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Unbiased reconstruction of the mass function using

microlensing survey data.

C. Alard
Institut d’Astrophysique de Paris, 98bis Boulevard Arago, F-75014.

ABSTRACT

The large number of microlensing events discovered towards the Galactic Bulge bears
the promise to reconstruct the stellar mass function. The more interesting issue con-
cerning the mass function is certainly to probe its low mass end, near the region
occupied by the brown dwarfs. However due to the source confusion, even if the distri-
bution and the kinematics of the lenses are known, the estimation of the mass function
is extremely biased at low masses. The blending due to the source confusion biases
the duration of the event, which in turn dramatically biases the estimation of the
mass of the lens. To overcome this problem we propose to use differential photometry
of the microlensing events obtained using the image subtraction method. Differential
photometry is free of any bias due to blending, however the drawback of differential
photometry is that the baseline flux is unknown. In this paper we will show that even
without knowing the baseline flux, purely differential photometry allow to estimate
the mass function without any biases. The basis of the method is that taking the scalar
product of the microlensing light curves with a given function and taking its sum over
all the microlensing events is equivalent to project the mass function on another func-
tion. This method demonstrates that there is a direct correspondancy between the
space of the observations and the space of the mass function. Concerning the function
to use in order to project the observations, we show that the principal components
of the light curves are an optimal set. We also demonstrate that there is no addi-
tional information about the distribution of the scalar products of the data beyond
their sum (first order moment). Higher order moments are only linear combination of
the first order moment. Thus the sum of the projection on the principal components
contains all the information, and translate in an equal number of projection of the
mass function with functions associated with the principal components. To illustrate
the method we simulate data sets consistent with the microlensing experiments. By
using 1000 of these simulations, we show that for instance the exponent of the mass
function can be reconstructed without any biases.
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1 INTRODUCTION.

The success of the microlensing experiments has been im-
pressive, several collaborations have reported the detection
of microlensing amplification of stars, OGLE (Udalski et al.
2000), MACHO (Alcock et al. 1998), EROS (Derue et al.

1999)), DUO (Alard & Guibert 1997), VATT (Uglesich et

al. 1999). In particular, the recent release by the OGLE
II collaboration of more than 200 microlensing events is of
great interest. One of the obvious promises of such data sets
is the possibility to explore the mass function near the low
mass end. Although, the relation between the mass function
and the microlensing observations is not straightforward. In
the classical scheme of analysis, one must first estimate the
duration of the events by fitting the theoretical light curves,

then compute the lensing rates, and finally relate these lens-
ing rates to the mass function. The trouble is that fitting the
theoretical light curve to the microlensing data to obtain the
duration of the event is a highly degenerated process (Alard
1997, Han 1997, Wozniak & Paczyǹski 1997). Due to the
source confusion in crowded fields, it is almost impossible to
estimate the flux of the amplified source reliably. The flux
of the source is severely biased by blending with neighbor-
ing sources. In such case, an over-estimation of the baseline
flux will result in an under-estimation of the duration of the
event. This bias is severe for unresolved stars and will re-
sult in a reduction in the estimation of the duration of a
factor of 2,3, or even more. Since the bias on the mass of
the lens goes like the square of the bias on the duration, the
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relevant bias on the mass function will be very large. It was
already shown (Alard 1997, Han 1997) that the contribu-
tion of these unresolved, highly blended stars to the lensing
rated was dominant at short durations. The consequence is
that the estimation of the mass function at low mass end
will be largely over-estimated, suggesting the existence of a
large number of brown dwarf that actually do not exists.
It is obvious that as long as the bias due to the blended
sources has not been solved, any correct estimation of the
mass function is impossible. This paper proposes a solution
to this problem. We will see that using differential photom-
etry obtained using the image subtraction method (Alard
& Lupton 1998, Alard 2000) it is possible to estimate the
mass function, even without knowing the baseline flux of
the source. This method assumes that the distribution and
kinematics of the lenses are known with good accuracy. It
is important to emphasize that the uncertainties related to
the structure of the Galaxy in the bulge region are several
order of magnitude smaller than the uncertainties due to the
blending bias. Many good model of the kinematic and struc-
ture of the bulge of our Galaxy are already available (Zhao,
1996, Fux 1997, Bissantz et al., 1997, Binney, Gerhard, &
Spergel 1997)

2 THE METHOD.

2.1 Introduction

When analyzing microlensing observations one has to deal
with the light curves of a number N of microlensing can-
didates. We will assume that we have purely differential
photometry only, with a baseline flux equal to zero. We em-
phasize that high quality differential photometry can always
be obtained after the events have been detected by classi-
cal methods by using the image subtraction method (Alard
1999). These light curves will be represented by the symbol
Si(t), (j = 1, .., N). Assuming that un-amplified flux of the
source is A, the expression of the Si(t) as a function of time
will be given by the theoretical microlensing amplification
formula:

Sj(t) = (A− 1)
u(t)2 + 2

u(t)
√

u(t)2 + 4
(1)

With:

u(t) =

√

u2
0 +

(

t

tE

)2

(we recall that we are working in the assumption that we
have at our disposal a differential flux only, with for conve-
nience a baseline flux equal to 0).

The most important issue is of course how do we relate these
observations to the microlensing parameters: the impact pa-
rameter, u0, and the time to cross the Einstein ring: tE. And
furthermore how do we relate the microlensing parameters
to the mass function itself. The first serious difficulty we
encounter is that of course u0, tE, cannot be extracted eas-
ily by fitting the light curve due to the extreme blending
degeneracy (Alard 1997, Han 1997, Wozniak & Paczynski
1997). Thus our first and most essential step will be to de-
rive a better set of parameters. This set of parameters will

have to be non degenerated with respect to blending. The
most simple and most natural way to deal with such prob-
lem is to express the observations as a linear combination
of a small number of vectors. The best way to make such
a decomposition is known as principal components analysis,
it is equivalent to an eigen value decomposition. Thus all
we have to do is to look for the firsts eigen functions, and
to calculate the scalar product of the components with our
vectors (time series) of observations.

2.2 Normalization

Before making the principal components analysis we have
to consider that one of the parameters, the amplitude of the
magnified sources does not contain any information about
the lensing event. Actually the reason of the the degener-
acy of the fit is precisely the unknown amplitude of the
source. The only relevant and meaningful parameters are
u0 and tE. Thus it is important to derive an estimator which
is independent of the amplitude. Since the amplitude is a
linear parameter, it is sufficient to normalize the vector of
observations in order to get rid of the amplitude. This nor-
malization can be made in the sense of the scalar product
we are going to use to make our principal components de-
composition. In such case, the normalized light curve Si(t)
can be expressed as:

Si(t) =
1

α
× u(t)2 + 2

u(t)
√

u(t)2 + 4

And:

α =

√

√

√

√

∫

[

u(t)2 + 2

u(t)
√

u(t)2 + 4

]2

dt

Note that A(t) does not depend any more on the amplitude,
but only on u0 and tE.

The most simple way to apply the previous normalization
to the observations Sj is to calculate directly the modulus
of |Sj | from the observations. Although it is obvious that
calculating directly |Si| from the observations may not be
optimal. To estimate |Si| we will use the following approach:
first we fit a microlensing model to the observations. Even
if the fit is very degenerated, one can always find a good so-
lution which fits the data well. We will call this fitted model
S̃i. Once we get this light curve solution we estimate using
the following formula:

|Si| =
√

∫

S̃i(t)
2
dt

We will use the same approach for all our other calculations,
in the same way we will estimate the principal components
not by taking directly the data, but by taking the models we
have fitted to the light curves. And finally the scalar prod-
ucts with the principal components will be also estimated
by cross products with the theoretical models.
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2.3 Principal components

As we have already explain, we will first fit a microlensing
model S̃i to the light curves, normalize this series of N vec-

tors to obtain the series of vectors S̃i, and then calculate the

principal components of these S̃i vectors. Usually it is pos-
sible to express almost all the information with a reduced
number of principal components with the following linear
decomposition:

S̃i =
∑

j

aij Pj(t)

Where aij is the projection of time series number i,
S̃i (u0, tE, t) on the principal component number j:

aij (u0, tE) =

∫

S̃i (u0, tE, t) Pj (t) dt

Note that aij is a function of u0 and tE: aij = β (u0, tE)

For instance a typical set of 100 microlensing light curves
can be expressed as the combination of only 4 components
with an accuracy good to 1 %. The other principal compo-
nents contains very little additional information, but mostly
noise.

2.4 Statistical distribution of the projections on

the principal components.

We consider that most of the information is contained in
a number NC of principal components. Thus almost all the
information can be extracted from the distribution of the
projection of the N1 time series on the NC principal compo-
nents. The first meaningful quantity concerning the distribu-
tion of the aij is the first order moment of the distribution:

〈aj〉 =
∑

i

aij

The second interesting quantity is the second order moment
of the distribution:

〈

a
2
j

〉

=
∑

i

a
2
ij

But it is important to notice, that a2ij = [β (u0, tE)]
2, can be

written as a scalar product of the data with a given function.
Since we can always find a function F (t) such that:

a
2
ij = [β (u0, tE)]

2 =

∫

S̃i (u0, tE, t) F(t) dt (2)

Proof:

To prove that F (t) exists we have to show that Eq. (2) can
be satisfayed for any point in the space of the parameters
(u0, tE). We can map this parameter space by using a regular
grid with a step as small as we like. This grid will have an
almost infinite number of rows (Nu) and columns (Nt). The
total number of points in the grid is: NG = Nu × Nt. We
define F (t) by sampling this function in NG points within
the limits of the parameter space of the variable t. Since NG

is very large, one can always approximate Eq. (2) with the

following formulae:

a
2
ij =

[

∑

m

Si (u
k
0 , t

l
E, tm) Fm

]

×∆T

The above equation can be written NG times (for all the
points in the grid). Since we have also NG unknown val-
ues Fm, we can write a full system of NG linear equations,
which will allow to find the NG values Fm which represents
the function F (t). Thus the function F(t) exists for all val-
ues of u0 and tE.

Using the principal components decomposition of S̃i we can
write:

a
2
ij ≃

NC
∑

j=1

[
∫

Pj (t) F(t) dt

]

aij

Thus, finally we see that the distribution of the second mo-
ment is not more than a linear combination of the the NC

firsts moments (mean). Thus the mean of the second mo-
ment will not bring any additional information with respect
to the mean. With a similar reasoning it is possible to show
that the same property is true for the N th moment.

Consequently we can conclude that all the information con-
cerning the distribution of the aij is contained in the mean
of these components. No additional information (uncorre-
lated information) will be found by looking at higher order
moments.

2.5 From the principal components to the mass

function.

It is possible to re-express the previous definition of 〈aj〉
by using the number density ρ(u0, tE,M) to observe a given
amplification of parameters (u0, tE) with a lens of mass M.
In such case, the sum can be approximated very closely with
an integral expression:

〈aj〉 ≃
∫ ∫ ∫

ρ(u0, tE,M) aj (u0, tE) du0 dtE dM

If we define the efficiency function of the experiment,
Θ (u0, tE), the lensing rates for 1 solar mass lenses, Γ0(t)
and the mass function, φ(M) the formulae for ρ reads:

ρ (u0, tE,M) = Γ0

(

tE√
M

)

φ(M) Θ (u0, tE)

Leading to the following expression for 〈aj〉:

〈aj〉 ≃
∫ ∫ ∫

Γ0

(

tE√
M

)

φ(M) Θ (u0, tE) aj (u0, tE) du0 dtE dM

It is easy to re-arrange this integral in the following way:

〈aj〉 ≃
∫

ψ(M)φ(M) dM

With:

ψ(M) =

∫ ∫

Γ0

(

tE√
M

)

Θ(u0, tE) aij (u0, tE) du0 dtE(3)

Thus we see that basically projecting the microlensing light
curve on a basis of function and taking the statistical sum is
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equivalent to projecting the mass function itself on another
function. Consequently, we see that a projection in the space
of the observation (the light curve) is directly equivalent to
a projection in the space of the mass function. The problem
of finding the optimal set of projections for the observations,
is solved by using the principal component method. Then all
we have to do is to calculate the “image” of these principal
components in the space of the mass function.

3 MONTE-CARLO SIMULATIONS.

3.1 Introduction.

To illustrate this method and show how the mass function
can be reconstructed, we will use a series of Monte-Carlo
simulations. We will simulate microlensing events by select-
ing the parameters of the events according to the density
distribution, ρ(u0, tE,M). One additional parameter we will
have to select is the amplitude of the source. To get random
variables which reproduces the distribution ρ we need to de-
compose the problem. Basically ρ(u0, tE,M) has 3 parts:

- The rates, ΓM (tE):

ΓM (tE) = Γ0(
tE√
M

)

For Γ0 we will adopt the analytical expression given in Mao
& Paczyǹski (1996).

The efficiency function, Θ(u0, tE):

For the efficiency we will adopt the following criteria: an
event is detected if it has a minimum number (Nm) of data
points above a 5 σ threshold. For a given duration tE this
criteria is simply equivalent to put a threshold on the im-
pact parameter u0. All we have to do is to search for the
maximum value uT of u0 such that the amplification of at
least Nm data points is above 5 σ. If the sampling is even,
with a time step δt, it just mean that the amplification must
be larger than 5 σ in a window of time around the maxima
∆T = Nm δt. Provided the maxima is at the origin of the
time axis, it will finally result in the condition:

Sj

(

uT, tE,
∆T

2

)

> 5 σ (4)

The distribution of u0 itself is uniform, to get et set of
u0 values we will use a random generator which will pro-
vide a uniform distribution between 0 and the maximum
value for u0, uM (tE). uM (tE) corresponds to the impact pa-
rameter for the brightest source given by Eq xx. Once we
have selected tE from the distribution ΓM (tE), we will cal-
culate u0,thresh using Eq xx, if our random u0 value is above
u0,thresh, Θ (u0, tE) = 0, otherwise Θ (u0, tE) = 1. To sum-
marize:

Θ (u0, tE) =

{

1 u0 < uT

0 u0 > uT

The mass function, φ(M) :

In all our simulation we will adopt a pure power law ex-
pression for the mass function, with a lower (MI) and an
upper cut-off (MS).

φ(M) =

{

M−α MI < M < MS

0 otherwise

The amplitude:

we will assume that the the flux of the un-amplified source
amplitude distribution is a power law with an exponent of -2
(Zhao, et al. 1995), in a given range of amplitude Amax and
Amin. In our simulation, the amplitudes will be generated
by Monte-Carlo method, using this power law.

3.2 Description of the implementation.

To implement our Monte-Carlo simulation we will select the
random variables in the following order:

- The amplitude of the source, according to the probabil-
ity law A−ν

- The mass of the lens, according to the probability law A−α

- The duration of the event tE using the distribution, ΓM (tE)
- The impact parameter u0 using an uniform distribution in
the range, 0, uM (tE).
- Once te and u0 are selected we apply the efficiency cut-off,
using the function Θ (u0, tE).

This procedure produces a complete set of variables, A, tE,
u0 for the events passing the efficiency cut-off. Form the
variable we compute the microlensing light curve using Eq.
1. We add noise to the light curves according to the Poisson
statistics. Using this procedure, it is possible to simulate a
set of microlensing light curves Sj .

3.3 Example

In this example we will take an amplitude range which is
typical for microlensing images towards the Galactic Bulge:

Amax = 106, Amin = 10

For the mass function we take the following parameters:

φ(M) =

{

M−2 0.05 < M < 10.0

0 otherwise

Using these parameters we simulated several series of mi-
crolensing light curves. For illustration, we extracted a sam-
ple of light curves from one of these simulations, they are
presented in Fig. 1. The parameters were adjusted in order
that in a simulation the total number of microlensing events
simulated be close to 100. Then we proceeded to the princi-
pal components decomposition. The orthonormal set of prin-
cipal components was calculated using a singular value de-
composition. The first 4 principal components are presented
in Fig. 2.

The functions ψ(M) corresponding to the principal
components in the space of the mass function can be com-
puted using Eq. 3. Projecting the data on the princi-
pal components is equivalent to projecting the mass func-
tion on ψ(M). To illustrate our discussion, an example of

c© 2000 RAS, MNRAS 000, 1–6
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Figure 1. Example of light curves as obtained using the Monte-Carlo simulation procedure described above.

ψ(M) functions calculated using the settings of the previ-
ous Monte-Carlo simulation are presented in Fig. 3.

3.4 Estimating the mass function.

To illustrate the ability of the method to reconstruct the
mass function we will assume that exponent of the mass the
mass function, α is unknown. For each simulation we will
calculate the 4 principal component of the set of microlens-
ing light curves we have simulated. We will compute the sum
of the projection on a principal component of all the light

curves < aj >. Using Eq. 3 we will calculate the function
which corresponds to each principal components in the space
of the mass function. Then all we have to do is to compare
the projection of a trial mass function with < aj >. The trial
mass function which match the 4 < aj > as close as possible
(in a least-square tens) will be the best mass function. This
procedure was applied for 1000 simulation, each time the
program derived the best value of the exponent of α. The
histogram of the values of alpha for the 1000 simulations is
presented in Fig. 4.
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Figure 2. The first 4 principal components corresponding to the simulation presented in Fig. 1.
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Figure 3. The function ψ(M) which corresponds to the principal components. In the right panel we present the 4 original function,
while in the other panel we present an orthonormal linear combination of these 4 functions. (Note that in the right panel the function
were scaled to have the same amplitude).
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Figure 4. Histogram of the values of Alpha (the exponent of the mass function) found by fitting the Monte-Carlo simulation by
projecting the data in the space of the mass function.
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