
neutron degeneracy would halt the collapse, as it would
slightly beyond the left hand edge of the diagram at about
R2/R1 ∼ 10−6 and beyond, so that the wedge shape does
not continue indefinitely. Above the shaded wedge, it is im-
possible for the toroidal star to be sufficiently massive if, as
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Figure 9. Toroidal black hole creation, evolution and extinction. Contours of constant mass can only be traversed in one direction.
A typical case is identified which corresponds to the lifecycle of a prototypical quasar. AGN extinction accompanies the topological
transition at log(R2

R1
) = 0. Beneath the shaded wedge, TBH formation can occur from the collapse of degenerate tori.

it must be, R3 < R1 for the seed star and densities above
1400 kgm−3 are disallowed. Lightly shaded regions above
and below the main wedge show how the diagram would be
altered if different values were taken for η.

This diagram identifies the region at which quasar-
like behaviour is to be expected from TBHs (progressively
shaded vertical section) where R2 is almost as large as R1

and narrow jets are formed. The line defined by R2 = R1 is
the quasar extinction boundary where the TBH becomes a
spheroidal BH. Lines have been plotted to indicate contours
of equal TBH mass and similarly for constant minor radius
R2. Because the mass of the TBH will not diminish with
time, constant mass boundaries can only be traversed in one
direction. There is a sufficiently broad birth zone spanning
several orders of magnitude on each axis which enhances the
probability that TBH creation is widespread at the centre
of typical protogalaxies.

TBH birth is anticipated to occur at lower masses and
lower R2/R1 ratios because the seed stars required are very
large even for these. One typical case has been presented
on the diagram. For this example a toroidal star of mass
6×106M⊙ and radii R1 = 1.8×1011m and R3 = 8.7×1010m
implodes after exhausting its fuel on a very short timescale
to leave a TBH of mass 6×105M⊙ and radii R1 = 1.8×1011m
and R2 = 2.8 × 106m. The accretion rate within this young
galaxy is increasing so the TBH mass swiftly increases as
does its angular momentum and angular velocity. The ar-

rows of the evolutionary trace depict the evolutionary rate,
fastest at the start then slowing down at higher masses such
that the QSO phase can exist for a timescale several or-
ders of magnitude greater than the formation time of the
TBH. Somewhat inevitably, when R1 and R2 equalize, the
quasar phase is discontinued, in this example when the mass
reaches about 109M⊙. For a given mass, the relationship be-
tween R1 and R2 will depend upon the angular velocity of
the TBH which in turn is related to the angular momen-
tum inflow due to accretion. In order to sustain a toroidal
event horizon indefinitely, an ever increasing supply of an-
gular momentum may be required. The accretion rate might
be relatively low at the time of TBH birth, rising swiftly be-
fore peaking and slowly decreasing thereafter. Accordingly,
the jet formation phase is predicted to terminate due to the
topological transition at the boundary where R2 → R1.

8 DISCUSSION

It has been qualitatively described how rotating TBHs might
evolve from protogalactic gas clouds and accrete matter from
the galactic centre until their inner apertures contract and
highly focused relativistic jets form. The viability of the
model can be tested by observing the evolution of jet col-
limation with red-shift as this model predicts the degree
of collimation continues to increase (though jet energetics
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may decline at later times) until the topological transition.
Such an approach could further address the issue of whether
the entire AGN population or some subset thereof is ac-
counted for by a TBH model. The direct observations of
AGN and quasars in our universe suggests that TBHs are
more than abstract mathematical constructs. Classical gen-
eral relativity still remains to be unified satisfactorily with
quantum mechanics. Evidently, TBH stability is intertwined
with this issue. As direct experiments cannot be performed
in intensely curved spacetimes, astrophysical observations
must be our guide. The proposed stability of TBHs allows
the event horizon’s interior to be metaphorically unveiled,
providing clues to the nature of quantum gravity and grand
unification theories.

General relativity demands that the cosmological con-
stant Λ be sufficiently negative in order to provide long-term
TBH stability. Observational estimates of Λ based upon uni-
versal expansion reliant on the behaviour of general relativ-
ity in weak field environments suggest that its value is very
small but probably positive. One possibility is that Λ is pri-
marily a function of local spacetime curvature. Alternatively,
the presence of external matter (accretion disk and galaxy)
may provide the necessary curvature and non-stationarity
permitting TBH stability over indefinite periods.

The TBH model, despite its controversial nature,
presents a promising means of understanding the following
characteristics of quasars: extreme jet energies, varying jet
emergence angles, abrupt extinction, high gamma-ray radi-
ation, the presence of heavy elements and the multiplicity of
red-shifts in absorption spectra. None of these features are
readily explained by spheroidal BH models. It is encourag-
ing that the TBH model also appears to lead to plausible
models for macroscopic processes within supernovae, micro-
quasars and gamma-ray bursts. Fortunately, neutron tori
– unlike TBHs – are exempt from topological censorship.
Hence, these will certainly exist in astrophyscial circum-
stances, if only very briefly. Betraying their existence in dis-
tinctive and overtly energetic ways, these curiosities should
be amenable to observational identification and study.

Numerical simulations are crucial if accurate compar-
isons with further detailed observations are to be made.
Gravitational wave detectors and planned optical/X-ray
interferometer technology will be sufficiently advanced in
forthcoming decades to conclusively resolve the question of
whether toroidal black holes truly exist.
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APPENDIX A

General relativity does not restrict the distribution of mass-
energy external to event horizons. The question is not
whether, but to what extent can toroidal arrangements of
neutron degenerate matter be temporarily stabilised by rota-
tion. The purpose of this appendix is to outline and prepare
quantitative estimates of the circumstances leading to the
creation of neutron tori using extensive simplifying assump-
tions due to the complexity of the situation. Although it
seems that rather extreme conditions are necessary for tori
to form, and dynamic evolution could be both violent and
rapid, it will be seen that rotary core collapse supernovae
are a natural setting for the birth of dense tori. Although
the analysis presented is relevant to a broad range of stel-
lar densities, including the formation of toroidal black hole
cores, it must be stressed that tori of neutron density and be-
low cannot be instantly dismissed by topological censorship -
the primary objection to the formation of TBHs. It is known
that ergoregions can form when relativistic stars form with
high angular momentum despite the absence of either ap-
parent or absolute event horizons. Potentially, this permits
the proposed quasar mechanism to operate in a number of
seemingly unrelated astrophysical phenomena.

Many stars, particularly the brighter Type Oe and Be,
rotate considerably faster than the Sun. Equatorial veloc-
ities in the range 300 ∼ 700 kms−1 are not uncommon as
compared to 2 km s−1 for the Sun. It is thought that the ma-
jority of stars have high initial angular velocities but that
coupling between solar winds, magnetic fields and the inter-
stellar medium cause a gradual decline in angular momen-
tum. The brighter, more massive stars can be very short-
lived and will retain a large angular momentum once their
nuclear fuel is spent. It is therefore worthwhile studying the
internal structure of rapidly rotating stars undergoing grav-
itational collapse to determine the conditions best suited for
producing toroidal core configurations.

In order to preserve analyticity, a simplified model is
presented. Later it will be apparent that removal of any sim-
plifications necessitates a numerical treatment such as the
one presented by Marcus, Press & Teukolsky. A uniformly
rotating (constant angular velocity) ellipsoid would consist
of ellipsoidal shells for which the assumption of uniform shell
density is invalidated in situations of interest. Instead, uni-
formly rotating infinite cylinders are first considered. A cross
section is illustrated in Fig. A.1(a) of the proposed structure
of a rotating star composed of two immiscible, incompress-
ible fluids with densities ρ1 and ρ2 where ρ2 > ρ1. The
contours denote lines of equal hydrostatic pressure increas-
ing from zero at the surface of the spheroidal envelope to a
peak within the higher density toroidal core.

If the pressure and density within a cylinder composed
of two fluids can be shown to reach a maximum at a finite
distance from the axis of rotation, Fig. A.1(b), and that such
a distribution is in equilibrium, then the some degree of sta-
bility can be ascribed to the arrangement in Fig. A.1(a).
A Newtonian analysis permits exact solutions by virtue of
the superposition of cylindrical shells of differing densities,
the linearity of (constant density) cylindrical gravity with
radius, the null gravity within infinite cylindrical shells and
the gravitational equivalence of cylindrical shells to axial
line masses in the exterior regions. Cylindrical coordinates

(r, φ, z) are employed to consider two immiscible and incom-
pressible fluids of densities ρ1 and ρ2 with ρ2 > ρ1 rotating
smoothly and uniformly. Temperature is neglected because
degenerate materials are of particular concern. The gravita-
tional profile is not linear with radius because it is caused
by three zones of different density: regions a), b) and c) with
radii R1, R2 and R3 respectively indicated in Fig. A.1(b).
When equilibrium is achieved, the resultant force on each
fluid element is zero. In this analysis, the individual forces
acting on the elements are due to the pressure gradient,
the centripetal acceleration and the gravitational attraction
which, by virtue of the cylindrical symmetry, need only be
considered in the radial direction. It is elementary to derive
expressions for the derivatives of pressure, Pa, Pb and Pc,
with respect to radius for each of the three regions a), b)
and c) respectively:

dPa

dr
= rρ1(ω

2 − 2πGρ1) (A.1)

dPb

dr
= rρ2

{

ω2 − 2πG

[

ρ2 +

(

R2
1

r2

)

(ρ1 − ρ2)

]}

(A.2)

dPc

dr
= rρ1

{

ω2−2πG

[

ρ2+

(

R2
1 −R2

2

r2

)

(ρ1−ρ2)
]}

(A.3)

These expressions are readily integrated using the fol-
lowing boundary conditions: Pc(R3) = 0, Pb(R2) = Pc(R2)
and Pa(R1) = Pb(R1). It is immediately apparent from
(A.1) that the pressure increases with radius from r = 0
providing a certain minimum angular velocity is exceeded:
ω > ωmin =

√
2πGρ1. For physically meaningful results, the

pressure must not become negative at radii occupied by mat-
ter. There are two circumstances where this might first arise:
at the centre (when the cylinder becomes hollow) and im-
mediately beneath the surface (centripetal forces overcome
gravitational forces leading to mass shedding). The latter
condition is simply expressed as dPc/dr > 0 at r → R3

permitting the definition of a maximum angular velocity
ωmax > ωmin which is conveniently expressed as:

ωmax = ωmin ×
√

1 +

(

ρ2 − ρ1
ρ1

)(

R2
2 −R2

1

R2
3

)

(A.4)

In general, a wide range of angular velocities are avail-
able if the densities are very dissimilar whereas, as the den-
sities of the two fluids approach one another, there is a much
narrower range of values that ω can occupy above ωmin. A
specific example is given in which the radii are in the ratio
1:2:3 for R1 : R2 : R3 and the densities 1:2 for ρ1 and ρ2.
Results are plotted in Fig. A.2.

The diagram presents the pressure variation along the
radius of a rotating infinite cylinder. Several curves have
been plotted which correspond to different rates of rotation.
For the example given, internal pressure remains positive
up to ω → 1.155ωmin, the mass shedding limit. The sta-
bility of these results is trivial because the assumption of
equilibrium was inherent in the model, all solutions are in
neutral equilibrium including those at low angular velocity
and the non-rotating case. The significance of ωmin is that
stability cannot be achieved below this if the fluids become
infinitesimally compressible because the density and pres-
sure distributions would be qualitatively different.

When a homogeneous rotating cylinder of compress-
ible fluid is considered, it transpires that stability of off-
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Figure A.1. a) A rotating ellipsoid enveloping a denser toroidal core is here approximated by... b) A rotating infinite cylinder (cross
section illustrated) composed of two incompressible fluids arranged in a pseudo-toroidal formation where ρ2 > ρ1.

axis peak density arrangements is unattainable if the as-
sumption of uniform rotation is retained. This is evident
upon inspection of (A.1) for cases where the pressure and
density are positively correlated i.e. dP/dρ > 0. This does
not mean that an axial pressure-density peak will always
result, once the central angular velocity exceeds a certain
value ωc ∼ √

2πGρc then axial density peaks are also unsta-
ble and differential rotation will occur (non-constant angu-
lar velocity). Furthermore, the angular velocity will gener-
ally decrease with radius for these systems, coinciding with
the most physically realistic situations exemplified by the
frame-dragging of the Kerr spacetime. Hence a non-axial
density peak akin to toroidal solutions of rotating gravitat-
ing spheroids results. A numerical treatment must be em-
ployed for systems of even this complexity, before realistic
interactions such as viscosity, radiation pressure, temper-
ature variations and magnetic braking are incorporated in
the model. Analytical limits of relevance to infinite cylinders
exist in (i) the differentially rotating incompressible fluid
approximation and (ii) the uniformly rotating compressible
fluid regime whereby iterative solution of Volterra integral
equations is in principle achievable. Numerical techniques
become mandatory for differentially rotating compressible
fluids in the infinite cylinder approximation.

It should be stressed that long term stability is not the
issue here – all that is required is for a differentially rotating
toroidal structure to transiently exist during the inherently
dynamic and unstable collapse phase of stellar evolution -
the necessary timescale for ‘stability’ is briefer than that
required for dissipative processes to restore uniform rotation,
e.g. magnetic braking and viscosity.

When a rapidly rotating star collapses, and the collapse
originates at the core where gravity first defeats pressure,
strong differential rotation accompanies a radial inrush of
material - this environment facilitates the formation of a
toroidal core. Because angular momentum is conserved for
all collapsing shells, the angular velocity in the core increases
appreciably to a level in excess of ωmin and the angular veloc-

ity beyond the core declines radially. If the core is sufficiently
dense, relativistic frame dragging contributes to the differ-
ential rotation. Radially decreasing rotation coupled to the
fact that the pressure (and therefore the density) must in-
crease with radius at the centre means that toroidal cores are
practically inevitable during the collapse of rapidly rotating
stars. Axisymmetric tori often exhibit non-axisymmetric in-
stabilities in numerical simulations, the resultant gravita-
tional radiation being of fascination to gravitational wave
astronomy. The perturbational influence of orbiting compan-
ions could also disturb the symmetry. A simple equation of
state is insufficient to model superfluidity and superconduc-
tivity, properties that neutron stars are widely expected to
possess, rendering inapplicable many models constructed to
investigate gravitational wave driven instabilities. The self-
gravity of a torus can sustain a state of pseudo-equilibrium.
If the torus is electrically charged, the exterior magnetic field
acts as a barrier both to surface winds consisting of charged
particles and to neutralising inflows – reinforcing stability.
The outcome for situations where both ωmin and ωmax is ex-
ceeded is qualitatively unchanged. Mass expelled from the
outermost periphery of the torus is not ejected to infinity
but forms an equatorial disk orbiting the torus. If sufficient
mass is shed, this disk can become geometrically thick, i.e.
the torus expands.

For slowly rotating ellipsoids, the value of ωmin increases
to∼ √

4πGρc. If the neutron core following gravitational col-
lapse of the Sun has a density in excess of ∼ 3×1018 kgm−3

then it is conceivable that the core could become toroidal. If
a more attainable collapse density of 1014 kgm−3 were speci-
fied, then the Sun would only need to rotate at a moderately
higher angular velocity of ∼ 5.5ωsun for ωmin to be attained
during core collapse. The Sun’s internal pressure would first
vanish within the surface (mass shed into keplerian orbit)
were it to rotate at a rate ∼ 212ωsun, so the available rota-
tion range for toroidal core collapse is generally broad and
attainable for typical massive stars.
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Figure A.2. Pressure variation with radius for rotation rates of interest. Quasi-stability occurs for compressible fluids only when the
pressure is maximal within region b). At higher rotation rates, mass is shed from the surface into keplerian orbits.

A TBH embedded in a collapsing stellar envelope re-
sembles a scaled-down version of the described quasar en-
vironment. In contrast with the sustained activity of ac-
tive galaxies, the tremendously accelerated accretion onto
the core causes a violent and intense anisotropic explosion.
Such a TBH could be of relatively low mass, perhaps below
0.1M⊙ as efficient jet generation processes begin to operate
and stall its growth. There is therefore a definite possibility
that a large fraction of the remaining star is propelled along
the jets. Together with the first active galaxies, there are
obvious implications for cosmological reionization which ap-
pears to have occurred at red-shifts of z ∼ 6. A neutron torus
formed during rotary core collapse can ‘recover’ following the
ejection of substantial mass from the stellar envelope to a
lower density object e.g. a white dwarf. On the other hand,
charged neutron tori that do not recover will subsequently
collapse to charged spheroidal neutron stars forming highly
magnetised pulsars or Kerr-Newman BHs. Objects classi-
fied as ‘magnetars’ or anomalous X-ray pulsars (AXPs) have
been observed. The inferred magnetic field strengths due to
the spin-down rate of these objects is ∼ 1014G, providing a
useful clue as to the degree of electrical charge of the neu-
tron tori during SNe and thus, by inference, the net TBH
charge in AGN circumstances. This level of charge can have
a significant bearing on the spacetime geometry – this is
discussed in appendix B.

White dwarves containing toroidal neutron cores and
isolated rotating neutron tori will often form during the
core collapse of moderately rotating progenitors. The rota-
tion rate should be sufficient for these dense tori to generate
ergoregions thence accumulate charge sustaining magneto-
spheres which bolster the negative energy states of the er-
goregion. These neutron tori are unlikely to be long-lived as
they are susceptible to various instabilities and their dif-
ferential rotation will eventually be erased by dissipative
processes, but they are certainly of interest in more dy-
namic environments. The significance of these short-lived
neutron tori or equivalently stellar mass toroidal black holes
(SMTBH) are now addressed in three separate astrophysical
settings.

Firstly, a binary system consisting of a SMTBH and a
stellar companion could operate as follows: an accretion disk
forms around the SMTBH composed of material transported
from the nearby star by gravitational and electromagnetic
interactions. The central aperture of the SMTBH contains
an ergoregion and an intense dipolar magnetic field due to a
net electrical charge. This then gives rise to anti-parallel jets
aligned with the axis of rotation in a very similar manner to
the quasar albeit on a smaller scale. Microquasars have been
observed within the confines of the Milky Way and are so
called because they seem to obey simple scaling laws applied
to quasars. Accretion of material from the companion star
and jet formation will combine to decrease the overall angu-
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lar momentum of the SMTBH on a shorter timescale than
that of the quasars, the unusual behaviour terminating when
the topology transitions to spheroidal after the angular mo-
mentum has been partially jettisoned. Unlike pulsars, the
magnetic fields generated by charged tori will be robustly
aligned with the rotation axis and, with the possible excep-
tion of radiation emanating from an accretion disk, periodic
bursts of radiation will not be observed.

Relativistic galactic jet sources and their similarities
with quasar outflows have been reviewed by Mirabel &
Rodriguez (1999). From the limited microquasar observa-
tions available, it appears that the jet velocities have a bi-
modal distribution classified by νjet ≈ 0.3c and νjet >∼ 0.9c.
Whether a corresponding distribution exists for the jets of
active galaxies is currently unknown. An interesting feature
of some microquasars which is absent in quasars is their be-
haviour as the accretion disk is exhausted resulting in a sud-
den ejection of condensations (Mirabel et al 1998). Existing
steady state MHD models with continuous jets have diffi-
culty accounting for this, relying on a disk-supported mag-
netic field. This problem is resolved in the present model be-
cause the magnetic field of the torus remains when the disk
disintegrates and confines the remaining plasma to circulate
above the event horizon of the SMTBH, weaving repeatedly
through the central aperture until it emerges in the form of
jets aligned with the spin axis.

Secondly, the mechanism could participate in the most
energetic SNe - those which have been dubbed ‘hypernovae’
with energies two orders of magnitude above ‘ordinary’ SNe
and thought to coincide with longer duration gamma-ray
bursts. GRB980425 has been associated with SN1998bw
providing evidence for a common mechanism (Cen, 1999).
For example, consider a massive, rotating and fuel starved
star undergoing rotary core collapse. A neutron torus (or
SMTBH) develops in the core embedded within a lower den-
sity envelope. As before, charge accumulates on the torus
which cannot be quickly neutralised on a timescale com-
parable to that of the implosion. A strong magnetic field
threads the central aperture of the torus and strongly nega-
tive energy states are available in the ergoregion. The mech-
anism results in a ferocious outward explosion of matter
from the centre of the SN in which a significant proportion
of the star’s mass is expelled anisotropically. Jets from SNe
have been inferred from nearby hot-spots detected by optical
speckle interferometry (Cen 1999, and references therein).
Evidence of highly anisotropic ejecta is provided by polari-
metric SN observations (Wang et al, 1999). Collapsar mod-
els attempting to account for jet formation in core collapse
SNe are hampered by the spherical core topology as jets, if
they form at all, are unlikely to penetrate through imploding
shells for the following reasons:

• The inefficiency of the Blandford-Znajek mechanism is
now recognised.

• The topology dictates that plasma flowing along mag-
netic flux lines efficiently neutralises the core — but in the
case of toroidal cores, neutralisation paths are orthogonal to
flux lines, and neutralisation is thereby inhibited.

• The equatorial plane, which features additional cen-
trifugal forces, is no more unlikely to feature outflows than
polar regions if the star is assumed to remain electrically
neutral.

Thirdly, pseudo-periodic gamma ray bursts (GRBs)
could be generated by a mechanism similar to the micro-
quasar. Consider a rapidly rotating white dwarf with a com-
panion star providing a steady supply of material to an or-
biting accretion disk. Metastable oscillations could be es-
tablished whereby the core of the white dwarf collapses to a
neutron torus once sufficient matter and angular momentum
has accumulated. This results in a brief period of jet activity
in which enough mass and angular momentum is expelled to
restore the star to a pure spheroidal white dwarf. Accretion
of matter from the binary companion then repopulates the
accretion disk, with the mass and angular momentum of the
white dwarf slowly increasing until the cycle repeats. It may
be that some of the shorter-duration gamma ray bursts can
be attributed to situations like this.

APPENDIX B

A year has elapsed since this paper was deposited on the
archive. During that time, explanations for the stability of
toroidal black holes have not been ventured. An open discus-
sion along these lines could have been included in the orig-
inal submission but was not, partly to avoid polarising the
views of a sympathetic audience and partly because of the
bewildering array of possibilities. Though no claim is made
of a satisfactory resolution, this final version devotes an ap-
pendix offering a ‘snapshot’ of my thoughts on this issue
which have benefited from twelve months of distilled cogi-
tation. Parallels between the Kerr BH and Newtonian ana-
logues comprising a self-gravitating annulus are explored.
A simple quantized Newtonian model is used to investigate
possible consequences in relativistic settings. The intention
is not to denigrate the existing research on black hole space-
times which has been the focus of much solemn effort by
dedicated practitioners of general relativity, rather to com-
municate some pertinent concerns in a straightforward and
hopefully thought-provoking manner.

First it is shown that the ring singularity of the Kerr
geometry travels with the velocity of light, regardless of the
degree of rotation. Then it is demonstrated that a New-
tonian equivalent of the Kerr geometry is a homogeneous
self-gravitating ring of infinite density rotating at infinite
velocity, implying an unphysically large angular momentum
and kinetic energy. This is interpreted as an inevitable conse-
quence of the simplistic model which entirely disregards the
microscopic quantum nature of the ring. When a more real-
istic analysis is pursued in the Newtonian setting, it is ob-
served that the velocity required for equilibrium is logarith-
mically relaxed - a macroscopically observable consequence
of the quantum world. By implication it is then argued that
a natural relativistic counterpart deviates from the Kerr so-
lution, and that this deviation would be particularly evident
at high angular momenta. Astrophysical environments of in-
terest are then addressed to illustrate the possibility that
event horizon topologies may not be restricted to 2-spheres.

In pseudo-Cartesian coordinates (t̄, x, y, z), the Kerr
metric reads:

ds2 = dt̄2 + dx2 + dy2 + dz2 +
2mr3

r4 + a2z2

×
[

dt̄+
(rx+ ay)dx+ (ry − ax)dy

a2 + r2
+
z

r
dz

]2

(B.1)

c© 2000 RAS, MNRAS 316, 856-874



24 R. J. Spivey

Figure B.1. Self-gravitating ring of discrete particles.

and in Boyer-Lindquist coordinates (t, r, θ, φ):

ds2 = −∆

ρ2
(a sin2 θdφ− dt)2

+
sin2 θ

ρ2
[(r2 + a2)dφ− adt]2 +

ρ2

∆
dr2 + ρ2dθ2 (B.2)

∆ = r2 − 2mr + a2 (B.3)

ρ2 = r2 + a2 cos2 θ (B.4)

The spatial coordinates of the two metrics obey the
transformations:

x = r sin θ cos φ+ a sin θ sinφ (B.5)

y = r sin θ sinφ− a sin θ cos φ (B.6)

z = r cos θ (B.7)

A true spherical polar coordinate R, coinciding asymp-
totically with r at large radii, can be defined as R2 =
x2 + y2 + z2 which transforms to R2 = r2 + a2 sin2 θ. The
ring singularity of the Kerr BH resides at (r = 0, θ = π/2)
or (R = a, θ = π/2). Because the Kerr solution is station-
ary, the circle on which the singularity lies is a geodesic.
To investigate its velocity, it is assumed that r and cos θ are
small, r2 is negligible and dr = dθ = 0. The Boyer-Lindquist
metric then becomes:

ds2 = 2mr
(a sin2 θdφ− dt)2

a2 cos2 θ
(B.8)

As cos θ becomes infinitesimally small, to preserve ds2 ≤
1, the numerator must converge as rapidly as cos2 θ to zero,
so the term within parentheses vanishes yielding

vring = R
dφ

dt
=

√

r2 + a2 sin2 θ

a sin2 θ
= 1 (B.9)

showing that the singularity travels with coordinate velocity
c when a2 > 0. This is to be compared with the coordinate
velocity of particles and photons remaining on the equator
of the Kerr BH event horizon but being dragged around with

the horizon. To investigate this, after setting dr = dθ = 0
and θ = π/2 the metric reduces to:

rds2=(r− 2m)dt2+4amdt dφ−(r3+ra2+2ma2)dφ2 (B.10)

To remain on the horizon, ds2 is necessarily zero and the
radius at the event horizon is given by r+ = m+

√
m2 − a2

so that R 2
+ = 2m(m+

√
m2 − a2) = 2mr+. Solving for dφ/dt

allows the coordinate velocity of the equatorial event horizon
to be determined:

veeh = R+

dφ

dt

∣

∣

∣

∣

r+

=

[

a2

2m(m+
√
m2 − a2)

]1/2

(B.11)

which varies from veeh = 0.5a/m as a→ 0 to veeh ∼ 0.7a/m
as a→ m. The Kerr-Newman metric endowed with charge Q
features an outer event horizon at r+ =M+

√

m2 −Q2 − a2

and, after restoring constants, remains sub-extremal if

G2m2 ≥ GQ2 + c2a2 (B.12)

so charge and rotation act repulsively and in unison to
drive the BH away from spherical symmetry. This conclu-
sion seems inevitable without abandoning the equivalence
principle (Petkov, 2001), which in any case invalidates the
metric. Since extremality cannot be surpassed, general rela-
tivity restricts static particles to havingQ/M ≤ ζmax =

√
G.

Gross violations are witnessed in particle physics, for pro-
tons Q/M > 1013ζmax and for electrons Q/M > 1016ζmax.
Besides quantum scales, this means that a tiny electrical
charge can profoundly affect large-scale spacetime geome-
tries. For instance, if an imbalance of one electron/proton
exists for every ∼ 1013 neutrons, the time dilation at the sur-
face of a neutron star is almost entirely eliminated. Electro-
magnetism can thus play an important role in the stability
of charged tori.

Consider a planar constellation of N identical satellites
of total mass M evenly and symmetrically distributed on a
circle (Fig. B.1). According to Newtonian mechanics, equi-
librium is given by the balancing of gravitational and cen-
tripetal forces acting on each satellite such that the radius,
r, of the circular orbits remains constant. All satellites ro-
tate at constant angular velocity ω so that their individual
velocities are v = ωr. Equilibrium is attained when:

GM

4Nr2

N−1
∑

n=1

1

sin(nπ
N

)
=
v2

r
(B.13)

In the limit N → ∞, the series can be expressed in the
form of a definite integral:

lim
N→∞

1

N

N−1
∑

n=1

1

sin(nπ
N

)
=

∫ π

0

dx

sin x
=

4rv2

GM
(B.14)

Although the series converges for N < ∞, the integral
is divergent since

∫ π

0

dx

sin x
=

[

log
∣

∣

∣
tan

x

2

∣

∣

∣

]π

0

= 2× lim
x→+0

log

(

2

x

)

(B.15)

Hence, a ring of finite total mass M composed of an
infinitude of individual satellites is obliged to rotate at in-
finite velocity in order to maintain radial equilibrium. This
in turn implies an infinite angular momentum and kinetic
energy for homogeneous rings. Planetary ring systems, such
as Saturn’s, are nevertheless observed. Despite their self-
gravity, the rotational velocity remains modest – evidence
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that their microscopic structure is particulate, not homoge-
neous. Where self-gravitating rings of matter are concerned,
homogeneity is an unreasonable assumption, but one which
is often adopted in general relativity as exemplified by the
Kerr metric.

Some of the following statements are necessarily spec-
ulative, but it should be kept in mind that the overly com-
placent alternative is to trust in mathematical models when
conditions are far more extreme than those accessible to
experimental tests. Acceleration of the Kerr singularity to
the speed of light formally requires an infinite amount of
energy. This energy must have been supplied by the gravi-
tational potential energy of the matter which the black hole
consumes. It is implausible that this energy source is truly
unbounded, allowing the spacetime to attain infinite curva-
ture. Rather, the collapse must halt at some limiting density,
at which time the kinetic energy remains finite. Therefore,
though the Newtonian analysis presented is very simplistic,
aspects of this simplicity are also shared by its relativistic
counterpart, the Kerr black hole.

In an attempt to circumvent these limitations and pre-
pare rough estimates, suppose that the ring structure is sub-
divided into a non-infinite number of satellites. For instance,
the maximum number of neutrons contained in a mass of
109M⊙ is ǫ−1 = 1.2 × 1066. In this case, the equilibrium
satellite velocity remains finite with magnitude

v ≈
√

GM

4r

∫ π−ǫ

ǫ

dx

sin x
∼ 8.7

√

GM

r
(B.16)

But in these situations, neutrons are plausibly replaced
by Planck-scale particles. The characteristic Planck length
is lp =

√

h̄G/c3 ∼ 1.6 × 10−35m and the Planck mass is

mp =
√

h̄c/G ∼ 2.2 × 10−8kg. A Kerr BH of mass M
contains a singularity of maximal radius when a = M or
R = MG/c2 in natural units. Suppose that the singularity
is a crystalline structure of Planck ‘particles’ in a circular
arrangement whose further collapse is resisted by quantum
mechanical repulsion. One might object that this arrange-
ment is too idealised or that it requires an infinite uni-
versal time to elapse - perhaps so, but it is here argued
that some form of uncertainty principle or holographic cor-
respondence prevents external observers from distinguish-
ing between the present assumption and any other model.
The mean separation between adjacent Planck particles is
determined to be independent of the total mass and given
by dsep = 2πRmp/M = 2π

√

h̄G/c3 = 2πlp, a coincidence
substantiating the original premise of a Planckian singu-
larity. For a 109M⊙ BH, the total number of particles is
ǫ−1 = 9 × 1046 which yields v ∼ 7.4

√

GM/r = 7.4c. The
equivalent relativistic velocity is Γ = 8.4 or vrel ∼ 0.993c (for
a stellar mass BH, vrel ∼ 0.992c). It is known that the ratio
a/m for a Kerr BH can realistically approach ∼ 0.998 in
astrophysical circumstances (Thorne, 1974), allowing scope
for deviation from the Kerr geometry due to Planck scale
phenomena.

Though the margin for this to occur seems slender
for isolated horizons, indicative of almost negligible de-
viation, the assumption that the singularity is quantum-
mechanically sustained at the Planck scale introduces
additional considerations which, in typical settings, are
favourable for significant deformation of the Kerr geome-

try. The spacetime curvature in the vicinity of the singular-
ity is tamed by the repulsion between Planck particles (e.g.
Louko & Matschull, (2001) where some success has been
claimed regarding the quantization of geometry). This re-
pulsion presumably grows as the ring’s radius and a/m de-
creases. Whereas the Kerr singularity is infinitely distant
from the black hole’s exterior due to the immensely strong
curvature (Thorne, Price & MacDonald, 1986), the Planck-
ian singularity is susceptible to the influence of other matter
through tidal gravity. Indeed, the surface gravity of a Kerr-
Newman BH diminishes with increasing charge and rotation,
disappearing altogether at extremality. So without infinite
curvature, the singularity would otherwise be deformable.

Most modern attempts at unification invoke extra spa-
tial dimensions. At high energies, gravity is thought to ‘leak’
away from our 3 dimensions. This has yet to be confirmed
experimentally, due to practical difficulties. Measurements
have verified the inverse square law down to submillime-
tre scales, equating to an energy scale ∼ 10−2eV : well
short of particle accelerator energies ∼ 100GeV, the syper-
symmetry scale ∼ 1016GeV and the Planck scale mpc

2 ∼
1019GeV. Diminution of gravitational interactions at small
scales would inevitably cause the orbital velocities of BH sin-
gularities to decrease further, quite feasibly by a substantial
amount. General relativity will certainly break down at the
highest energies, otherwise collapse cannot even be halted
at the Planck scale. Since energy conditions are known to
be violated by the Casimir effect and Hawking radiation,
it is unlikely that they will be satisfied everywhere within
a black hole. Conversely, the extreme pathology of closed
timelike curves exhibited by the stationary BH metrics is
tacitly embraced by investigators.

Consider an accretion disk orbiting a rapidly rotating
BH. The disk gravity induces tidal stresses on the Planckian
singularity which tends to stretch it radially. In addition to
the accretion disk, AGN reside within a molecular torus and
host galaxy, each equatorially oriented with respect to the
BH. In the context of rotary core collapse SNe, the outer
shells collapse towards the plane of rotation where a sub-
stantial proportion of the debris forms a thick disk. Its mass
and proximity to the core impose tidal forces whose influ-
ence on the central BH will be more pronounced than in
AGN situations. The gravitational potential at radius r in
the plane of a circular hoop of radius R ≥ r ≥ 0 whose
linear mass density is λ is given by the following function
containing a complete elliptic integral of the first kind K(k):

Φhoop(r) =
R

r
Φhoop

(R2

r

)

= −4GλR

R + r
K

(

2
√
Rr

R + r

)

(B.17)

Φhoop decreases monotonically from the centre (r = 0)
to negative infinity as r → R. In elementary functions, it can
be proven (by using series expansions for the elliptic inte-
gral and differentiating) that the internal (g int) and external
(g ext) gravitational accelerations are bounded as follows:

π ≤ (R 2− r2)g int

rGλ
≤ 4 ≤ (r2−R 2)g ext

RGλ
≤ 2π (B.18)

The lower bound corresponds to r ≪ R, the central
limit to r → R and the upper bound is the asymptotic be-
haviour as r → ∞. These functions are readily integrated
in many situations and permit the simple construction of
models in which one may be interested in calculating conser-
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vative estimates. For increased accuracy, interpolations are
available whose maximum errors are ∼ 0.2% at r/R ∼ 0.57
for the internal gravity and ∼ 0.9% at r/R ∼ 1.29 for the
external gravity, which is oppositely directed:

g int(r) ≈ Gλr

[

4

R 2 − r2
− 4− π

R(R 2 − r2)1/2

]

(B.19)

g ext(r) ≈ GλR

[

4

R 2 − r2
− 2π − 4

r3/2(r2 −R 2)1/4

]

(B.20)

Of immediate interest are truncated disks of constant
areal mass densities σ. Integration leads to the following
approximation for the gravity within a thin truncated disk
(0 ≤ r ≤ Rα < Rβ) where Rα and Rβ are the disk’s radii at
the inner and outer rims respectively:

g ≈ 2Gσ log

[

(Rα + r)(Rβ − r)

(Rα − r)(Rβ + r)

]

− (4− π)Gσ

[

cos−1
( r

Rβ

)

− cos−1
( r

Rα

)

]

(B.21)

It is often assumed that BH accretion disks are trun-
cated some distance from the event horizon because stable
circular orbits are forbidden within rms, the innermost ra-
dius of marginal stability. For Schwarzschild BHs, rms =
6M , for retrograde extremal Kerr orbits, rms = 9M , and for
prograde extremal Kerr orbits, rms →M . Instability implies
that material penetrating within these boundaries is accel-
erated towards the event horizon, so that these regions can
scarcely be totally vacated. The acceleration experienced by
infalling material, according to Newton’s third law, is coun-
terbalanced by a smaller but oppositely directed acceleration
of the Planckian singularity towards the surrounding disk.
When the singularity is teased towards larger radii, the BH
is likely to accumulate further angular momentum. Hence,
continued accretion and tidal distortion can reinforce the
distortion, making it conceivable that nonstationary accre-
tion into the event horizon, coupled with continuous disk
replenishment, could maintain a TBH against collapse for
prolonged periods. According to this view, a TBH might
evolve from a spheroidal BH and vice versa — topological
transitions of both kinds being possible. This enhances the
probability of TBH formation, circumventing the need for
collapse of a toroidal dust cloud or star as outlined in sec-
tion 2. It also raises the question of whether the nuclei of
some galaxies are revived into activity following a dormant
stage e.g. by tidal interaction with nearby galaxies or more
directly, following mergers. Elliptical galaxies, believed to be
the outcomes of mergers, host an overabundance of AGN.

In conclusion, though Kerr’s metric for rotating black
holes is rightly celebrated as one of the landmark discoveries
of 20th century science, the subsequent failure to satisfacto-
rily unite the classical theory of general relativity with quan-
tum mechanics remains a severe impediment to an under-
standing of nature. Until this fundamental obstacle can be
overcome, one must be fully aware of the inherent drawbacks
of myopic alternatives. Black hole topology is a subject un-
suitable for purely classical computations, however sophisti-
cated the mathematical veneer. Extreme caution should be
employed if results are to be usefully construed. The rule of
thumb calculations presented here are suggestive that an ul-
timate theory might accommodate the possibility of toroidal
black holes, temporarily stabilised on astrophysically rele-
vant timescales by the action of accretion, tidal deformation

Figure B.2. Depiction of a rotating electrically charged torus
exhibiting a dipole magnetic field in the non-rotating frame. The
field lines channel plasma from a surrounding accretion disk into
the central aperture where jets are outwardly accelerated along
the spin axis by ergoregional interactions.

and Planck scale repulsion. The basis of the scenario advo-
cated for supporting TBH stability is summarised below:

• Black holes will often be formed with nearly maximal
rotation e.g. from collapse of moderately rotating stellar pro-
genitors. Accretion via a thin disk can also lead to a rapid
build-up angular momentum. Astrophysically realistic ratios
of a/m can approach 0.998. Near-extremal black holes are
therefore predicted to exist in rotary core-collapse super-
novae, galactic nuclei and accreting black hole binary sys-
tems. In all situations, tidal stresses are exerted by matter
exterior to the event horizon which orbits in the equato-
rial plane. Disk truncation decreases as extremality is ap-
proached, the radius of the innermost stable orbit and the
singularity converge towards that of the event horizon. Mass
steadily migrates into the event horizon by accretion, bridg-
ing the zone of disk truncation and bolstering the tidal forces
acting on the singularity.

• The Kerr geometry is in some respects unphysical —
it contains a homogeneous ring singularity rotating at the
speed of light, infinite spacetime curvature at the location
of the singularity, closed timelike paths within its Cauchy
horizon and makes no provision whatsoever for quantum
mechanics. Furthermore, all attempts to match the exterior
metric with realistic non-vacuum internal distributions of
matter have thus far failed.

• If collapse halts at the Planck-scale, the velocity of ro-
tation could decrease to ∼ 0.993c, suppressing the spacetime
curvature in the vicinity of the singularity making it suscep-
tible to tidal deformation by surrounding structures e.g. thin
disks, thick disks and tori. High energy effects such as grav-
ity ‘leaking’ into higher dimensions may additionally modify
the rotational velocity of the singularity. Radial elongation
of the Planck singularity is conducive to the accumulation
of angular momentum beyond that of undistorted configura-
tions, acting as a barrier against collapse should accretion be
interrupted. Sustained accretion and tidal distortion might

ultimately result in toroidal event horizon topology.
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