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Abstract

Theoretical reaction rates in the temperature range 0.01 x 10° < T(K) <
10.0 x 10° are calculated in the statistical model (Hauser-Feshbach formal-
ism) for targets with 10 < Z < 83 (Ne to Bi) and for a mass range reaching
the neutron and proton driplines. Reactions considered are (n,7y), (n,p),
(n,a), (pyy), (pP,@), (,y), and their inverse reactions. Reaction rates as
a function of temperature for thermally populated targets are given by
analytic seven parameter fits. To facilitate comparison with experimental
rates, the stellar enhancement factors are also tabulated. Two complete
sets of rates have been calculated, one of which includes a phenomeno-
logical treatment of shell quenching for neutron-rich nuclei. These ex-
tensive datasets are provided on-line as electronic files, while a selected
subset from one calculation is given as printed tables. A summary of the
theoretical inputs and advice on the use of the provided tabulations is
included.
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1 Introduction

Nuclear reaction rates are an essential ingredient for all investigations of nu-
cleosynthetic or energy generating processes in astrophysics. Highly unstable
nuclei are produced in such processes which again can become targets for sub-
sequent reactions. Cross sections and astrophysical reaction rates for a large
number of nuclei are required to perform complete network calculations which
take into account all possible reaction links and do not postulate a priori sim-
plifications. Despite concerted experimental efforts, most of the involved nuclei
are currently not accessible in the laboratory and therefore theoretical models
have to be invoked in order to predict reaction rates.

In predictions of cross sections and reaction rates for astrophysical appli-
cations, slightly different points are emphasized than in pure nuclear physics
investigations. Firstly, one is confined to the very low-energy region, from ther-
mal energies up to a few MeV. Secondly, since most of the ingredients for the
calculations are experimentally undetermined, one has to develop reliable phe-
nomenological models to predict these properties with an acceptable accuracy
across the nuclear chart. This task is made even harder by the lack of infor-
mation on specific properties, such as optical potentials for « particles at the
astrophysically relevant energies even for stable nuclei. Therefore, one has to be
satisfied with a somewhat more limited accuracy, as compared to usual nuclear
physics standards. The accuracy of the rates is estimated to be within a factor
of 1.5—2, with an even better average deviation, e.g. of 1.4 for neutron capture.
Considering the substantially larger uncertainties in many astrophysical scenar-
ios, this seems to be acceptable. Thus, the real challenge is not the application
of well-established models, but rather to provide all the necessary ingredients
in as reliable a way as possible, also for nuclei where no such information is
available. Many efforts have been directed at addressing those problems and
the current status of the investigations make it worthwhile to publish a full



set of theoretical rates, intended to supersede early reaction rate tabulations
L, B, B [ B A

For the majority of nuclear reactions in astrophysics, the statistical model
(Wolfenstein-Hauser-Feshbach approach) [El, H] can be applied. This is appro-
priate provided the level density in the contributing energy window around the
peak of the projectile energy distribution is sufficiently high to justify a statis-
tical treatment. The critical level density is usually estimated between 5 and
10 MeV~! [d]. Furthermore, the compound nucleus picture will only dominate
when the energy of the incident particle is low enough (< 20 MeV). While the
latter point is practically always satisfied in astrophysical environments, the
level density may fall below the critical value in certain nuclei lighter than Fe,
at shell closures, and for very neutron-rich or proton-rich isotopes near the drip
lines with correspondingly low separation energies. In these cases, single reso-
nances or direct capture contributions will become significant and have to be
treated individually. In this tabulation, we are not concerned with such effects
but rather give a full set of rates calculated in the statistical model. However,
the limits of its applicability will be discussed (Sec. @)

In the following section, we concisely summarize the theoretical background
for easy reference as well as the nuclear properties used as input in the calcu-
lations. This is followed by a section defining the reaction rates, explaining the
fitting procedure and giving more details on the tabulated values. The paper is
concluded by a summary and the rate tables.

2 The Statistical Model

2.1 Theory

The averaged transmission coefficients T' comprise the central quantities in sta-
tistical model calculations. They do not reflect a resonance behavior, but rather
describe absorption via an imaginary part in the (optical) nucleon-nucleus po-
tential [L0]. This leads to the well-known expression
h?/(2pi; Eij
O'MV(Ei‘) — ﬂ-ﬂ /( Hij ]) (1)
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for the cross section o of the reaction i*(j,0)m" from the target state i to
the excited state m” of the final nucleus, with a center of mass energy F;; and
reduced mass p;;. J denotes the spin, I/ the corresponding excitation energy,
and 7 the parity of excited states. When these properties are used without
subscripts they describe the compound nucleus; subscripts refer to states of the
participating nuclei in the reaction i#(j, 0)m" and superscripts indicate the spe-
cific excited states. The total transmission coefficient Tiot = ZV’O TY describes



the transmission into all possible bound and unbound states v in all energeti-
cally accessible exit channels o (including the entrance channel 7). Experiments
measure /P = 3" % (E;;), summed over all excited states of the final nucleus,
with the target in the ground state. Target states p in an astrophysical plasma
of temperature T are thermally populated and the astrophysical cross section
o™ is given by

2RI+ Dexp(=E]/KT™) 32, 0 (Eij)

o*(Bij) = >, (2J + 1) exp(—El' [kT™) :

(2)

k being the Boltzmann constant. The summation over v replaces TY(E, J, ) in
Eq. (fl) by the total transmission coefficient

To(E, Jm) = > TY(E,J.m By, ) (3)
v=0

E—Sm,o
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B I Tm
Here S,,,, is the channel separation energy, and the summation over excited
states above the highest experimentally known state v, is changed to an inte-
gration over the level density p. The summation over target states x in Eq. ([)
has to be generalized accordingly.

The important ingredients of statistical model calculations as indicated in
Eqs. () through (B) are the particle and y-transmission coefficients 7' and the
level density of excited states p. Therefore, the reliability of such calculations
is determined by the accuracy with which these components can be evaluated
(often for unstable nuclei). It is in these quantities that various statistical model
calculations differ. The reaction rates given in this paper are calculated with
the code NON-SMOKER  |[L1], derived from the well-known SMOKER code [fj].
(The code MOST [[LJ] is another code derived from SMOKER.) In the following
we want to briefly outline the methods utilized in that code to estimate those
nuclear properties. The challenge is in the goal to provide them in as reliable a
way as possible, also for unstable nuclei for which no experimental information
is available. Thus, global descriptions are employed which minimize the overall
error and are trusted to be reliable also far from stability.

2.2 Transmission Coefficients

The transition from an excited state in the compound nucleus (E, J,7) to the
state (E!',J!,7!') in nucleus 4 via the emission of a particle j is given by a

1 ?7% 7

summation over all quantum mechanically allowed partial waves
J+s Ji+J;

T;L(Ev JvavaiﬂvﬂzH) = Z Z szs(E%uj)- (4)
l:|J—s\s:\Ji“—Jj|



Here the angular momentum [ and the channel spin § = fj + J:-“ couple to
J =1+ 5. The transition energy in channel j is Ef;—~E — Sj — E}', where S is
the channel separation energy.

The total transmission coefficients for this tabulation are then calculated by
applying Eq. (E) and utilizing up to 19 experimentally known excited states.
The data are taken from [B], up to the first level for which the spin assignment
was not known. Ground state spin and parities are known for many unstable
nuclei. Far off stability, ground state spins and parities are taken from ], if
experimental values are not available.

2.2.1 Particle Transmission Coefficients

The individual particle transmission coeflicients Tj,, are calculated by solving
the Schrodinger equation with an optical potential for the particle-nucleus inter-
action. We employ the optical potential for neutrons and protons given by [[Lg],
based on microscopic infinite nuclear matter calculations for a given density,
applied with a local density approximation. It includes corrections of the imag-
inary part [E, E]

The optical potential for a particles from ] was shown to be quite accurate
for a wide range of nuclei and is used in this work. However, it was realized
[E, @] that for heavily charged nuclei a more sophisticated potential had to be
adopted at the comparatively low energies of astrophysical interest. Promising is
the folding approach [@], with a parameterized mass- and energy-dependence of
the real volume integral . Microscopic and deformation information should
be considered in the parametrization of the imaginary potential [@] However,
due to the scarcity of experimental data, the potential parameters can as yet
only be extracted for a limited mass and energy range. The optical a+nucleus
potential is likely to introduce the largest uncertainties in the charged particle
rates presented here. Further experimental work is clearly necessary and most
welcormne.

Deformed nuclei are treated by using an effective spherical potential of equal
volume, based on averaging the deformed potential over all possible angles be-
tween the incoming particle and the orientation of the deformed nucleus.

2.2.2 Radiative transmission coefficients

At least the dominant ~y-transitions (E1 and M1) have to be included in the
calculation of the total photon width. The smaller, and therefore less important,
M1 transitions are treated, as usual, in the simple single particle approach
(T  E* [24]), as also discussed in [f|. The E1 transitions are calculated on the
basis of the Lorentzian representation of the Giant Dipole Resonance (GDR).
Within this model, the E1 transmission coefficient for the transition emitting a
photon of energy F., in a compound nucleus J“\*,Z is given by

SNZ e 1+ o i I E
TEl(EV) Z g (E2 o (5)
1
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Here, M is the proton mass, x(= 0.2) accounts for the neutron-proton exchange
contribution [@], and the summation over ¢ includes two terms which correspond
to the split of the GDR in statically deformed nuclei, with oscillations along
(¢ = 1) and perpendicular (i = 2) to the axis of rotational symmetry. Many
microscopic and macroscopic models have been devoted to the calculation of
the GDR energies (FEg) and widths (I'¢). Here, the (hydrodynamic) droplet
model approach [ is used for E¢g, which gives an excellent fit to the GDR
energies and can also predict the split of the resonance for deformed nuclei, when
making use of the deformation, calculated within the droplet model. In that
case, the two resonance energies are related to the mean value calculated by the
relations [@] Ec1+2Eg2=3Eq, Eg2/Ec1 =0.911n+0.089. 7 is the ratio of
the diameter along the nuclear symmetry axis to the diameter perpendicular to
it, and is obtained from the experimentally known deformation or mass model
predictions. For the width I'¢ of the GDR. the description of [@] is used, which
applies to spherical and deformed nuclei and can be described as a superposition
of a macroscopic width due to the viscosity of the nuclear fluid and a coupling
to quadrupole surface vibrations of the nucleus (see also [f]).

Direct application of Eq. (ﬂ) would overestimate the radiation width by
about 30% (see e.g. [R9, Bd]). This is due to the fact that, for low energy
~y-transitions, the Lorentz curve is suppressed and the GDR width increases
with excitation energy (e.g. [E]I, ) To account for these deficiencies, various
treatments of an energy-dependent width have been suggested. We use the
form [R]

E
Pa (By) =Toy/ 2 (6)
G

Another effect has to be taken into account for certain a-capture reactions.
Because of isospin selection rules, y-transitions between levels with isospin I = 0
are forbidden. This leads to a suppression of the cross section for («,y) reactions
on self-conjugate (N = Z) targets, due to isospin conservation. A suppression
could also be found for capture reactions leading into self-conjugate nuclei, al-
though somewhat less pronounced because I = 1 states can be populated ac-
cording to the isospin coupling coefficients. The suppression is usually treated
as a suppression of the v-width. In previous rate tabulations it was either ne-
glected [E] or accounted for in a phenomenological way by dividing the y-width
by quite arbitrary factors [E, E] In the code NON-SMOKER the appropriate
v-widths are obtained by explicitly accounting for isospin mixing and suppres-
sion of the appropriate y-transitions [@] A detailed account of the procedure
can be found in [BJ].

2.2.3 Width fluctuation corrections

In addition to the ingredients required for Eq. ), like the transmission co-
efficients for particles and photons, width fluctuation corrections W (j, o, J, 7)
have to be employed. They define the correlation factors with which all partial
channels for an incoming particle j and outgoing particle o, passing through the
excited state (E, J, ), have to be multiplied. This takes into account that the



decay of the state is not fully statistical, but some memory of the way of forma-
tion is retained and influences the available decay choices. The major effect is
elastic scattering, the incoming particle can be immediately re-emitted before
the nucleus equilibrates. Once the particle is absorbed and not re-emitted in the
very first (pre-compound) step, the equilibration is very likely. This corresponds
to enhancing the elastic channel by a factor W;. In order to conserve the total
cross section, the individual transmission coefficients in the outgoing channels
have to be renormalized to TJf. The total cross section is proportional to T}
and, when summing over the elastic channel (W;T}) and all outgoing channels
(T;,: — T7), one obtains the condition T;=T;(W;T}/T],) + Tj(T}p — T})/T}0
[B4]. We can (almost) solve for T7;

T = T
T+ THW; = 1)/ Ty,

(7)

This requires an iterative solution for 7" (starting in the first iteration with 7
and Tiot), which converges rapidly. The enhancement factor W; has to be known
in order to apply Eq. (ﬂ) A general expression in closed form was derived [@],
but is computationally expensive to use. A fit to results from Monte Carlo

calculations gave [B3]

2
Wj:1+w . (8)

For a general discussion of approximation methods see [, @] Eqgs. () and
(B) redefine the transmission coefficients of Eq. ([]) in such a manner that the
total width is redistributed by enhancing the elastic channel and weak channels
over the dominant one. Cross sections near threshold energies of new channel
openings, where very different channel strengths exist, can only be described
correctly when taking width fluctuation corrections into account. The width
fluctuation corrections of [@] are only an approximation to the correct treat-

ment. However, it was shown that they are quite adequate []

2.3 Level Densities

Until recently, the nuclear level density has given rise to the largest uncertainties
in the description of nuclear reactions in the statistical model [ﬁ, E, ﬂ] Imple-
mented in the NON-SMOKER code is a recently improved treatment [§]. It
is based on a shifted Fermi-gas formalism [@] with an energy-dependent level
density parameter a together with microscopic corrections from nuclear mass
models. This leads to improved fits to known level densities in a wide range of
masses [f[]. More sophisticated Monte Carlo shell model calculations [{(], as well
as combinatorial approaches (see e.g. [[t]]), have shown excellent agreement with
this phenomenological approach and justified the application of the Fermi-gas
description at and above the neutron separation energy.

An in-depth description of the model and its application to astrophysical
problems can be found in [E] Here, we only want to briefly summarize the inputs



used for calculating the rates presented in this tabulation. It should be noted
that we applied our description throughout the nuclear chart, without relying on
experimental level density parameters in specific cases as has been done before
[, E, @] This may lead to locally slightly larger deviations from experiment
but it improves the reliability when extrapolating to unknown isotopes.

The microscopic correction and the pairing corrections comprise crucial in-
puts for the level density formalism used here (see [fJ| for details). They can
be extracted from mass models. There is a choice of several mass models in
the NON-SMOKER code. The Finite Range Droplet Model (FRDM) [£d] and
an extended Thomas-Fermi approach with Strutinski Integral (ETFSI-Q) [[t3]
have been chosen for the reaction rate calculations in this work. It has to be
emphasized that experimental mass values [@] were included where possible.
This is straightforward for the separation energies which were calculated from
the mass differences; it was ensured that either only experimental or theoretical
values were used in the differences, thus avoiding unphysical breaks at transition
points from experiment to theory. The microscopic corrections were obtained by
subtracting the well-defined spherical macroscopic (droplet) term of the FRDM
from the total mass energy derived from experiment, from the FRDM or from
ETFSI-Q, respectively (cf. Eq. (17) in [E]) The validity of the resulting rates is
discussed in Sec. B.J. Rates based on other mass models can be obtained from
the authors on request or on-line (see Sec. fi).

The shifted Fermi-gas approach diverges for U = E —§ = 0 (i.e. E = 9,
if 6 is a positive backshift, with E being the excitation energy and § being an
energy shift due to pairing corrections). In order to obtain the correct behavior
at very low excitation energies, the Fermi-gas description can be combined with
the constant temperature formula ([Bd]; [B6] and references therein)

eXp(U/Tnucl)

U) x
p( ) Tnucl

(9)
The two formulations are matched by a tangential fit determining the nuclear
temperature Thycl-

2.4 Applicability of the Statistical Model

The statistical model can be applied provided that the use of averaged transmis-
sion coefficients (Eq. ({])) is permitted. This will be the case for high level den-
sities with completely overlapping resonances, typical for the compound nucleus
reaction mechanism. For light nuclei, decreasing particle separation energies or
at shell closures, level densities will eventually become too low for the appli-
cation of the statistical model at astrophysical temperatures. In those cases,
single resonances and contributions from the direct reaction mechanism have to
be taken into account [@] Based on the level density description outlined in
Sec. @, a quantitative criterion for the applicability was derived recently [E]
In the present work we give tables of all reaction rates regardless of applicability
but specify the allowed temperature range in the tables. The estimate is quite



conservative and thus the rates can still be accurate slightly below the given
lower limits of the temperature.

3 Astrophysical Reaction Rates
3.1 Definition

The nuclear reaction rate per particle pair at a given stellar temperature 7 is
determined by folding the reaction cross section ¢*(E) from Eq. (f]) with the
Maxwell-Boltzmann velocity distribution of the projectiles

("0} = {ov)" = <%>/ ﬁ O/Ooa*@)gexp (-

It has to be emphasized that only the use of the stellar cross section o* (Eq. (B))
yields a reaction rate with the desired behavior that the inverse reaction can
be calculated by using detailed balance. Therefore, laboratory rates — which
only measure ¢'?b = >, 0%, ie. the cross section with the target being in
the ground state — should always be measured in the direction that is least
affected by excited target states. This is usually the reaction with positive Q-
value (exoergic reaction). For astrophysical applications, such rates have to be
corrected for the stellar enhancement effect due to the thermal excitation of the
target [[]]. The stellar enhancement factors (SEF) f* are defined by

)dE . (10)

== - (11)

The values of f*for a range of temperatures for nuclei close to stability are given
in the tables. Stellar enhancement factors for neutron capture reactions and a
discussion of the involved uncertainties can also be found in a recent compilation
of neutron cross sections for the s process [[7.

3.2 Partition functions and reverse rates

The temperature-dependent partition function G(T*) normalized to the ground
state target spin J is defined as [@]

fim
QI+ DGT) = D (2T + 1) BT (12)
pn=0
B
+ Z (2J% + 1)e/ " p(e, J*, 1) de

Ehm Ju,mh
i

with p being the level density and pu,, the last included experimentally known
state. The included experimental levels were the same as for the calculation of



the transmission coefficients (Eq. (ff)). For the temperature range considered
here, the maximum energy E"** above which there are no more significant
contributions to the partition function is of the order of 20 — 30 MeV. With
that definition, the stellar reaction rate (o;v)* for a reaction with particles in
all channels is related to the rate of the reverse reaction (o,,v)* by

o (AANY? QUL+ DRL D GiTY) .
Nafomv)” = (AOAm> 2T + 1)(2Jm +1) G (T7) € Nalow)™
(13)

where N4 is Avogadro’s number, J and A are spins and masses A (in atomic
mass units u) of the particles involved in the reaction i(j,0)m, @ is the re-
action @-value. To calculate photodisintegration rates from capture rates the
appropriate relation is

N2 o | . *
)\’Y _ (AZAJ> (2(]1 + 1)(2JJ + 1) GZ(T ) (T*)3/2 Fe-Q/kT N4 <Uiv>*

Am (2Jm +1) G (T%)

(14)

For A\, in s~! and using the usual practical units, i.e. temperatures Ty = 7 /10°
K and N4 (ov)™ in cm® s~ mole™, one obtains

3/2 wkT*\ %% 1 3/2 0 i

= _ = . joet 1m .

(T*?F — - = T5/?0.8685 x 10°mole c (15)
e A

The numerical factor F as well as the spin and mass factors are already ac-
counted for in the parameter af” which is tabulated. See Sec. for further
details.

In the tabulated rates, the thermal effects are already considered. Statisti-
cal model calculations not including full photon cascades may also be prone to
some error arising from the decay of unbound particle states in reactions with
negative @-values (endoergic reactions). Furthermore, due to the exponential
dependence of the inverse rate on the @-value (Eqgs. ([[3) and ([[4)), inaccura-
cies in the rate would be strongly enhanced when computing the exoergic rate
from the endoergic one. In order to minimize the error, reactions are always
calculated in the exoergic direction (with the exceptions of capture reactions,
where photodisintegration is always treated as the reverse reaction regardless of
@-value) and detailed balance is applied to obtain the values for the endoergic
reaction. This treatment has the additional advantage that it ensures consis-
tent values for forward and reverse reactions, which is essential for application
in astrophysical nuclear reaction networks. To calculate the actual (endoer-
gic) reaction rate, those fits have to be multiplied by the ratio of the partition
functions of the final nucleus and the target G;/G,, at the appropriate temper-
ature (see Sec. and Sec. B.3.6). For that purpose, partition functions are
tabulated separately.

3.3 Analytic reaction rate fits

10



3.3.1 Parametrization

Reaction rates have been calculated for a temperature grid of 24 temperatures:
To=0.1,0.15,0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0, 6.0, 7.0, 8.0, 9.0, 10.0. For easy application in astrophysical investigations,

all reaction types ((n,7), (n,p), (m,a), (p,7), (P.n), (P,), (@,7), (n), (,p),
(v,n), (7,p), (v,a)) are fitted with the same parametrization

N (ov)” }

\ = exp (ao + ang_l + (ZQTg_l/B + a3T91/3 + a4y
Y

+CL5T§/3 + ag In Tg) ) (16)

with the seven open parameters ag — ag and the stellar temperature Ty given
in 10° K. This parametrization proves to be flexible enough to accommodate
the different temperature dependencies of the various reaction types across the
fitted temperature range of 0.01 < Ty < 10. Parametrizations of the present
rates in the form used in [JJ] and others can be obtained from the authors on
request.

3.3.2 Parameters for the reverse rates

The parameters for the reverse rates are not given explicitly but can easily be
computed from the information in the tables. To calculate the reverse rate of
the reaction i(j,0)m, i.e. the reaction m(o,7)i, Eq. ([l§) is employed and the

seven parameters af’ — ag’" for the reverse rate are determined as follows:
ay’ = af”, astabulated
ai®™ = a1 —11.6045Q
ay” = a
agev = aj
ayl’ = (17)
agcv = aj
e = { ae + 1.5 (1)
ag (i)

The above relations are derived from Eqs. (1) and ([4), using Eq. (1) and
taking the logarithms on both sides. For the coefficient ag®, case (i) applies
when calculating a photodisintegration rate from a capture rate, case (ii) for all
other rates. Finally, for the reverse reaction case, the value found by application
of Eqs. (IE) and @) has to be multiplied by the ratio of the partition functions
for residual and target nucleus G;/G,,. Examples are shown in Sec. .

3.3.3 Fit accuracy

The flexibility of the fitting function makes it prone to numerical problems
outside the calculated range at low temperatures, where the rates should be

11



close to zero. In some cases they tend to diverge strongly. This difficulty can be
avoided by providing fit data at low temperatures additionally to the calculated
values by appropriately extrapolating the rates to lower temperatures. This is
achieved by either assuming s-wave capture for Ty < 0.1 for exoergic neutron
capture reactions (Maxwellian averaged capture cross sections in the energy
range 5 < E < 100 keV for targets along the line of stability can be found in
another compilation @]) or by considering proper Coulomb barrier penetration
factors in the charged particle channels. Thus, both accuracy and flexibility can
be ensured within a single parametrization. However, it has to be emphasized
that the given parameterization is only valid within the temperature range of
0.01 < Ty < 10., although many fits will show “proper” behavior down to lower
temperature. Caution is advised when using derived (v,p) and (,n) rates at
the proton dripline (see below). For all cases, it is recommended to use the fits
only down to the temperature T\ given in the table. The temperatures of the
validity of the fits are given in the tables for each reaction, to emphasize the
importance of the given fit ranges.

As a measure of the accuracy of a given fit, the quantity ¢ is quoted in the

tables. It is defined by
24 2
1 T — fl
S 1
¢ 2421__1)( L) (18)

with r being the original rate value as calculated at each of the 24 temper-
atures To= 0.1, 0.15 ...10.0, and f the rate calculated from the fit at these
temperatures. Contributions with r < 1072° ¢cm® s~! mole™! are neglected as
lower accuracy at at low rates is inconsequential. Note that while a small value
of ¢ is indicative of an accurate fit over the entire temperature range, large ¢
generally signify deviations of the calculated from the fitted rate at the lowest
temperatures only.

The fit parameters are tabulated regardless of the validity of the statistical
model of nuclear reactions in the given temperature range (see Sec. @) The
estimated lower temperature limit of the validity of the statistical model, TIEI‘S
is given separately for each rate in the tables. Below that limit the calculation
of the rate by means of the statistical model may not be justified, although
the fit to the calculated rate will still be accurate. At temperatures below
the applicability limit, rates may be over-estimated and should be compared
to calculations considering single resonance and direct reaction contributions.
Especially close to the driplines, fits of reactions with low @Q-value cannot be
applied at low temperatures. Although the fit may be valid, it should not be
used at low temperature because the statistical model will not be applicable
anymore.

3.3.4 Computed rate sets

Two different sets of rates have been calculated. They differ in the mass model
used, which enters into the computation of the separation energies and @-values

12



as well as into the microscopic input to the level density calculation (see Sec. E)
One set was calculated employing the well-known FRDM mass model [@], which
excellently reproduces masses and other ground state properties of nuclei close
to stability. It is also the most comprehensive set across the nuclear chart.

Recently, it was suggested that so-called shell quenching effects may arise
for neutron-rich nuclei far off stability [49, p0|. Fully microscopic calculations
[@, Q] and experimental data @, @, , pfl] indicate the weakening of nuclear
shell gaps for neutron-rich nuclei. In the absence of microscopic calculations
of the required nuclear properties for the whole nuclear chart, it is possible to
phenomenologically include such quenching into existing mass formulae. This
has been done in the ETFSI-Q model [@], based on the ETFSI-1 mass model [@,
@]. However, it does not cover the full range of isotopes. Therefore, we provide
the alternative sets of reaction rates obtained with the two mass models, so that
the rates based on the FRDM can be used for large-scale studies and close to
stability, and the rates based on ETFSI-Q for investigations concerning neutron-
rich unstable isotopes and the r process. It has to be noted that one should
refrain from mixing rates from the two sets as this will lead to inconsistencies
and artificial effects in the results.

3.3.5 Mass ranges of the tabulated fits

Due to the extensive number of nuclear reactions in the considered mass range,
we have to limit the printed version of our reaction rate fits. Full rate libraries
both for reactions calculated with the FRDM and with the ETFSI-Q (as well as
ETFSI-1) mass model can be obtained on-line or from the authors on request
(see Sec. [). In the printed version, only the FRDM set is given and no capture
rates for reactions with negative @ value are shown.

The full electronic versions of the tables available on-line include all reactions
in the range 10 < Z < 83 (FRDM) and 24 < Z < 83 (ETFSI-Q). This amounts
to 5369 (FRDM) and 4628 (ETFSI-Q) involved nuclei. The isotope ranges for
which rate fits are available are given in Table A; for the FRDM, the mass range
is also indicated by the heavy lines in Tables IA-IC. Rate fits are given for all n-,
p-, and a-capture reactions and for those (n,p), (n,a), (p,n), (p,a), (a,n), and
(av,p) reactions having positive Q-value. Reverse rates are not given explicitly
but can be computed by a two-step procedure as described in Secs. and
B.3.4. The stellar enhancement factors close to stability as well as the partition
functions for all isotopes are given for a temperature grid of 24 temperatures:
Ty = 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 .

The printed Tables II-IV contain the following (calculated with the FRDM
mass model):

e (n,y) rate fits from stability to close to the neutron dripline in the range
10 < Z <49, and to N = Z + 59 for 50 < Z < 83 (Table II).

e (n,p) and (n,q) rate fits around stability in the range 10 < Z < 83 (Table
10).

13



(p,yY), (pm), (p,a), (ayy), (a,n), and (a,p) rate fits from proton-rich nuclei
to stability in the range 10 < Z < 50 (Tables III and IV).

e Reverse (endoergic) rates are not given explicitly but can be computed
with the help of partition functions from the information given in the

tables (see Secs. B.3.9, B.3-9).

e Stellar enhancement factors f* at selected 16 temperatures are only quoted
close to the valley of stability (Tables II-IV).

e Partition functions for all involved isotopes are given at selected 20 tem-
peratures in the range 0.1 < Ty < 10 (Table V).

An overview of the provided rates is given in Tables TA—IC, which show in
detail for which n-, p-, and a-induced reactions rate fit parameters are available
in Tables II-1IV, respectively.

3.3.6 Examples of use of tables

This section is intended to help with interpreting the information given in the ta-
bles. We give two examples for calculating the reaction rate for a given reaction
and its inverse reaction at a temperature of Ty = 2.0.

The first example is the capture reaction 2>Ar(p,y)3K. From Table III one
finds a Q-value of Q = 1.666 MeV and the parameters ag =128.39, a; = —4.0033,
az = 137.67, a3 = —276.87, ag =17.691, a5 = —1.0728, ag =123.68. With the
help of Eq. ([L6) one calculates N4 (ov)* = 92.5 cm®s~'mole~! at Ty = 2.0.
Because both I]EVI; and nggv are considerably smaller than our temperature Ty, it
is safe to assume that the statistical model is applicable and the fit to the rate is
valid. In order to obtain the value for the reverse rate, one first has to determine
the parameter values in the given parametrization. The parameter a;” = 151.83
is given in the table. The remaining parameters are derived according to Eq. ([L7)
for a photodisintegration rate. This yields a}®V = —23.3364, ai™" = 125.18; all
other parameters assume the same value as for the forward reaction. Using
those, Eq. (@) gives a value of \,’ =2.5x10% s~!. This has to be multiplied by
the ratio of the partition functions in order to obtain the valid rate factor for
3K (v,p)*° Ar:

 Gazar _, 1001

=21x10% L.
Y Goox | 71.203 X i

Ay = A

The values of the partition functions at Ty = 2.0 were taken from Table V.
Note that for capture rates the procedure is always the same as described above
regardless of whether it is an exoergic or an endoergic reaction.

The second example we consider is the reaction 24S(a,n)37Ar, again at
Ty = 2.0. It is not to be found in Table IV because of its negative @Q-value.
Therefore, one has to rely on Table II to calculate this reaction as the inverse
reaction of 37Ar(n,a)3*S. The parameters found in Table II are ag =20.072,
a1 = —0.019613, a2 = 1.8224, a3 = —4.759, a4 =0.56437, a5 = —0.033893,
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ag =1.7801, and Q = 4.63 MeV. Again, both T3 and nggv are lower than
the temperature of interest. The rate N4 (ov)* = 5.2 x 107 cm3s~'mole~! for
37Ar(n,a)34S results from the direct application of Eq. ([[§). In order to calcu-
late the rate of 3*S(a,n)?”Ar, the parameters are determined by application of
Eq. (7). This yields the value a}®¥ = —53.748448. The value of af* = 20.199
is taken from the table and all other parameters remain the same as for the
forward reaction. With Eq. (E) one arrives at the rate value 7’ = 1.272 x 1074
cm3s~tmole™! at Ty = 2.0. Multiplying this by the appropriate ratio of parti-
tion functions taken from Table V yields the final result

- Gspr 1.0

Ny (ov)* = " r/m =1.27x107* em3s tmole ™.

4 Summary

Thermonuclear reaction rates for neutron-, proton- and a-induced reactions and
their inverses have been calculated in the statistical model. All rates from the
proton dripline to the neutron dripline for 10 < Z < 83 (Ne to Bi) have been fit-
ted to a unique function with seven free parameters. Tables of these parameters
are provided on-line for two sets of rates, calculated with input from two dif-
ferent mass models. Furthermore, the stellar enhancement factors are given in
order to facilitate comparison with experimental ground state rates. A printed
subset of the on-line tables for the FRDM presented here shows fit parameters
for (n,y) and (p,y) reactions from close to their respective driplines to stabil-
ity, and for other n-, p-, and a-induced reactions with positive @)-values near
stability. A prescription on deriving rates for inverse reactions with negative
@-values is given, as is a listing of the necessary partition functions.

It should further be noted that only purely theoretical rates are given here
which do not use any direct experimental information (except for nuclear masses
and excited state information where available). The methods to predict nuclear
properties needed in the statistical model calculations are chosen to be as reliable
as possible in order to retain predictive power. This is a compromise which
may lead to locally enhanced inaccuracies but it emphasizes the importance of
reliable predictions of rates far off stability.

In real applications, these rates should be supplemented or replaced with
experimental rates as they become available. Such a combination of theo-
retical and experimental rates is provided, e.g., in the REACLIB compila-
tion. Latest information on the current version of REACLIB can be found
on the WWW at |/|attp://ie.lbl.gov/astro.htm}/. Further details on the NON-
SMOKER code and the cross section and reaction rate calculations are presented
at [[lottp://quasar.physik.unibas.ch/~tommy reaclib.htm]/. Rates including fur-
ther mass models can also be obtained from the authors on request or directly
at the latter URL.
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5 Explanation of Tables

Table IA: Neutron-Induced Reaction Rates Available in Ta-
ble I1

This is an overview of which neutron-induced reaction rates are available in the
printed and the online versions. The full lines delimit the range of rates in the
electronic version as given in Table A for the FRDM. The entries at a single
neutron and proton number specify the reactions on the given target nucleus
listed in the printed Table II. Only reactions with positive @-value are shown.
In addition to the marked rates, their reverse rates (with negative Q-value) can
be inferred from the information in Table II as explained in Sec. . The
reactions are denoted as follows:

G (n,7)
p (1,p)
A (n,«)

The box at the lower left corner gives the location in the Z, N plane of the
final nucleus relative to the target nucleus for (n,7), (n,p), and (n,«), thereby
specifying also the inverse reaction fits derivable from Table II.

Table IB: Proton-Induced Reaction Rates Available in Ta-
ble II1

Same as Table IA but for proton-induced reactions. The marked reactions
correspond to the entries in Table III. The reactions are denoted as follows:

G (Py)
N (p,n)
A (p,a)

The box at the lower left corner gives the location in the Z, N plane of the
final nucleus relative to the target nucleus for (p,v), (p,n), and (p,«), thereby
specifying also the inverse reaction fits derivable from Table III.

Table IC: Alpha Particle-Induced Reaction Rates Available
in Table IV

Same as Table IA but for a-particle induced reactions. The marked reactions
correspond to the entries in Table IV. The reactions are denoted as follows:

G (@)
N (a,n)
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I (a,p)

The box at the lower left corner gives the location in the Z, N plane of the
final nucleus relative to the target nucleus for («,7), (o,n), and (a,n), thereby
specifying also the inverse reaction fits derivable from Table IV.

Table II: Neutron-Induced Reaction Rates

Fits to stellar rates N4 (ov)” for (n,y), (n,p), (n,a) reactions, calculated includ-
ing masses from the FRDM. The rates in cm® mole™! s~! are computed by
the use of Eq. ), with the temperature given in units of 10° K. The fits are
valid in the temperature range 7)1 < Ty < 10, with T} given in the table. It
should be noted that while the fit may still be formally valid and accurate, the
application of the statistical model may not be justified at low temperatures.
An estimate for the applicability of the statistical model is given by T{F. The

following information is provided:

Target Reaction target

Reaction Reaction type and final nucleus

Q Reaction Q-value

Ji Target ground state spin (same as in Table V)

J Final nucleus ground state spin (same as in Table V)

TiE Estimate of the lower temperature limit for the applicability of the

(Hauser-Feshbach) statistical model; “n.c.” indicates that the limit
was not calculated for the given reaction.

nggv Lower temperature limit for the fit; usually 0.01. Note that the fits
give extrapolated rates below Ty = 0.1, which may be less accurate,
especially if they are very small.

Dev Fit accuracy ¢ (Eq. (L))

SEF If the field is blank, the seven fit parameters below are followed

by the stellar enhancement factors (SEF) f* (Eq. (1)) at the 16
temperatures given in the head of the table.

A value of 1 indicates that all SEF are unity; no SEF are printed.
A value of 0 indicates that no SEF were calculated.

ag. .. ag Seven fit parameters for the forward rate
ay’™y First parameter for the reverse rate fit (see Sec. B.3.9)

TSEY Temperatures at which the SEF were calculated
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Table III: Proton-Induced Reaction Rates

Same as Table I for the reaction types (p,y), (p,n), (p,c).

Table IV: Alpha Particle-Induced Reaction Rates
Same as Table I for the reaction types («,7), (a,n), (a,p)-

Table V: Partition functions

Partition functions of isotopes for various temperatures calculated with a level
density making use of FRDM input. Included are only those partition functions
for nuclei involved in the reactions given in Tables II-IV.

Nuc Isotope for which the partition functions are tabulated.

Ty Temperature (in 10° K) at which the partition functions have been
calculated.

P A value of 1 indicates that all partition function are unity; no par-

tition functions are then printed explicitly.

Spin Ground state spin of nucleus, either from experiment [@] or from

theory [[L4].

Partition Functions: Partition functions normalized to the ground state (Eq. ([12))
for the 20 temperatures specified in the table header.
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Table 1: This table lists the isotope range of the full rate tables which are
available electronically. Given are the charge number Z of a target and the
lower and upper limits Ny, and Npax of the neutron number in the isotopic
chain.

FRDM ETFSI-Q FRDM ETFSI-Q

Z  Nmin  Nmax  Nmin  Nmax Z  Nmin  Nmax  Nmin  Nmax

8 5 10 47 41 113 41 111

9 5 28 48 42 115 42 112
10 5 31 49 43 117 43 113
11 6 33 50 44 119 44 114
12 7 35 51 46 121 46 115
13 8 38 52 47 124 47 124
14 8 40 53 48 126 48 126
15 8 42 54 49 128 49 128
16 8 44 55 51 130 51 130
17 9 46 56 52 133 52 132
18 9 49 57 53 135 53 133
19 10 51 58 55 137 55 134
20 10 53 59 56 139 56 135
21 11 55 60 58 141 58 136
22 12 58 61 59 144 59 137
23 13 60 62 61 146 61 138
24 14 62 18 62 63 62 148 62 139
25 15 64 18 64 64 64 150 64 150
26 16 66 19 66 65 65 153 65 152
27 17 69 19 67 66 67 155 67 154
28 18 71 20 68 67 69 157 69 155
29 19 73 21 69 68 70 159 70 156
30 21 75 22 70 69 72 161 72 157
31 22 7 23 71 70 73 164 73 158
32 23 80 24 72 71 75 166 75 159
33 24 82 25 73 72 7 168 7 160
34 25 84 26 84 73 78 170 78 161
35 26 86 27 86 74 80 173 80 162
36 27 88 28 88 75 81 175 81 163
37 29 91 29 89 76 83 177 83 177
38 30 93 30 90 7 85 179 85 179
39 31 95 31 91 78 87 182 87 182
40 32 97 32 97 79 88 184 88 184
41 33 99 33 99 80 90 186 90 186
42 35 102 35 102 81 92 188 92 188
43 36 104 36 104 82 93 191 93 191
44 37 106 37 106 83 95 193 95 193
45 38 108 38 108 84 98 193 98 193
46 40 110 40 110 85 101 195 101 195
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The remaining tables can be found on the ADNDT
server

or at http://quasar.physik.unibas.ch/~tommy/adndt.html].
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