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Received / Accepted

Abstract. We propose a generalized accretion disk viscosity
prescription based on hydrodynamically driven turbulenceat
the critical effective Reynolds number. This approach is con-
sistent with recent re-analysis by Richard & Zahn (1999) of ex-
perimental results on turbulent Couette-Taylor flows. Thisnew
β-viscosity formulation is applied to both selfgravitatingand
non-selfgravitating disks and is shown to yield the standardα-
disk prescription in the case of shock dissipation limited,non-
selfgravitating disks. A specific case of fully selfgravitating
β-disks is analyzed. We suggest that such disks may explain
the observed spectra of protoplanetary disks and yield a natural
explanation for the radial motions inferred from the observed
metallicity gradients in disk galaxies. Theβ-mechanism may
also account for the rapid mass transport required to power ul-
tra luminous infrared galaxies.

Key words: Accretion, accretion disks – Hydrodynamics –
Turbulence – Stars: pre-main sequence – Galaxy: evolution –
galaxies: evolution

1. Introduction

One of the major shortcomings of the current theoretical de-
scriptions of accretion disks is lack of detailed knowledge
about the underlying physics of viscosity in the disk. This prob-
lem is significant because almost all detailed modelling of the
structure and evolution of accretion disks depends on the value
of the viscosity and its dependence on the physical parame-
ters. There is general agreement that molecular viscosityνmol

is totally inadequate and that some kind of turbulent viscosity
is required. Moreover, the Reynolds number in the disk flow is
extremely high in any astrophysical context and this in itself is
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likely to lead to strong turbulence regardless of the details of
the actual instability involved.

However, there is far less certainty about how to prescribe
such a turbulent viscosity in the absence of a proper physical
theory of turbulence. Most investigators adopt the so-calledα-
ansatz introduced by Shakura (1972) and Shakura & Sunyaev
(1973) that gives the viscosity (ν) as the product of the pressure
scale height in the disk (h), the velocity of sound (cs), and a
parameterα that contains all the unknown physics:

ν = αhcs. (1)

One interprets this as some kind of isotropic turbulent viscosity
ν = νt = ltvt wherelt is an (a priori unknown) length scale
andvt an (a priori unknown) characteristic velocity of the tur-
bulence. One may then writeα = (vt/cs) · (lt/h). On general
physical grounds neither term in parentheses can exceed unity
so thatα ≤ 1. If initially vt > cs, shock waves would result
in strong damping and hence a return to a subsonic turbulent
velocity. The conditionlt > h would require anisotropic turbu-
lence since the vertical length scales are limited by the disk’s
thickness, which is comparable toh.

While it is always, in a trivial way, possible to calculate a
valueα, a parameterization of this sort forν is only useful if
the proportionality parameter,α, is (approximately) constant.
One can expect this to happen only if the scaling quantities
are chosen in a physically appropriate manner. Models for the
structure and evolution of accretion disks in close binary sys-
tems (e.g., dwarf novae and symbiotic stars) show that Shakura
& Sunyaev’s parameterization with a constantα leads to re-
sults that reproduce the overall observed behaviour of the disks
quite well. Time dependent model calculations of the outbursts
of dwarf novae (e.g., Meyer & Meyer-Hofmeister 1984) and
X-ray transients (e.g., Cannizzo 1996) demonstrate that, over
a wide range of physical states of a disk in different phases of
its evolution, the derived values of the viscosity parameter α
do not vary by more than approximately an order of magnitude
and are not too different from unity. As a result of this suc-
cess, theα-ansatz is now used in essentially all accretion disk
models.

It is noteworthy that, despite this success, theα-ansatz re-
tains no information about the mechanism generating the turbu-
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lence but only about physical limits to its efficiency in a disk. In
fact we would expect any high Reynolds number astrophysical
shear flow to exhibit some kind of turbulent viscosity regardless
of whether or not it happens to be in a disk. We therefore con-
clude that a more general prescription underlies theα-ansatz
for accretion disks.

In recent years, Balbus & Hawley (1991) and their collabo-
rators (e.g., Hawley, Gammie & Balbus 1995) have shown that
for non-selfgravitating magnetic accretion disks, an instability
exists that can give rise to turbulence with the required formal
dependence and—if only marginally—-the required amount.
We also note that in substantial regions of proto-stellar and
proto-planetary disks, the charge density is unlikely to behigh
enough to sustain a significant magnetically mediated viscos-
ity, although this phenomenon may be relevant elsewhere.

Whether a purely hydrodynamic turbulence can sustain the
viscosity in the angular momentum profile of an accretion disk
and can result in an angular momentum transport towards re-
gions with larger specific angular momentum is still a matter
of debate. Balbus, Hawley & Stone (1996), for instance, argue
against it, based on numerical experiments, albeit for a rather
low effective Reynolds number. Dubrulle (1992) and Kato &
Yoshizawa (1997), among others, argue in favor of it, mainly
based on analytical considerations. Experiments dating back to
the 1930s on the Couette-Taylor flow between co-axial rotating
fluids (Wendt 1933, Taylor 1936a, b) show clearly the existence
of a purely hydrodynamic instability. While the flow is essen-
tially incompressible, turbulence is generated above a critical
Reynolds number, independent of the radial profile of angular
momentum1. A modern review has been given by DiPrima &
Swinney (1985). Most recently Richard & Zahn (1999) (here-
after RZ) have undertaken a reanalysis of Taylor’s experimen-
tal results and, for high Reynolds number flow, have interpreted
them in terms of a turbulent viscosity (see also Sect. 2).

In this contribution, we adopt the view that hydrodynam-
ically driven turbulence can sustain the viscosity in accretion
disks. We suggest, in Sect. 2, a viscosity prescription, theβ-
ansatz, that represents the maximum attributable to hydrody-
namic turbulence. We show that in the limit of low mass,
thin disks, hydrodynamic turbulence will result in the Shakura-
Sunyaev prescription. We then discuss the implications of the
proposed formulation for the structure and evolution of self-
gravitating disks, noting that even for these disks, the viscosity
prescription differs from theα-ansatz and hence removes a dif-
ficulty first noted by Paczyński (1978). Finally, we discusspro-
tostellar, galactic and galactic center disks as examples where
theβ-ansatz may be relevant.

2. Prescription for Turbulent Viscosity

2.1. Reynolds viscosity as the general case

As noted in Sect. 1 the need for some kind of turbulent viscos-
ity in accretion disks is generally recognized, as is the very high

1 One of the cases investigated by Wendt indeed has a rotation law
which approximates closely the profile in a Keplerian disk.

Reynolds number of the flow in the absence of such a viscosity.
Here, we wish to investigate in particular the case of accretion
disks where the magnetic fields do not play an important role.
In these circumstances, it seems reasonable to assume that the
turbulence is driven by the velocity field in the disk, which it-
self has characteristic length and velocity scaless (the radius
of the orbit) andvφ (the azimuthal velocity), respectively.

As has been pointed out, for example, by Lynden-Bell &
Pringle (1974) and Thompson et al. (1977), the high corre-
sponding Reynolds numberℜ = svφ/ν should lead to the gen-
eration of turbulence and hence to a steady enhancement in the
effective viscosity. This will continue until the Reynoldsnum-
ber has been reduced to approximately its critical valueℜcrit.
Typical values forℜcrit in laboratory flows are of the order of
∼ 102−103. This limiting Reynolds viscosity can, in this case,
be as high as

ν = νR = βsvφ (2)

whereβ is a constant satisfying

β ∼<
1

ℜcrit
∼ 10−3 − 10−2. (3)

In terms of previously introduced quantities we may writevt ∼
β1vφ andlt ∼ β2s so thatβ ∼ β1β2 ∼ 10−2...−3.

In support of this choice ofs as the natural length scale
we note that it is the only length scale which is relevant for
angular momentum transport and which contains information
about the driving agent for the turbulence—namely the rotation
field; likewise, the orbital velocityvφ is the only velocity scale
containing such information.

This approach receives further support from the reanalysis
by RZ of the Wendt (1933) and Taylor (1936a, b) experiments
on turbulent viscosity generated in the flow between coaxialro-
tating cylinders. We note, however, that it is difficult to make
precise comparisons between accretion disk and rotating cylin-
ders in view of quite different constraints on the fluid flow.

Using a definition ofℜ ∼ R∆Ω∆R/ν appropriate to the
experimental situation (hereR is the average cylinder radius
and∆Ω and∆R are the relative angular velocity and gap size
between the cylinders), RZ derive expressions forℜcrit as a
function of relative gap size∆R/R. For small gap size they
find ℜcrit ∼< 2000 independent of gap size. For large relative
gap size they find thatℜcrit = ℜgrad(∆R/R)2 where their
gradient Reynolds number ℜgrad ∼ r3(dΩ/dR) ∼ 106 is es-
sentially constant. Thus for small gaps the experimental data
yield essentially the same value ofℜcrit as we have adopted
in Eq. (3). For large gap sizes, the constancy ofℜgrad leads to
essentially the samefunctional form as in Eq. (2) but with a sig-
nificantly smaller value ofβ. RZ arrive at similar conclusions
for the two regimes of gap sizes from an analysis of the torques
exerted on the cylinders in cases where the flow is turbulent.We
believe that the small gap limit is the more relevant to the ac-
cretion disk case, for which the speed of rotation is constrained
at each radius by the gravitational field. The flux of angular
momentum at each radius is thus determined by the imposed
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orbital velocity field. By contrast, the experimental configura-
tion constrains the flow velocity only at the inner and outer
radius with the flow in the gap region able to take up a velocity
profile determined by viscosity and in which the angular mo-
mentum flux is independent of radius. In our opinion the exper-
imental results provide strong support for a turbulent viscosity
generated by hydrodynamically driven turbulence. While we
recognize that more work is required on the question, we also
believe that the small gap results provide significant support for
the viscosity prescription given in Eqs. (2) and (3).

In the following we will refer to Eq. 2 as theβ-ansatz and to
the disk structure arising from this viscosity prescription asβ-
disks. We suggest that theβ-ansatz is the most appropriate ini-
tial formulation for accretion disks since it is directly connected
to the driving mechanism. It establishes the maximum value of
the viscosity that can arise from hydrodynamically driven tur-
bulence.

The actual viscosity may, however, be limited to lower val-
ues by such phenomena as shock dissipation of turbulent en-
ergy if the implied turbulent velocities exceed the local sound
speed. As we show in Sect. 2.2, this yields theα-ansatz in
conditions relevant to these non-selfgravitating accretion disks.
However, it leads to a different prescription in shock limited
selfgravitating disks. In the Couette-Taylor case, all velocities
were subsonic (the flow was essentially incompressible) so that
no additional constraints applied. This would also be the case
in astrophysical disks in whichβ1 < cs/vφ.

2.2. α-viscosity as the limiting case for shock dissipation
limited low mass accretion disks.

If the accretion disk is such that the local sound speed is less
than the turbulent velocities implied by theβ-ansatz, i.e.,β1 >
cs/vφ, we may rewrite Eq. 2 as

ν = vtlt ∼ ∆vφ∆s (4)

where∆vφ and∆s are the maximum representative velocity
and length scales allowed by local conditions. Furthermore, we
may write

∆vφ =
∂vφ
∂s

∆s ∼
vφ
s
∆s (5)

so that a restriction on∆vφ implies a constraint also on∆s and
vice-versa.

If we consider turbulent elements in asmoothed out back-
ground gas with sound speedcs we may impose the limit that
the turbulent velocity will approach but may not exceedcs.
Thus Eq. 5 gives

vφ
s
∆s ∼ ∆vφ = ζcs (6)

or

∆s ∼
s

vφ
∆vφ = ζ

s

vφ
cs (7)

with ζ a quantity smaller than but of order unity. This estimate
of ∆s may be interpreted as the distance a hydrodynamically
driven turbulent element can travel before loosing its identity
due to shock dissipation.

In a standard geometrically thin, non-selfgravitating accre-
tion disk (i.e., a Shakura-Sunyaev, orα-disk) hydrostatic equi-
librium in the vertical direction implies

h

s
=

cs
vφ

(8)

Using this in Eq. 7, we find for Shakura-Sunyaev disks

∆s ∼ ζh (9)

and hence that

ν ∼ αhcs (10)

with α = ζ2 again not too much smaller than unity. This deriva-
tion of the Shakura-Sunyaev scaling, starting from the assump-
tion of a Reynolds driven turbulence, depends on the disk mass
being negligible, i.e., a vertical hydrostatic equilibrium of the
form of Eq. 8 has to apply. For selfgravitating disks, Eq. 8
no longer applies, and thus the functional form ofν will dif-
fer from that of Eq. 10. Note that the upper bound to∆s im-
plies approximately isotropic turbulence. This is the standard
α-ansatz but derived from considerations of rotationally gener-
ated turbulence.

It is worthwhile noting that this derivation of the Shakura-
Sunyaev prescription not only yields its functional form,ν ∝

hcs, but also the order of magnitude for the scaling param-
eter,α ∼ ζ2, whereα is close to but less than unity. This
value is consistent with values derived by comparingα-disk
models with observations of disks, for instance in dwarf novae
(Cannizzo, Shafter & Wheeler 1988).

From the above, it is clear that the viscosity in accretion
disks depends not only on the generation of hydrodynamic tur-
bulence but also on the limitation arising from the requirement
that the turbulence be subsonic. It also depends on whether or
not the disk is selfgravitating. In the following Sect., we use he
same logic to investigate the viscosity prescription in selfgrav-
itating accretion disks, in which turbulence is limited by shock
dissipation.

3. Viscosity in Thin Selfgravitating Accretion Disks

3.1. Conditions for Selfgravity in Accretion Disks

In the following we assume that the accretion disks are geo-
metrically thin in the vertical direction, symmetric in theaz-
imuthal direction, and stationary. We approximate the vertical
structure by a one zone model. Then a disk model is specified
by the central massM∗, the radial distributions of surface den-
sity Σ(s), central plane temperatureTc(s), and effective tem-
peratureTeff(s) or the radial mass flow ratėM . The relevant
material functions are the equation of state, the opacity and the
viscosity prescription.
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One can estimate the importance of selfgravity by compar-
ing the respective contributions to the local gravitational accel-
erations in the vertical and radial directions.

The vertical gravitational acceleration at the disk surface
is 2πGΣ andGM∗h/s

3, for the selfgravitating and the purely
Keplerian case, respectively. Selfgravitation is thus dominant
in the vertical direction when

Md

M∗

∼
πs2Σ

M∗

>
1

2

h

s
, (11)

whereMd(s) is the mass enclosed in the disk within a radiuss
and is given approximately byMd ∼ πs2Σ. Typical numbers
for h/s are in the range10−2...−1.

Similar considerations lead to the condition

Md > M∗ (12)

for selfgravitation to dominate in the radial direction. Thus, we
can define three regimes as follows:

– Non-selfgravitating (NSG) disks in whichMd(s) ≤

(1/2)(h/s)M∗ (i.e., the classical Shakura-Sunyaev disks)
– Keplerian selfgravitating (KSG) disks in which selfgravity

is significant only in the vertical direction and which satisfy
the constraint(1/2)(h/s)M∗ ≤ Md(s) ≤ M∗

– Fully selfgravitating (FSG) disks which satisfyM∗ ≤

Md(s)

BecauseMd(s) is a monotonically increasing function ofs,
all three regimes will arise in sufficiently massive, thin (h/s ≪
1) disks.

3.2. Selfgravitating Disks

In this Sect., we will review the structure of selfgravitating
(SG) accretion disks within the framework of the assumptions
introduced above. Compared to the standard NSG models, both
the KSG and FSG disks require modification of the equation of
hydrostatic support in the direction perpendicular to the disk.
Thus, while in the standard model the local vertical pressure
gradient is balanced by thez component of the gravitational
force due to the central object, in the SG case we have balance
between two local forces, namely the pressure force and the
gravitational force due to the disk’s local mass. In the KSG
case, in the radial direction centrifugal forces are still bal-
anced by gravity from a central mass (Keplerian approxima-
tion), while in the fully selfgravitating case we have to solve
Poisson’s equation for the rotation law in the disk.

For an SG disk, hydrostatic equilibrium in the vertical di-
rection yields

P = πGΣ2 (13)

(Paczyński 1978), whereP is the pressure in the central plane
(z = 0),Σ is the surface mass density integrated in thez direc-
tion, andG is the gravitational constant.

Since details of the thermodynamics in thez direction are
of no particular relevance to our argument, we shall assume the
disk to be isothermal in the vertical direction.

Integrating the equation of conservation of angular momen-
tum gives

νΣ = −
Ṁ

2πs3ω′
(s2ω − ξ) (14)

with the radial mass flow rate2 Ṁ , the rotational frequencyω,
its radial derivativeω′, and a quantityξ allowing for the integra-
tion constant or, equivalently, for the inner boundary condition.
For a detailed discussion ofξ see, e.g., Duschl & Tscharnuter
(1991), Popham & Narayan (1995) and Donea & Biermann
(1996). For simplicity, we set the boundary conditionξ = 0
in the subsequent discussion. This does not alter the essence of
our argument, and only changes details close to the disk’s in-
ner radial boundary, since the products2ω increases withs. In
fact Eq. 14 applies in the general case (i.e., NSG and SG); for
Keplerian disks (NSG and KSG), we may writeω′ = −3ω/2s.

Finally, we have for the sound velocity

c2s = P

/(

Σ

2h

)

. (15)

Eqs. 13 and 15 give

2πGΣh = 4πGρh2 = c2s (16)

whereρ = Σ/2h is a vertically averaged mass density.
On the other hand, the Jeans condition for fragmentation in

the disk into condensations of radiusR is

4π

3
qGρR2 > c2s (17)

(see Mestel 1965) whereq is factor of order unity.
Thus, a selfgravitating disk is on the verge of fragment-

ing into condensations of radiusR ∼ h unless these are de-
stroyed by shear motion associated with the Keplerian veloc-
ity field. Thus Paczyński (1978) and later Kozłowski, Wiita&
Paczyński (1979) and Lin & Pringle (1987) proposed that the
viscosity prescription was directly coupled to the above gravi-
tational stability criterion.

To solve for the dynamic and thermal structure of SG disks,
a viscosity prescription has to be specified. As in the NSG case
it is possible but not necessary that viscosity is limited byshock
dissipation. In the absence of such dissipation, we would, as be-
fore, expect theβ-viscosity to apply. It is instructive, however,
to follow the logic of Sect. 2.2 in he case of SG disks in which
turbulence is limited by shock dissipation.

2 We choose the convention of radial mass flow rateṀ and radial
velocityvs positive for inward motion.
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3.3. Viscosity in shock dissipation limited
selfgravitating accretion disks

For a SG disk (whether Keplerian or not) Eq. 8 is no longer
valid so the analysis of Eqs. 9 and 10 no longer applies. In
physical terms, the scale height in the disk no longer reflects
global properties of the disk (mass of and distance to the central
star) but is set by local conditions.

For the selfgravitating case we have approximately

v2φ ∼
G(M∗ +Md)

s
(18)

where conditionsM∗ ≫ Md, andM∗ ≪ Md. distinguish be-
tween the Keplerian and the FSG cases, respectively, with the
KSG disks as an intermediate case.

From Eq. 7

∆s ∼ ζ
scs
vφ

∼ ζ

(

2πhΣs3

M∗ +Md

)1/2

∼ ζ

(

2hΣs

Σ∗ +Σ

)1/2

(19)

whereΣ∗ is defined byM∗ = πs2Σ∗.
At the transition to the NSG regime, Eqs. 11 and 19 and the

conditionM∗ ≫ Md give as before

∆s ∼ ζh (20)

and hence a smooth transition to theα-ansatz.
For the FSG regime, Eq. 19 and the conditionMd ≫ M∗

give the simple asymptotic form

∆s ∼ ζ(2hs)1/2 (21)

and hence a viscosity of the form

ν ∼ γ(hs)1/2cs (22)

whereγ is a factor of order unity.
The situation is more complex for intermediate values of

Md/M∗. The derived viscosity differs in all SG cases from the
standardα-ansatz, but approaches that form asMd/M∗ → 0.
Thus when hydrodynamically induced turbulence is limited by
shock dissipation, the resultant viscosity reflects local condi-
tions and takes the standard Shakura-Sunyaev form only when
the disk mass is negligible. We show below that this new pre-
scription removes a problem previously noted by Paczyński
(1978) and others, with the structure of KSG disks withα-
viscosity.

3.4. Structure of SG Disks with Shock Limited Viscosity

It follows from Eqs. 13, 14 and 15, withξ = 0, that

c2s = −
GhṀ

2ν

(

d ln s

d lnω

)

. (23)

If one adopts the standardα-prescription, this yields

c3s = −
GṀ

2α

(

d ln s

d lnω

)

. (24)

For a KSG disk, this in turn yields

c2s =

(

2GṀ

3α

)2/3

=
kTc

mH
, (25)

or

Tc = 2.42K

(

1

α

Ṁ

10−6M⊙/yr

)2/3

(26)

A similar result arises for the FSG case, albeit with a different
numerical factor resulting from the solution of Poisson’s equa-
tion.

Thus, for a SG disk, theα-ansatz leads to the requirement
of a constant temperature for all radiis (or, if ξ 6= 0 in Eq. 14,
the temperature is prescribed as a function ofs), independent of
thermodynamics. While the exactconstancy of the temperature
may very well be an artefact of our simplified one-zone approx-
imation for the vertical structure, there is no reason to expect
that proper vertical integration of the structure will change this
fundamentally.

Theα ansatz for a SG disk also requires that the disk struc-
ture satisfy

hΣ =
c2s

2πG
=

Ṁ2/3

(3α)
2/3

(2πG)
1/3

. (27)

In a standard NSG accretion disk the temperature is a free pa-
rameter which is determined by the energy released by the in-
ward flow of the disk gas (̇M ), by the local viscosity, and by the
respective relevant cooling mechanisms. The viscosity depends
onTc via Eq. (1) and on the equation of hydrostatic support in
the direction normal to the disk (Eq. (8), which in the non-SG
case replaces Eq. (13)).

In the SG case, it is the surface densityΣ (and henceh)
which must adjust in order to radiate the energy deposited by
viscous dissipation and provided by the inward flowing mate-
rial. While detailed solutions are beyond the scope of this pa-
per, they clearly exist formally. On the other hand, the normal
thermostat mechanism does not operate, at least in the steady
state. Indeed in certain circumstances, the condition of constant
mid-plane temperature appears to be inconsistent with the basic
thermodynamic requirement that the average gas temperature
in the disk exceed that of the black body temperature required
to radiate away the energy dissipated by viscous stresses (see
Appendix). It is therefore doubtful whether a physically plau-
sible and stable quasi-steady state solution exists.

On the other hand, if one adopts the alternative prescription
for shock limited viscosity proposed in Sect. 3.3, the above
problem with constant or prescribed mid-plane temperature
disappears, the temperature once again depends onh, and the
normal thermostat can operate. While this does not prove the
validity of the shock limited viscosity prescription givenin
Sect. 3.3, it is certainly an interesting consequence.
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4. Selfgravitatingβ-Disks

4.1. General Observations

A general analysis of SG disks is complex and beyond the
scope of this paper. In this Sect., we examine the structure of
β-disks, in which the turbulence is subsonic at all radii. Before
doing so, we make the following general observations.

First, with theβ-viscosity prescription, Eqs. 14 and 23 give

Σ = −
Ṁω

2πνsω′
= −

Ṁ

βs3ω′
(28)

and

c2s = −
GhṀ

2ν

ω

sω′
= −

GhṀ

2βs3ω′
(29)

Thus the SGβ-disks recover the thermostat property of the
standard disk, namely that the temperature and scale heightcan
adjust to accomodate (radiate away) the energy input to the sys-
tem from viscous dissipation and inward motion.

Second, we note that if the disk matter distribution is
clumpy (e.g., clouds within a low density smoothed out dis-
tribution) then there may be a formal connection between the
α- andβ-prescriptions. Since in theβ-formulation the clump
velocities are of ordervφ shock heating will tend to heat the
low density inter-clump gas until its sound speedcs ∼ vφ. The
inter-clump gas then has a scale heighth ∼ s, the scale of the
clumpy disk, and will hence be roughly a spherical structure.
At this point theα- andβ-prescriptions look formally identi-
cal but the scale height and sound speed now refer to a more
or less spherical background distribution of hot gas in which a
disk structure of cloudy clumps is imbedded.

4.2. Keplerian Selfgravitating β-Disks (KSG)

For the particular case of a KSGβ-disk we have from Eq. 29

c2s
h

=
3GṀ

3β

1

(GM∗)1/2s1/2
(30)

For the SGβ-disk it follows immediately from Eq. (28) and
from mass conservation in the disk that the radial inflow veloc-
ity vs is given by

vs =
Ṁ

2πsΣ
= −βs2ω′ (31)

For the KSGβ-disk, we then have

vs =
3

2
βsω =

3

2
βvφ (32)

Thus at each radius the inward velocity is the same fraction of
the local orbital velocity. From Eq. (31) this, in fact, holds for
any SGβ-disk in which the angular velocity is a power law
function of s with adjustment only to the numerical factor in
Eq. (32). Ifβ satisfies the constraint (3), then the approxima-
tion of centrifugal balance in the radial direction remainswell
justified.

Under these conditions the dissipation per unit area of a SG
β-disk is given by

D =
Ṁ

4πs

(

v2φ
s

)

= 2σT 4
eff (33)

whereσ is the Stefan-Boltzmann constant. For an optically
thick KSG disk this yields the same radial dependence ofTeff

as for the standard disk, namely

Teff =

(

GṀM∗

8πσ

)1/4

s−3/4 (34)

This temperature dependence which is identical to that of the
standard model then leads to the well known energy distribu-
tion for an optically thick standard disk ofFν ∝ ν1/3. This also
implies that—as long as the disks are not fully selfgravitating—
it is hard to distinguish between anα- and aβ-disk model ob-
servationally.

4.3. Fully Selfgravitating β-Disks (FSG)

We turn now to the case of the fully selfgravitating (FSG)β-
disk, in which the disk mass is sufficiently great that it dom-
inates the gravitational terms in the hydrostatic support equa-
tion in both the radial and vertical directions. While thereare
many potential solutions for the FSG disk structure, one is well
known in both mathematical and observational terms, namely
the constant velocity (vφ = const.) disk. Within such a disk
structure we have simultaneous solutions to the equation ofra-
dial hydrostatic equilibrium and Poisson’s equation of theform

vφ = sω = v0 and Σ ∝ Σ0

(

s

s0

)−1

. (35)

(Toomre 1963, Mestel 1963). For the FSG disk, Eq. (28) then
leads to

Σ =
Ṁ

2πβsv0
(36)

which has the same radial dependence as the structural solution
shown in Eq. (35). Thus Eq. (36) may be viewed as giving the
rate of mass flow through the disk for a FSGβ-disk with con-
stant rotational velocityv0. Finally, the equation of continuity
provides a constraint if the structure is to maintain a basically
steady state structure. For thevφ = v0 = const. disk, this yields

s
∂Σ

∂t
=

∂

∂s
(svsΣ) =

∂

∂s
(βvφsΣ) = 0 (37)

Thus the constant velocity disk represents a steady state solu-
tion in regions sufficiently far from the inner and outer bound-
aries of theβ-disk.

It is then possible, in the spirit of the discussion of Eqs. (33)
and (34), to calculate the energy dissipation rate per unit area
D for the constant velocityβ-disk. We then find

D = 2σT 4
eff =

Ṁv20
4πs2

(38)
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so that

Teff =

(

Ṁv20
8πσ

)1/4

s−1/2 (39)

The flux density,Fν , emitted by an optically thick, constant
velocityβ-disk it then given by

Fν ∝ ν−1. (40)

In reality, a sufficiently massive disk may be expected to have
an inner Keplerian (standard) zone, a Keplerian selfgravitating
zone (KSG), and a fully selfgravitating zone (FSG). We should
therefore expect a smooth transition in the spectral energydis-
tribution from theν1/3 spectrum of the inner two zones to
theν−1 spectrum arising at longer wavelengths from the FSG
zone. The transition frequencyνtrans may be derived by solv-
ing Eqs. (34) and (39) fors, determining a value of transition
temperatureTtrans and setting

νtrans =
kTtrans

h
=

kṀ1/4v
3/2
0

h (8πσ)
1/4

(GM)
1/2

=

=

(

k

h

)

(

Ṁ

8πσ

)1/4
(

v30
GM

)1/2

. (41)

One could turn this argument around and argue that, if no other
components contribute to the spectrum, the flatness of theνFν

distribution is a measure for the importance of selfgravityand
thus for the relative mass of the accretion disk as compared to
the central accreting object. This, of course, applies onlyto the
optically thick case which may not arise frequently in strongly
clumped disks.

4.4. Time Scales

The evolution of accretion disks can be described by a set of
time scales. For our purposes, the dynamical and the viscous
time scale are of particular interest.

The dynamical time scaleτdyn is given by

τdyn =
1

ω
. (42)

While this formulation applies to all cases, selfgravitating or
not, it is only in the non-SG and in the KSG cases thatω is
given by the mass of the central accretor and by the radius. In
the FSG case,ω is determined by solving Poisson’s equation.

The time scale of viscous evolutionτvisc is given by

τvisc =
s2

ν
(43)

In the standard non-SG and geometrically thin (h ≪ s) case (α
disks), this leads to

τnon−SG
visc =

( s

h

)2 τdyn
α

≫
τdyn
α

. (44)

In KSG and FSG disks (β-disks),τvisc is given by

τKSG
visc = τFSGvisc = τSGvisc =

τdyn
β

(45)

With α < 1 andβ ≪ 1 (Eq. 3) under all circumstancesτvisc ≫
τdyn. In the SG cases the ratio between the two time scales
decouples from the disk structure. In all cases the models are
self-consistent in assuming basic hydrostatic equilibrium in the
vertical direction.

5. Possible Applications

5.1. Protoplanetary Accretion Disks

T Tauri stars have infrared spectral energy distributionsνFν

which can be approximated in many cases by power laws
νFν ∝ νn with a spectral indexn in the range∼ 0 . . . 1.3.
Assuming this spectral behaviour to be due to radiation from
an optically thick disk, it translates into a radial temperature
distributionTeff ∝ s−q with n = 4− 2/q.

An optically thick non-selfgravitating accretion disk which
radiates energy that is liberated through viscous dissipation,
i.e., anactive accretion disk shows a spectral distribution with
q = 3/4 orn = 4/3. This immediately excludes optically thick
non-selfgravitating standard accretion disks as the majorcon-
tributor to T Tau spectra.

Adams, Lada & Shu (1988) were the first to discuss the pos-
sibility of a non-standard radial temperature distribution with
q 6= 3/4. Using q as a free parameter, they find that for flat
spectrum sources, their best fits require disk masses that are
no longer very small compared to the masses of the accreting
stars. They already mention the possibility that the flatness of
the spectrum and selfgravity of the disk may be related. On the
other hand, at that time this indirect argument was the only ev-
idence for large disk masses. Beckwith et al. (1990) in their
survey of circumstellar disks around young stellar objectsalso
find preferentially disk spectra that are considerably flatter than
predicted by the standard optically thick disk models. For more
than half of their objects they derive disk masses that corre-
spond to the KSG and FSG cases. On the other hand, Natta
(1993) proposed that flat disk spectra are the consequence of
dusty envelopes engulfing a star with a standard disk around it.
Recently, Chiang & Goldreich (1997) have investigated in de-
tail non-selfgravitatingpassive accretion disks, i.e., disks that
are heated by radiation from the star and re-radiate this energy.
Depending on the details of the flaring of the disk, this can lead
to considerably flatter spectra than expected from active disks.

However, in the meantime, high resolution direct observa-
tions of protostellar disks yield independent strong evidence
for comparatively large disk masses. Lay et al. (1994), for in-
stance, find a lower limit for the disk masses in HL Tau—one
of the sources in Adams, Lada & Shu’s sample of flat spectrum
T Tauri stars—of∼ 0.02M⊙.

We suggest that the flatness of the spectrum actually reflects
the mass of the disk, i.e., the importance of selfgravity. For
disk masses considerably smaller than∼ 1/30M∗, the stan-
dard accretion disk models apply. For disks whose masses are
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larger but still small compared toM∗ the spectral behaviour
is not altered significantly, but the disk structure and the time
scale of disk evolution (τvisc, see Eqs. 44 and 45) change. For
even more massive disks, we expect a clear trend towards flat-
ter spectra that approach an almost constantνFν distribution if
selfgravity in the disk becomes important in the radial as well
as in the vertical direction.

5.2. Galactic Disks

The relevance of viscosity in the evolution of galactic disks
has been the subject of discussion since von Weizsäcker (1943,
1951) and Lüst (1952) first raised the issue nearly fifty years
ago. They noted then that, with an eddy viscosity formulation
(aβ-disk), the time scale for evolution of typical galactic disks
was comparable to the age of the universe and suggested that
this might account for the difference between spiral and ellip-
tical galaxies.

With the subsequent realization that galactic disks moved
primarily under the influence of extended massive halos, inter-
est in FSG disks waned. However, as noted above, it is possible
for a massive disk to exist and evolve under the influence of
viscosity, while embedded in such a halo gravitational field.
Indeed, in the event that such a structure forms, it must evolve
under viscous dissipation and can achieve a quasi-steady state
with essentially the same mass and energy dissipation distribu-
tion as for the FSG constant velocity disk. We refer to this case
as an Embedded Self-Gravitating (ESG) disk.

The time scale for viscous evolutionτvisc as given in Sect.
4.4 suggests a means of differentiating between theα- and
β-formulations for this case. For a normal spiral galaxy with
a suggested mean temperature in the gaseous disk of around
104 K and a scale height of around 300 pc, we obtain

τ
(α)
visc ∼ 104τdyn ∼ 3 1011 yr

τ
(β)
visc ∼ 102 − 103τdyn ∼ 3 109 − 3 1010 yr (46)

Thus, with these parameters, little evolution would take place
in a Hubble time on theα-hypothesis but significant evolu-
tion is predicted on theβ-hypothesis. This problem of the
viscous time scale in a selfgravitatingα accretion disk was
also noted by Shlosman & Begelman (1987, 1989). Shlosman,
Frank & Begelman (1989) proposed non-axisymmetric distur-
bances (“bars within bars”) as an alternative way of transport-
ing angular momentum in the radial direction within a suffi-
ciently short time scale.

In terms of inflow velocities theβ-ansatz suggests values
in the range0.3 − 3 km s−1 which would be exceedingly hard
to measure directly. Theα-ansatz suggests still lower values.
On the other hand, it may be possible to provide limits on
the viscosity through other observational constraints. For ex-
ample, the build up of the 3 kpc molecular ring in our own
galaxy can be interpreted as due to viscosity driven inflow in
the constant velocity part of the galactic disk which ceases(or

at least slows down) in the constant angular velocity inner re-
gions (Icke 1979, Däther & Biermann 1990). Similarly, sev-
eral authors have suggested that the radial abundance gradients
observed in our own and other disk galaxies may be due to ra-
dial motion and diffusive mixing associated with the turbulence
generating the eddy viscosity (Lacey & Fall 1985, Sommer-
Larson & Yoskii 1990, Köppen 1994, Edmunds & Green-
how 1995, Tsujimoto et al. 1995). According to these authors,
radial inflows of around 1 km s−1 at the galactic location of the
Sun are required for optimum fits to the abundance gradient
data within the context of the viscous disk hypothesis. Suchin-
flow velocities are consistent with theβ-ansatz but could, of
course, be generated also by other means (e.g effects of bars,
magnetic fields).

5.3. Ultraluminous galaxies

Recent high resolution imaging of ultraluminous galaxies in
the near infrared and mm wavelengths bands shows dense gas
and dust accretion disks in their galactic nuclei. The two nu-
clei in the merger galaxy Arp 220, for instance, have masses
of the order of several109M⊙ within radii of ∼< 100 pc
(Scoville 2000). Similar properties, albeit less well resolved
than in Arp 220, seem to be typical for this class of galax-
ies (Solomon et al. 1997, Downes & Solomon 1998). Most,
if not all, ultraluminous galaxies seem to be merging galax-
ies (Sanders & Mirabel 1996). In Arp 220, these gas masses
are the major contributor to the dynamical mass in the two nu-
clei (Scoville 2000), i.e., these nuclear disks are selfgravitat-
ing. Most likely this is true for the nuclear disks in other ultra-
luminous galaxies as well. The merger process is presumably
responsible for transporting large amounts of material into the
central few hundred parsecs, thus filling a mass reservoir which
is then available for subsequent disk accretion to the very cen-
ter.

Within the framework ofβ-disks, one finds that the vis-
cous accretion time scaleτvisc increases towards larger radii
as long as the surface densityΣ in the disk increases with
radiuss not steeper thanΣ ∝ s, which is most likely ful-
filled. Then the viscous time scale at the disk’s outer edge is
an upper limit to its evolution time scale. For Arp 220 (disk
mass∼ 2 109M⊙; outer radius∼ 100 pc) one finds a time
scale of∼ 105.5 yr/β ∼ 3 . . . 30 107 years forβ = 10−2...−3,
which, in turn yields accretion rateṡM ∼ 101...2 M⊙ yr−1.
Such rates lead to accretion luminositiesLaccr = ηṀc2 up to
∼ η1047.5...48.5 erg s−1, whereη (∼ 0.1) is the conversion effi-
ciency of gravitational energy into radiation andc is the speed
of light. Such luminosities are large enough to power even the
strongest AGN and the time scales are very much shorter than
the Hubble time.

Assuming that these rates can be maintained during a size-
able fraction ofτvisc, a significant fraction of the disk’s original
gas mass could be accreted to much smaller radii, presumably
to a black hole in the very center (some will be lost to star for-
mation or winds). In this process the black hole gains a consid-
erable amount of mass within a relatively short time scale. One
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may speculate that this is actually the process that produces the
most massive black holes in the young universe. By contrast,
galaxies that do not undergo mergers presumably have no way
of rapidly collecting such large masses of gas within102 pc.
As a consequence, these disks are less likely to be selfgravi-
tating and thus are likely to have longerτvisc. The nuclei of
such galaxies will accrete much smaller amounts of material
over longer time scale, resulting in lower mass central black
holes (Duschl 1988a, b). An example may be our own Galactic
Center.

6. Summary

We propose a viscosity prescription based on the assumption
that the effective Reynolds number of the turbulence does not
fall below the critical Reynolds number. In this parametriza-
tion the viscosity is proportional to the azimuthal velocity and
the radius (β-disks). This prescription yields physically consis-
tent models of both Keplerian and fully selfgravitating accre-
tion disks. Moreover, for the case of thin disks with sufficiently
small mass, we recover theα-disk solution as a limiting case.

Suchβ-disk models may be relevant to protoplanetary ac-
cretion disks as well as to galactic and galactic center disks.
In the case of protoplanetary disks they yield spectra that are
considerably flatter than those due to non-selfgravitatingdisks,
in better agreement with observed spectra of these objects.In
galactic disks, they result in viscous evolution on time scales
shorter than the Hubble time and thus offer a natural expla-
nation for an inward flow that could account for the observed
chemical abundance gradients. In galactic centers,β-disks may
be the supply for powering AGN and for forming supermassive
black holes within time scales short compared to the Hubble
time.

Finally,β-disks yield a natural solution to an inconsistency
in the α-disk models if the disk’s mass is large enough for
selfgravity to play a role. This problem arises even in Keple-
rian selfgravitating disks in which only the vertical structure is
dominated by selfgravity while the azimuthal motion remains
Keplerian.
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Appendix A: Thermodynamic Considerations for KSG
α-disks

For a KSGα-disk, we have from Eq. 26 that

Tc = 2.42K

(

1

α

Ṁ

10−6M⊙/yr

)2/3

. (A.1)

If the disk is optically thick and advection is negligible, viscous
dissipation leads to local effective temperature of

Teff =

(

3

8πσ

)

(GM)
1/4

Ṁ1/4s−3/4

= 8.53 103K

(

mṁ

s3A

)1/4

(A.2)

with m the mass of the central star in solar units andsA the
radius in astronomical units.

An essential thermodynamics requirement is thatTc > Teff

or that

Teff

Tc
= 3.53 10−2m

1/4ṁ−5/12

s
3/4
A

α
2/3
−1 < 1 (A.3)

This condition is satisfied provided that

ṁ > ṁT = 3.27 10−4m
3/5α

8/5
−1

s
9/5
A

(A.4)

and that the disk is selfgravitating in the vertical direction at
sA. The latter condition leads to a second requirement onṁ.

For a standard Keplerian disk, the mass flow rate is given
(Eqs. 8, 10, 43) by

Ṁ ≈
Md

τvisc
≈

Mdν

s2
= αMd

(

h

s

)2

ω (A.5)

with Md the disk’s mass. From Eq. 11, the condition that the
disk is non-selfgravitating isMd < (h/2s)M∗ and hence, from
Eq. A.5, that

Ṁ <
α

2

(

h

s

)3(
GM3

∗

s3

)1/2

(A.6)

or

ṁ < ṁG = 3.14 10−1α−1

(

h

s

)3
m3/2

s
3/2
A

(A.7)

A selfconsistent and physically acceptable solution can beob-
tained only ifṁG > ṁT, that is the disk becomes selfgravitat-
ing at values ofṁ which are sufficiently high that thermody-
namic requirements are not violated. This condition may then
be written as

h

s
> 1.01 10−1m−3/10s

−1/10
A α

1/5
−1 (A.8)

Thus thin KSG α-disks appear to be inconsistent with basic
thermodynamic requirements ifm ∼< 1, sA ∼< 1. There is no in-
consistency if either or both of these quantities are sufficiently
large.
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