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Abstract. We propose a generalized accretion disk viscosilikely to lead to strong turbulence regardless of the detail
prescription based on hydrodynamically driven turbuleate the actual instability involved.

the critical effective Reynolds number. This approach is-co  However, there is far less certainty about how to prescribe
sistent with recent re-analysis py Richard & Zlahn (1999)ef esuch a turbulent viscosity in the absence of a proper phlysica
perimental results on turbulent Couette-Taylor flows. Tiaw theory of turbulence. Most investigators adopt the soedatt
B-viscosity formulation is applied to both selfgravitatingd ansatz introduced by Shakura (1972) ahd Shakura & Sunyaev
non-selfgravitating disks and is shown to yield the staddar ) that gives the viscosity) as the product of the pressure
disk prescription in the case of shock dissipation limiteal)- scale height in the diskhj, the velocity of soundd,), and a
selfgravitating disks. A specific case of fully selfgratitg parameter that contains all the unknown physics:

B-disks is analyzed. We suggest that such disks may explain

the observed spectra of protoplanetary disks and yielduaaiat ¥ = /1¢s- 1)

explanation for the radial motions inferred from the obsérv one interprets this as some kind of isotropic turbulentossty
metallicity gradients in disk galaxies. Thiemechanism may ;,, — v = lyv, wherel is an @ priori unknown) length scale
also account for the rapid mass transport required to polver gindy, an (a priori unknown) characteristic velocity of the tur-
tra luminous infrared galaxies. bulence. One may then write = (v;/cs) - (I;/h). On general
physical grounds neither term in parentheses can excegd uni

Key words: Accretion, accretion disks — Hydrodynamics o thata < 1. If initially v, > ¢, shock waves would result
Turbulence — Stars: pre-main sequence — Galaxy: evolutiofiystrong damping and hence a return to a subsonic turbulent
galaxies: evolution velocity. The conditiord, > h would require anisotropic turbu-
lence since the vertical length scales are limited by thk'dlis
thickness, which is comparable o

While it is always, in a trivial way, possible to calculate a
value«, a parameterization of this sort foris only useful if
One of the major shortcomings of the current theoretical dée proportionality parameted, is (approximately) constant.
scriptions of accretion disks is lack of detailed knowledg®ne can expect this to happen only if the scaling quantities
about the underlying physics of viscosity in the disk. Thislp  are chosen in a physically appropriate manner. Models for th
lem is significant because almost all detailed modellindhef t structure and evolution of accretion disks in close bingis s
structure and evolution of accretion disks depends on thevatems (e.g., dwarf novae and symbiotic stars) show that Shaku
of the viscosity and its dependence on the physical parar8eSunyaev’s parameterization with a constanteads to re-
ters. There is general agreement that molecular viscosity sults that reproduce the overall observed behaviour ofitiesd
is totally inadequate and that some kind of turbulent viggos quite well. Time dependent model calculations of the oudtsur
is required. Moreover, the Reynolds number in the disk flow &f dwarf novae (e.g), Meyer & Meyer-Hofmeigter 1p84) and
extremely high in any astrophysical context and this inffiise  X-ray transients (e.g{, Cannizzo 1996) demonstrate tvat;, o
a wide range of physical states of a disk in different phases o
its evolution, the derived values of the viscosity paramete
do not vary by more than approximately an order of magnitude

1. Introduction
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lence but only about physical limits to its efficiency in aldi;y  Reynolds humber of the flow in the absence of such a viscosity.
fact we would expect any high Reynolds number astrophysi¢éére, we wish to investigate in particular the case of ammet
shear flow to exhibit some kind of turbulent viscosity redesd disks where the magnetic fields do not play an important role.
of whether or not it happens to be in a disk. We therefore cam-these circumstances, it seems reasonable to assumbehat t
clude that a more general prescription underliesdkensatz turbulence is driven by the velocity field in the disk, whith i
for accretion disks. self has characteristic length and velocity scaléthe radius

In recent yeari, Balbus & HaWE% 51991) and their collab@f the orbit) andvy (the azimuthal velocity), respectively.
rators (e.g., Hawley, Gammie & Ballplis 1995) have shown that As has been pointed out, for example, by Lynden-Bell &
for non-selfgravitating magnetic accretion disks, andbgity Pringle {1974) and Thompson et|gl. (1P77), the high corre-
exists that can give rise to turbulence with the requirechfdr sponding Reynolds numb& = sv, /v should lead to the gen-
dependence and—if only marginally—-the required amourration of turbulence and hence to a steady enhancememt in th
We also note that in substantial regions of proto-stellat aeffective viscosity. This will continue until the Reynoldam-
proto-planetary disks, the charge density is unlikely tdiggn  ber has been reduced to approximately its critical vétue, .
enough to sustain a significant magnetically mediated giscdypical values forR..;; in laboratory flows are of the order of
ity, although this phenomenon may be relevant elsewhere. ~ 102 —102. This limiting Reynolds viscosity can, in this case,

Whether a purely hydrodynamic turbulence can sustain the as high as
viscosity in the angular momentum profile of an accretiok dis
and can result in an angular momentum transport towards ¥e= Vr = 550 (2)
gions with larger specific angular momentum is still a matter , L
of debate| Balbus, Hawley & Stqne (1996), for instance, argWhereﬁ is a constant satisfying
against it, based on numerical experiments, albeit for lzerat
low effective Reynolds numbdr. Dubrjllg (1992) and Kato & < R
Yoshizawa [1997), among others, argue in favor of it, mainly
based on analytical considerations. Experiments datinigtza In terms of previously introduced quantities we may write-
the 1930s on the Couette-Taylor flow between co-axial mgati 3; v, andly ~ B2s S0 that3 ~ (52 ~ 107273,
fluids (Wendt 1933, Taylgr 1936a, b) show clearly the existen  In support of this choice of as the natural length scale
of a purely hydrodynamic instability. While the flow is essenve note that it is the only length scale which is relevant for
tially incompressible, turbulence is generated abovetiali angular momentum transport and which contains information
Reynolds number, independent of the radial profile of arrgulabout the driving agent for the turbulence—namely the imtat
momentur. A modern review has been given by DiPrima &ield; likewise, the orbital velocity,, is the only velocity scale
Swinney [1985). Most recent]y Richard & Zahn (1p99) (hereontaining such information.
after RZ) have undertaken a reanalysis of Taylor's expetime  This approach receives further support from the reanalysis
tal results and, for high Reynolds number flow, have integare by RZ of the|Wendit[(1933) and Taydr (1986a, b) experiments
them in terms of a turbulent viscosity (see also S@ct. 2). on turbulent viscosity generated in the flow between coamial

In this contribution, we adopt the view that hydrodynantating cylinders. We note, however, that it is difficult to kea
ically driven turbulence can sustain the viscosity in aiore precise comparisons between accretion disk and rotatiirg cy
disks. We suggest, in Sef}. 2, a viscosity prescription,&he ders in view of quite different constraints on the fluid flow.
ansatz, that represents the maximum attributable to hydrod Using a definition off ~ RAQAR/v appropriate to the
namic turbulence. We show that in the limit of low mas®xperimental situation (herR is the average cylinder radius
thin disks, hydrodynamic turbulence will resultin the Shiek  andAQ andAR are the relative angular velocity and gap size
Sunyaev prescription. We then discuss the implicationfief tbetween the cylinders), RZ derive expressionsitgy;, as a
proposed formulation for the structure and evolution of-seffunction of relative gap siz&\R/R. For small gap size they
gravitating disks, noting that even for these disks, theo8gy find R < 2000 independent of gap size. For large relative
prescription differs from the-ansatz and hence removes a difgap size they find thaRe,is = Reaa(AR/R)? where their
ficulty first noted by Paczyndiji (1978). Finally, we discpss- gradient Reynolds number Ry,aq ~ r3(d2/dR) ~ 106 is es-
tostellar, galactic and galactic center disks as examplesev sentially constant. Thus for small gaps the experimentt da
the S-ansatz may be relevant. yield essentially the same value ®f,;; as we have adopted
in Eq. @). For large gap sizes, the constanciigf.q leads to
essentially the sanfanctional form as in Eq.KlZ) but with a sig-
nificantly smaller value ofi. RZ arrive at similar conclusions
2.1. Reynoldsviscosity as the general case for the two regimes of gap sizes from an analysis of the taque
exerted on the cylindersin cases where the flow is turblegat.
PBalieve that the small gap limit is the more relevant to the ac
cretion disk case, for which the speed of rotation is comstch

! One of the cases investigated by Wendt indeed has a rotation Rt each radius by the gravitational field. The flux of angular
which approximates closely the profile in a Keplerian disk. momentum at each radius is thus determined by the imposed

~107% 1072 (3)

crit

2. Prescription for Turbulent Viscosity

As noted in Sec{]1 the need for some kind of turbulent visc
ity in accretion disks is generally recognized, as is thg hégh
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orbital velocity field. By contrast, the experimental config- with ¢ a quantity smaller than but of order unity. This estimate
tion constrains the flow velocity only at the inner and outerf As may be interpreted as the distance a hydrodynamically
radius with the flow in the gap region able to take up a velocitiriven turbulent element can travel before loosing its fiten
profile determined by viscosity and in which the angular matue to shock dissipation.
mentum flux is independent of radius. In our opinion the exper In a standard geometrically thin, non-selfgravitatingraec
imental results provide strong support for a turbulentessty tion disk (i.e., a Shakura-Sunyaev,@wisk) hydrostatic equi-
generated by hydrodynamically driven turbulence. While wirium in the vertical direction implies
recognize that more work is required on the question, we also
believe that the small gap results provide significant sugfpo h 1 (8)
the viscosity prescription given in Eqsﬂ (2) arﬂj 3). s Uy

In the following we will refer to Eq[|2 as thé-ansatz and to
the disk structure arising from this viscosity prescriptas3-
disks. We suggest that thitansatz is the most appropriate ini-a 5 ~ Ch Q)
tial formulation for accretion disks since it is directlyrazected
to the driving mechanism. It establishes the maximum vafueand hence that
the viscosity that can arise from hydrodynamically driven t
bulence. v ~ ahcs (10)

The actual viscosity may, however, be limited to lower val- 5 . : . .
ues by such phenomena as shock dissipation of turbulent \é’Hh o = ¢~ again nottoo much smaller than unity. This deriva-

ergy if the implied turbulent velocities exceed the locaise 110N Of the Shakura-Sunyaev scaling, starting from theragsu

speed. As we show in Sedt_R.2, this yields thensatz in tion of a Reynolds driven turbulence, depends on the dislsmas
conditions relevant to these non-selfgravitating acorediisks. being negligible, i.e., a vertical hydrostatlg e_qwhl:mwf the
However, it leads to a different prescription in shock limait form of Eq. E; .has to apply. For selfgrawtatlng d|s.ks,.lEq. 8
selfgravitating disks. In the Couette-Taylor case, albeitles "° longer applies, and thus the functional formuoil d_'f'
were subsonic (the flow was essentially incompressibleyap t€ from that of Eq[10. Note that the upper bound'e im-

no additional constraints applied. This would also be tf&ecaon% approximately isotropic turbulence. This is the standard
in astrophysical disks in which, < cs /v «a-ansatz but derived from considerations of rotationallyaye
s/ Vg

ated turbulence.
It is worthwhile noting that this derivation of the Shakura-
2.2. a-viscosity asthe limiting case for shock dissipation Sunyaev prescription not only yields its functional formex
limited low mass accretion disks. hes, but also the order of magnitude for the scaling param-

s . . .
If the accretion disk is such that the local sound speed & I&Tr’ @ ¢ ,.whereo_é r:s cllose E) b.Ut (Ijets)s than un_|ty._ -I;(hls

than the turbulent velocities implied by ti¥eansatz, i.e.3; > value IS c_on3|stent W.'t values derived by compamgls

¢ /v, We may rewrite Ed]Z as models with observations of disks, for instance in dwarfa®v
S 1

(Cannizzo, Shafter & Whee]¢r 1988).
v = vely ~ AvgAs @ From the above, it is clear that th_e viscosity in accr_etion
disks depends not only on the generation of hydrodynamic tur
ulence but also on the limitation arising from the requieet
hat the turbulence be subsonic. It also depends on whether o
not the disk is selfgravitating. In the following Sect., waethe

Using this in Eq|]7, we find for Shakura-Sunyaev disks

whereAwv, andAs are the maximum representative velocit
and length scales allowed by local conditions. Furthermeee

may write ; _ ; ; ) e
same logic to investigate the viscosity prescription iriggal-
vy Vg itating accretion disks, in which turbulence is limited thosk
Avg = gAS ~ ?AS (5) dissipation.

so that a restriction oAv, implies a constraint also afis and
vice-versa.

If we consider turbulent elements insmoothed out back- 3.1. Conditions for Selfgravity in Accretion Disks
ground gas with sound speegdwe may impose the limit that
the turbulent velocity will approach but may not excegd
Thus qu]s gives

3. Viscosity in Thin Selfgravitating Accretion Disks

In the following we assume that the accretion disks are geo-
metrically thin in the vertical direction, symmetric in tlae-
imuthal direction, and stationary. We approximate theieakt
structure by a one zone model. Then a disk model is specified
by the central masa/,, the radial distributions of surface den-
sity X(s), central plane temperatufg(s), and effective tem-
peratureT,s(s) or the radial mass flow ratd/. The relevant
material functions are the equation of state, the opacitytha
viscosity prescription.

% As ~ Avy = (e (6)
s
or

As ~ iAvd, = Qics (7
’U¢ (%)
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One can estimate the importance of selfgravity by compar- Since details of the thermodynamics in thdirection are
ing the respective contributions to the local gravitati@ael- of no particular relevance to our argument, we shall asstme t
erations in the vertical and radial directions. disk to be isothermal in the vertical direction.

The vertical gravitational acceleration at the disk swefac Integrating the equation of conservation of angular momen-
is 2rGY andGM.,.h/s3, for the selfgravitating and the purelytum gives
Keplerian case, respectively. Selfgravitation is thus thamt
in the vertical direction when

Y= (sPw— 14
My w22 1h v 27rs3w’(sw 3 (14)

"~ M, 2%

(11)

with the radial mass flow rﬂel\'/[, the rotational frequenay,
wherelMq(s) is the mass enclosed in the disk within a radiusits radial derivative,’, and a quantity allowing for the integra-
and is given approximately by/, ~ 7s23. Typical numbers tion constant or, equivalently, for the inner boundary dtian.

for h/s are in the rang&0 =21, For a detailed discussion gfsee, e.g., Duschl & Tscharndter
Similar considerations lead to the condition 1991),|Popham & Naraygar) (1995) ahd Donea & Bierrghann
1996). For simplicity, we set the boundary condition= 0
My > M, (12) inthe subsequent discussion. This does not alter the essénc

our argument, and only changes details close to the disk’s in
for selfgravitation to dominate in the radial direction.uBhwe ner radial boundary, since the produéw increases witls. In
can define three regimes as follows: fact Eq.[1# applies in the general case (i.e., NSG and SG); for
Keplerian disks (NSG and KSG), we may writé = —3w/2s.

— Non-selfgravitating (NSG) disks in whichV/4(s) < Finally, we have for the sound velocity

(1/2)(h/s)M. (i.e., the classical Shakura-Sunyaev disks)
— Keplerian selfgravitating (KSG) disks in which selfgravit
is significant only in the vertical direction and which sitis .2 _ P/<§> . (15)
the constraint1/2)(h/s) M, < Mqa(s) < M, ° 2h
— Fully selfgravitating (FSG) disks which satisfy/, <
My(s) Egs[1B anfl 15 give

Becausel/4(s) is a monotonically increasing function ef
all three regimes will arise in sufficiently massive, thir/ § <
1) disks.

2rGYh = 4nGph? = 2 (16)

wherep = X/2h is a vertically averaged mass density.

i : On the other hand, the Jeans condition for fragmentation in
3.2. Sdlfgravitating Disks the disk into condensations of radiitss
In this Sect., we will review the structure of selfgravitegi

(SG) accretion disks within the framework of the assumptiork™ GoR% > 2 (17)
introduced above. Compared to the standard NSG models, both! " G

the KSG and FSG disks require modification of the equation of

hydrostatic support in the direction perpendicular to tiekd (sed MestHl 1965) whetgis factor of order unity.

Thus, while in the standard model the local vertical pressur Thus, a selfgravitating disk is on the verge of fragment-
gradient is balanced by thecomponent of the gravitationaling into condensations of radiug ~ h unless these are de-
force due to the central object, in the SG case we have balastteyed by shear motion associated with the Keplerian veloc
between two local forces, namely the pressure force and thefield. Thus[Paczyhdk| (19¥8) and later Koztowski, Wi&a
gravitational force due to the disk’s local mass. In the KSBaczynski |(19!9) a! Lin & Pringl¢ (1987) proposed that the
case, in the radial direction centrifugal forces are stél-b viscosity prescription was directly coupled to the abovavigr
anced by gravity from a central magdseplerian approxima- tational stability criterion.

tion), while in the fully selfgravitating case we have to\®| o solve for the dynamic and thermal structure of SG disks,

Poisson’s equation for the rotation law in the disk. a viscosity prescription has to be specified. As in the NS@ cas
For an SG disk, hydrostatic equilibrium in the vertical diit is possible but not necessary that viscosity is limiteghgck
rection yields dissipation. In the absence of such dissipation, we wosldga
fore, expect thgg-viscosity to apply. It is instructive, however,
P =7G¥? (13) to follow the logic of Sect[ 2]2 in he case of SG disks in which

_ . turbulence is limited by shock dissipation.
(Paczynski 1918), wherB is the pressure in the central plane
(z = 0), X is the surface mass density integrated indltrec- 2 We choose the convention of radial mass flow rafeand radial
tion, andG is the gravitational constant. velocity vs positive for inward motion.
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3.3. Miscosity in shock dissipation limited For a KSG disk, this in turn yields
selfgravitating accretion disks

For a SG disk (whether Keplerian or not) EE1 8 is no longer, 26 M 2/ kT,
valid so the analysis of Eqf} 9 apd 10 no longer applies. In = | —3,~ T (25)
physical terms, the scale height in the disk no longer reflect
global properties of the disk (mass of and distance to theaen
star) but is set by local conditions.
For the selfgravitating case we have approximately . 2/3
T. =2.42K 1M (26)
Ui N G(M. + My) (18) a 1076 Mg /yr

S

where conditions\/, > My, and M, < My. distinguish be- A similar result arises for the FSG case, albeit with a défer

tween the Keplerian and the FSG cases, respectively, wéth Iumerlcal factor resulting from the solution of Poissorgsia-

KSG disks as an intermediate case on.
From EQI]7 Thus, for a SG disk, tha-ansatz leads to the requirement

of a constant temperature for all radi{or, if £ # 0 in Eq.,

s 2rhnsd \ /2 ohys \ /2 the temperature is prescribed as a function)pindependent of
As~(—~( (7) ~ <7> (19) thermodynamics. While the examinstancy of the temperature
Vg M, + My Yo+ X o
may very well be an artefact of our simplified one-zone approx
whereX, is defined byM, = 7s2%,. imation for the vertical structure, there is no reason toeexp
At the transition to the NSG regime, Eqs] 11 4nH 19 and tkeat proper vertical integration of the structure will charthis
conditionM, > My give as before fundamentally.
Thea ansatz for a SG disk also requires that the disk struc-
As ~Ch (20)  ture satisfy
and hence a smooth transition to theansatz. ) .
. . c M?2/3
For the FSG regime, E.]19 and the conditialy > M, px»— S _ _ @7)
give the simple asymptotic form 2nG (3a)2/3 (27rG)1/3
As ~ ((2hs)'/? (21) In a standard NSG accretion disk the temperature is a free pa-

rameter which is determined by the energy released by the in-

and hence a viscosity of the form ward flow of the disk gasi/), by the local viscosity, and by the

v~ (hs)?c (22) respective relevant cooling mechanisms. The viscositgdés
onT, via Eq. {1) and on the equation of hydrostatic support in
where~ is a factor of order unity. the direction normal to the disk (E(ﬂ (8), which in the non-SG

The situation is more complex for intermediate values ohse replaces Ed. {13)).
Mg/M.. The derived viscosity differs in all SG cases fromthe |n the SG case, it is the surface densityand hencér)
standarch-ansatz, but approaches that formds/M.. — 0. which must adjust in order to radiate the energy deposited by
Thus when hydrodynamically induced turbulence is limitgd bviscous dissipation and provided by the inward flowing mate-
shock dissipation, the resultant viscosity reflects localdt- rial. While detailed solutions are beyond the scope of this p
tions and takes the standard Shakura-Sunyaev form only wiei, they clearly exist formally. On the other hand, the redrm
the disk mass is negligible. We show below that this new prgvermostat mechanism does not operate, at least in the steady
scription removes a problem previously noted [by Paczynsitate. Indeed in certain circumstances, the conditionnétzmt
([T978) and others, with the structure of KSG disks with mid-plane temperature appears to be inconsistent withetbie b

viscosity. thermodynamic requirement that the average gas temperatur
in the disk exceed that of the black body temperature reduire
3.4. Sructure of SG Disks with Shock Limited Viscosity to radiate away the energy dissipated by viscous stresses (s
Appendix). It is therefore doubtful whether a physicallayp
It follows from Eqs.[1B[14 anf 15, with= 0, that sible and stable quasi-steady state solution exists.
GO /7 dln s On the other hand, if one adopts the alternative prescriptio
At =— ( ) ) (23) for shock limited viscosity proposed in 893.3, the above
2v. \dnw problem with constant or prescribed mid-plane temperature
If one adopts the standardprescription, this yields disappears, the temperature once again depends amd the

normal thermostat can operate. While this does not prove the
3 GM (dlns) . (24) validity of the shock limited viscosity prescription givén

%~ " 94 \dnw Sect[3., itis certainly an interesting consequence.
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4. Selfgravitating 3-Disks Under these conditions the dissipation per unit area of a SG
4.1. General Observations f-diskis given by
y 2

A general analysis of SG disks is complex and beyond thg _ M [vg = 20T (33)

scope of this paper. In this Sect., we examine the structure o~ 47s \ s ¢

SB-disks, in which the turbulence is subsonic at all radii.d@ef

doing so, we make the following general observations.
First, with thes-viscosity prescription, Eg$. [L4 afd 23 giv

where o is the Stefan-Boltzmann constant. For an optically
éhick KSG disk this yields the same radial dependencg.gf
as for the standard disk, namely

MW M 1/4

¥=- =— 28 )
2mvsw’ Bs3w’ (28) To = (GJVHV[*> s3/4 (34)
¢ 8mo
and
‘ ‘ This temperature dependence which is identical to thatef th

= _GhM W = _ GhM (29) standard model then leads to the well known energy distribu-

2v  sw' 2353w’

tion for an optically thick standard disk &, « '/, This also
Thus the SGB-disks recover the thermostat property of thimplies that—as long as the disks are not fully selfgrairntgt—
standard disk, namely that the temperature and scale teightit is hard to distinguish between an and aj-disk model ob-
adjust to accomodate (radiate away) the energy input toyhe sservationally.
tem from viscous dissipation and inward motion.

Second, we note t.ha.t if the disk matter distribution .i§'3_ Fully Selfgravitating 3-Disks (FSG)
clumpy (e.g., clouds within a low density smoothed out dis-
tribution) then there may be a formal connection between thée turn now to the case of the fully selfgravitating (FS&)
a- and S-prescriptions. Since in thg-formulation the clump disk, in which the disk mass is sufficiently great that it dom-
velocities are of orden,, shock heating will tend to heat theinates the gravitational terms in the hydrostatic suppgue
low density inter-clump gas until its sound spegd- v,,. The tion in both the radial and vertical directions. While there
inter-clump gas then has a scale height s, the scale of the many potential solutions for the FSG disk structure, oned w
clumpy disk, and will hence be roughly a spherical structurknown in both mathematical and observational terms, namely
At this point thea- and 8-prescriptions look formally identi- the constant velocityu, = const.) disk. Within such a disk
cal but the scale height and sound speed now refer to a msligicture we have simultaneous solutions to the equatioa-of
or less spherical background distribution of hot gas in Wkic dial hydrostatic equilibrium and Poisson’s equation offtiren
disk structure of cloudy clumps is imbedded. 1
vy =sw=wvg and X3 ox Xy <i) . (35)

S
4.2. Keplerian Selfgravitating S-Disks (KSG) 0

_ _ ([Toomrg[1963] Mesiél 1953). For the FSG disk, g} (28) then
For the particular case of a KS@disk we have from Ed. 29 |eads to

2 3GM 1 M
s 30) ¥ =

W~ 33 (GML)E (30)
For the SGg-disk it follows immediately from Eq.mtS) and which has the same radial dependence as the structurabsolut
from mass conservation in the disk that the radial inflow geloshown in Eq.[(35). Thus Eq[ (36) may be viewed as giving the

(36)

27 Bsvg

ity v, is given by rate of mass flow through the disk for a F&&lisk with con-
) stant rotational velocityy. Finally, the equation of continuity
. M _ B 31) provides a constraint if the structure is to maintain a tedlyic
S 271s% steady state structure. For the = v, = const. disk, this yields
For the KSGgS-disk, we then have oy 9 b
== (s0s8) = — =0 37
) 5 . s5r = 5-(s0.D) = - (BuysT) (37)
Vs = Eﬂsw N 55% (32) Thus the constant velocity disk represents a steady sthte so

tg)n in regions sufficiently far from the inner and outer bdun

Thus at each radius the inward velocity is the same fraction'0 ,
aries of thes-disk.

the local orbital velocity. From quzpl) this, in fact, heltbr : : ) . . . 5
any SGp-disk in which the angular velocity is a power law Itis then possible, in the spirit of the discussion of E.)(3

function of s with adjustment only to the numerical factor ir®"d (3h), to calculate the energy dissipation rate per ua a
Eq. (3}). If 3 satisfies the constrairff (3), then the approximd? for the constant velocity-disk. We then find
tion of centrifugal balance in the radial direction remaived| Mvg

S — o Td _
justified. D=20Teq =5 (38)
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so that In KSG and FSG disks3-disks),7isc IS given by
. 1/4 KSG FSG sG _ Tdyn
M 2 Tyis = Tyisc — Tvisc — (45)
Torr = < e ) 5712 (39) RO Ve T e B

With @ < 1 andg < 1 (Eq.[3) under all circumstances. >
The flux density,F,, emitted by an optically thick, constantayn- In the SG cases the ratio between the two time scales
velocity 3-disk it then given by decouples from the disk structure. In all cases the models ar
self-consistent in assuming basic hydrostatic equilirin the

1 (40) vertical direction.

F, xv .
In reality, a sufficiently massive disk may be expected toeh
an inner Keplerian (standard) zone, a Keplerian selfgatiag

zone (KSG), and a fully selfgravitating zone (FSG). We sHoub.1. Protoplanetary Accretion Disks

therefore expect a smooth transition in the spectral endisgy T Tauri stars have infrared spectral energy distributiof’s

tribution from ther!/3 spectrum of the inner two zones to hich b imated i b |
the ! spectrum arising at longer wavelengths from the FSY’!‘-FIC ca:? fhapprOX|;na|¢ dm ”."a':ﬁ’ cases yopOV\lle?: aws
zone. The transition frequeney,a,, may be derived by soly- ¥*» & v With a spectral index: in the range~ .. . 1.o.

ing Egs. [3}) and[(39) fos, determining a value of transitionAssunt].'ng”tht'ﬁ.slfed(?trl?l .??hav'?l:r to bte due g.) lratd|at|o? from
temperaturd’ .. and setting an optically thick disk, it translates into a radial tempgera

distributionTog o< s~9 withn =4 — 2/q.
An optically thick non-selfgravitating accretion disk whi

2. possible Applications

kT rons kMYA3? radiates energy that is liberated through viscous dissipat
Vtrans = n 3 (8770)1/4 (GM)l/Q = i.e., anactive accretion disk shows a spectral distribution with
i g = 3/40orn = 4/3. Thisimmediately excludes optically thick
k M 3 1/2 non-selfgravitating standard accretion disks as the negjor
= (E) Sro <GM) : (41)  tributor to T Tau spectra.

Adams, [ada & Shu(1988) were the first to discuss the pos-
One could turn this argument around and argue that, if na-ot$ility of a non-standard radial temperature distribntieith
components contribute to the spectrum, the flatness affhe ¢ 7# 3/4. Usingq as a free parameter, they find that for flat
distribution is a measure for the importance of selfgragitg SPectrum sources, their best fits require disk masses that ar
thus for the relative mass of the accretion disk as compared¥ longer very small compared to the masses of the accreting
the central accreting object. This, of course, applies tmtpe  Stars. They already mention the possibility that the flatrofs

op“ca”y thick case which may not arise frequent'y in Sg'tyn the SpeCtl’um and SelfgraVity of the disk may be related. @n th
clumped disks. other hand, at that time this indirect argument was the only e

idence for large disk massds. Beckwith eft @l. (1990) in their
survey of circumstellar disks around young stellar objatds
4.4. Time Scales find preferentially disk spectra that are considerablydtatian
The evolution of accretion disks can be described by a setfgdicted by the standard optically thick disk models. Foren
time scales. For our purposes, the dynamical and the viscdign half of their objects they derive disk masses that eorre

time scale are of particu|ar interest. Spond to the KSG and FSG cases. On the other Natta
The dynamical time scale,,, is given by ) proposed that flat disk spectra are the consequence of
dusty envelopes engulfing a star with a standard disk ardund i
—_— l. (42) Recently] Chiang & Goldrei¢h (1997) have investigated in de
W tail non-selfgravitatingpassive accretion disks, i.e., disks that

are heated by radiation from the star and re-radiate thigggne
Depending on the details of the flaring of the disk, this caualle
't?nconsiderably flatter spectra than expected from actistesdi

However, in the meantime, high resolution direct observa-
tions of protostellar disks yield independent strong ewae
for comparatively large disk mass¢s. Lay €t pl. (1994), fler i

s2 stance, find a lower limit for the disk masses in HL Tau—one
Tvise = 7 (43)  of the sourcesin Adams, Lada & Shu’s sample of flat spectrum
T Tauri stars—of- 0.02 M.

We suggest that the flatness of the spectrum actually reflects
the mass of the disk, i.e., the importance of selfgravity. Fo
disk masses considerably smaller thanl/30M., the stan-
(44)  dard accretion disk models apply. For disks whose masses are

While this formulation applies to all cases, selfgravitgtior

not, it is only in the non-SG and in the KSG cases thas

given by the mass of the central accretor and by the radius

the FSG casey is determined by solving Poisson’s equation.
The time scale of viscous evolution;s. is given by

In the standard non-SG and geometrically tHing s) case {
disks), this leads to

non—SG __ f 27—dyn Tdyn
visc - h a a .
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larger but still small compared td/, the spectral behaviour at least slows down) in the constant angular velocity ineer r
is not altered significantly, but the disk structure and theet gions (Ick§[1979] Dather & Biermgr{n 1990). Similarly, sev-
scale of disk evolution;s., see Eqﬂ4 ar@45) change. Fagral authors have suggested that the radial abundancegtsdi
even more massive disks, we expect a clear trend towards ftaiserved in our own and other disk galaxies may be due to ra-
ter spectra that approach an almost constaptdistribution if ~dial motion and diffusive mixing associated with the tudnde
selfgravity in the disk becomes important in the radial ail wegenerating the eddy viscosity (Lacey & Fpll 1985, Sommer-
as in the vertical direction. Larson & Yoskii[1990,[ Ko 19p4, Edmunds & Green-
how [1995 [ Tsujimoto et &]. 19P5). According to these authors
radial inflows of around 1 km's" at the galactic location of the
Sun are required for optimum fits to the abundance gradient
The relevance of viscosity in the evolution of galactic diskdata within the context of the viscous disk hypothesis. Sach
has been the subject of discussion since von Weizd4ckég(1dlow velocities are consistent with thg-ansatz but could, of
1951) ant2) first raised the issue nearly fifty yeagourse, be generated also by other means (e.g effects of bars
ago. They noted then that, with an eddy viscosity formufatignagnetic fields).
(ap-disk), the time scale for evolution of typical galacticldis
was comparable to the age of the universe and suggested ghat
this might account for the difference between spiral anig-ell
tical galaxies. Recent high resolution imaging of ultraluminous galaxies i
With the subsequent realization that galactic disks mové#te near infrared and mm wavelengths bands shows dense gas
primarily under the influence of extended massive halosrintand dust accretion disks in their galactic nuclei. The twe nu
est in FSG disks waned. However, as noted above, it is pessi#lei in the merger galaxy Arp 220, for instance, have masses
for a massive disk to exist and evolve under the influence @f the order of several0? M within radii of < 100pc
viscosity, while embedded in such a halo gravitational fielScovill¢ [200D). Similar properties, albeit less well riesd
Indeed, in the event that such a structure forms, it muswevothan in Arp 220, seem to be typical for this class of galax-
under viscous dissipation and can achieve a quasi-steatdy Ses {Solomon et al} 1997, Downes & Solorppn 1998). Most,
with essentially the same mass and energy dissipatiorituistr if not all, ultraluminous galaxies seem to be merging galax-
tion as for the FSG constant velocity disk. We refer to thisecaies (Sanders & Mirabgl 19P6). In Arp 220, these gas masses
as an Embedded Self-Gravitating (ESG) disk. are the major contributor to the dynamical mass in the two nu-
The time scale for viscous evolutiog. as given in Sect. Clei (Scovill¢[2000), i.e., these nuclear disks are selfta
E Suggests a means of differentiating betweendheand |ng Most ||ke|y th|S iS true fOI‘ the nuclear diSkS in Othetl’ajr
B-formulations for this case. For a normal spiral galaxy with!minous galaxies as well. The merger process is presumably
a suggested mean temperature in the gaseous disk of ard@$@onsible for transporting large amounts of material the

5.2. Galactic Disks

Ultraluminous galaxies

104K and a scale height of around 300 pc, we obtain central few hundred parsecs, thus filling a mass reservaatwh
is then available for subsequent disk accretion to the veny ¢

ter.
(@) 4 11 Within the framework ofg-disks, one finds that the vis-
Toise ~ 10%Tqyn ~ 3107 yr . i . .
) s s o o cous accretion time scatg;s. increases towards larger radii
Tyise ~ 107 = 10%7qyn ~ 310% — 3107 yr (46) as long as the surface densifyin the disk increases with

radius s not steeper thai o s, which is most likely ful-

Thus, with these parameters, little evolution would takecpl filled. Then the viscous time scale at the disk’s outer edge is
in a Hubble time on thev-hypothesis but significant evolu-an upper limit to its evolution time scale. For Arp 220 (disk
tion is predicted on thes-hypothesis. This problem of themass~ 210° Mg; outer radius~ 100 pc) one finds a time
viscous time scale in a selfgravitating accretion disk was scale of~ 10 yr/3 ~ 3...30107 years forg = 10723,
also noted by Shlosman & Begelman (1987, 1989). Shlosmarhich, in turn yields accretion ratel/ ~ 102 Mg yr—'.
Frank & Begelman[(1989) proposed non-axisymmetric distuuch rates lead to accretion luminosities.. = nMc? up to
bances (“bars within bars”) as an alternative way of transpo~ 710475485 ergs™!, wheren (~ 0.1) is the conversion effi-
ing angular momentum in the radial direction within a suffieiency of gravitational energy into radiation ané the speed
ciently short time scale. of light. Such luminosities are large enough to power even th

In terms of inflow velocities thed-ansatz suggests valuesstrongest AGN and the time scales are very much shorter than
in the range).3 — 3kms~! which would be exceedingly hardthe Hubble time.
to measure directly. Tha-ansatz suggests still lower values. Assuming that these rates can be maintained during a size-
On the other hand, it may be possible to provide limits cable fraction ofrs., a significant fraction of the disk’s original
the viscosity through other observational constraints.é6 gas mass could be accreted to much smaller radii, presumably
ample, the build up of the 3kpc molecular ring in our owto a black hole in the very center (some will be lost to star for
galaxy can be interpreted as due to viscosity driven inflow mation or winds). In this process the black hole gains a cbnsi
the constant velocity part of the galactic disk which cedees erable amount of mass within a relatively short time scatee O
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may speculate that this is actually the process that pradthee

most massive black holes in the young universe. By contrast,

galaxges that do r_lot undergo mergers presumably have no Vy%[}f/ _ (i) (GM)1/4 AN/ g3/
of rapidly collecting such large masses of gas with@? pc. 8o

As a consequence, these disks are less likely to be selfgravi
tating and thus are likely to have longers.. The nuclei of = 8.5310°K (—
such galaxies will accrete much smaller amounts of material 5

over longer time scale, resulting in lower mass centrallblac

holes [Duschi 1988a, b). An example may be our own Galactidh 77 the mass of the central star in solar units andthe
(Duschyl 198§ ) P y radius in astronomical units.

(A.2)

Center. . ) ) )
An essential thermodynamics requirement is fhat- Tog
or that
6. Summary
. . . X 1/4,5,—5/12
We propose a viscosity prescription based on the assumpt@ — 353 10*2m m oz2,/13 <1 (A3)

that the effective Reynolds number of the turbulence do¢s n@. 52/4
fall below the critical Reynolds number. In this parameiriz
tion the viscosity is proportional to the azimuthal velg@and Tnjs condition is satisfied provided that
the radius g-disks). This prescription yields physically consis-
tent models of both Keplerian and fully selfgravitating razc
tion disks. Moreover, for the case of thin disks with suffitlg ;- 5 = 3271074 — =L (A.4)
small mass, we recover thedisk solution as a limiting case. s?f
Suchg-disk models may be relevant to protoplanetary ac-

cretion disks as well as to galactic and galactic centersdisland that the disk is selfgravitating in the vertical direntiat
In the case of protoplanetary disks they yield spectra tteat &, . The latter condition leads to a second requirement:.on
considerably flatter than those due to non-selfgravitatisks, For a standard Keplerian disk, the mass flow rate is given
in better agreement with observed spectra of these objects(Eqs,Bamg) by
galactic disks, they result in viscous evolution on timelega
shorter than the Hubble time and thus offer a natural expla- M M B\ 2

i d av

R = alMy (E) w

3/5 .8/5
4m/041

~

. 2
Tvisc S

nation for an inward flow that could account for the observeld ~ (A.5)
chemical abundance gradients. In galactic centedisks may

be the supply for powering AGN and for forming supermassive,
black holes within time scales short compared to the Hub
time.
Finally, 5-disks yield a natural solution to an inconsistencgq" that
in the a-disk models if the disk's mass is large enough for
selfgravity to play a role. This problem arises even in Kepl%j L@ (ﬁ)?’ (GMf)l/2 (A6)
rian selfgravitating disks in which only the vertical struie is 2 '
dominated by selfgravity while the azimuthal motion rensain

th M, the disk’s mass. From EElll, the condition that the
Isk is non-selfgravitating i3/4 < (h/2s) M, and hence, from

s 53

Keplerian. or
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the Young Universe). tained only ifihg > 7, that is the disk becomes selfgravitat-
ing at values ofin which are sufficiently high that thermody-
Appendix A: Thermodynamic Considerations for KSG namic requirements are not violated. This condition maythe
a-disks be written as
For a KSGa-disk, we have from Eq. 26 that h
2 = > 1.0110 I 3/105 /10015 (A.8)
. 2/3 S
T.=242K 1M / Al
o 1076 Mg /yr ' AL Thusthin KSG a-disks appear to be inconsistent with basic

thermodynamic requirementsif < 1,sa < 1. Thereis noin-
If the disk is optically thick and advection is negligibléseous consistency if either or both of these quantities are seffity
dissipation leads to local effective temperature of large.
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