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Abstract

Contrary to a claim, the Schwarzschild solution insertion in an ex-

panding universe model, the so called “Swiss cheese” model, does not

possess an extrinsic curvature discontinuity. We show that both the in-

trinsic metric and the extrinsic curvature are continuous, and point out

the error that led to the claim.

1 Introduction

The “Swiss cheese” cosmological model is a general relativistic description of
space-time. The name refers to the fact that in this model static spherical voids
are created within a larger, time-dependent space-time. A void is constructed
by removing the background material inside a spherical boundary and replacing
the mass by a concentration of that mass at the centre of the sphere.

Mathematically, the model is realized by the matching of a Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric as the exterior solution, to an ex-
terior Schwarzschild metric as the interior solution, across a spherical boundary.
The spherical boundary stays at a fixed coordinate radius in the FLRW frame,
but changes with time in the Schwarzschild frame.
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The smooth matching of two space-times across a three-surface of discon-
tinuity Σ is guaranteed if the Darmois junction conditions are satisfied: the
first fundamental forms (intrinsic metrics) and the second fundamental forms
(extrinsic curvatures) calculated in terms of the coordinates on Σ, are identical
on both sides of the hypersurface [1]. The Darmois junction conditions allow us
to use different coordinate systems on both sides of the hypersurface.

The continuity of the first and second fundamental forms on a matching
hypersurface Σ implies the continuity of the fluid pressure on Σ (see e.g. [2]).
In the case of the “Swiss cheese” model, it implies a dust filled (i.e. zero pressure)
FLRW space-time.

Recently, Baker [3] claimed that the extrinsic curvatures for the Schwarzschild
and the FLRW metrics used in the “Swiss cheese” model cannot be matched at
a spherical boundary. In the following section we show that this claim is erro-
neous. We prove this by explicitely constructing a smooth matching between
the Schwarzschild and FLRW space-times across a spherical hypersurface. In
particular, we show that both the intrinsic metrics and the extrinsic curvatures
(henceforth often refered to as the first and second fundamental forms respec-
tively) are continuous on the hypersurface. We also verify that the pressure is
continuous as required. We conclude by indicating the error in ref. [3] that led
to the claim.

2 The Matching

The general FLRW metric can be written in spherical coordinates as

ds2 = dt2 −K2(t)

[

r2
(

dθ2 + sin2 θdφ2
)

+
dr2

1− kr2

]

, (1)

where K(t) is the scale factor and k = 0,±1 the curvature constant of space. We
will show that the metric (1) can be joined smoothly on a spherical hypersurface
Σ to the Schwarzschild metric

ds2 =

(

1−
2M

ρ

)

dT 2 − ρ2
(

dθ2 + sin2 θdφ2
)

−

(

1−
2M

ρ

)−1

dρ2 . (2)

The first fundamental form is the metric which Σ inherits from the space-
time in which it is imbedded, and may be written as

Υαβ = gij
∂xi

∂uα

∂xj

∂uβ
, (3)

where uα = (u1 ≡ u, u2 ≡ v, u3 ≡ w) is the coordinate system on the hyper-
surface. Greek indices run over 1, . . . , 3, while Latin indices over 1, . . . , 4.

The second fundamental form [4] is defined by

Ωαβ = (Γp
ijnp − ni,j)

∂xi

∂uα

∂xj

∂uβ
, (4)
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where na is a unit normal to Σ, and Γp
ij are the Christoffel symbols. If Σ is

given by the function f [xa(uα)] = 0, then ni can be calculated from

ni = −
f,i

|gabf,af,b|1/2
, (5)

where , i denotes ∂
∂xi . To avoid confusion we will denote indexed quantities

associated with the FLRW and Schwarzschild metrics by the letters F and S

respectively.
We consider a spherical hypersurface Σ given by the function fF (x

i
F ) =

r − r0 = 0, where r0 is a constant, and parametrized by x1

F = t = u, x2

F = θ =
v, x3

F = φ = w, and x4

F = r = r0, in the FLRW frame. In the Schwarzschild
frame we choose the parametrization x1

S = T = T (u), x2

S = θ = v, x3

S = φ = w,

and x4

S = ρ = ρ(u). The condition ΥFαβ = ΥSαβ then implies

1 =

(

1−
2M

ρ

)(

dT

du

)2

−

(

1−
2M

ρ

)−1 (

dρ

du

)2

, (6)

K2r20 = ρ2 . (7)

We now turn to the two second fundamental forms. The (outward pointing)
unit normal in the FLRW frame can be calculated from eq. (5) and fF (x

i
F ) =

r − r0 = 0. The result is nFi = δ4i nF4, where nF4 = −|gF44|
1/2. The unit

normal is spacelike, i.e. ni
FnFi = −1. The unit normal in the Schwarzschild

frame cannot be obtained directly from eq. (5) since we do not know the form
of fS. However, nSi must satisfy the two conditions

ni
SnSi ≡ ni

FnFi = −1 and nSi
∂xi

S

∂uα
= 0 , (8)

where the second condition results from the partial differentiation of fS [x
i
S(u

α)] =
0 with respect to uα. From (8) one obtains

nS2 = nS3 = 0,

nS1
dT
du + nS4

dρ
du = 0,

(

1− 2M
ρ

)−1

nS1
2 −

(

1− 2M
ρ

)

nS4
2 = −1.











(9)

With the help of eq. (6), equations (9) enable us to derive nSi as a function of
uα :

nSi =

(

ǫ
dρ

du
, 0, 0, −ǫ

dT

du

)

, ǫ = ±1 . (10)

Because of the simple form of nFi, eq. (4) for the second fundamental form
can be much simplified in the FLRW frame. In this case one obtains from (4)

ΩFαβ = Γ4

FijnF4

∂xi
F

∂uα

∂x
j
F

∂uβ
− nF4,j

∂x4

F

∂uα

∂x
j
F

∂uβ
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= Γ4

FµνnF4

∂x
µ
F

∂uα

∂xν
F

∂uβ
, since

∂x4

F

∂uα
=

∂r0

∂uα
= 0 ,

= Γ4

FµνnF4δ
µ
αδ

ν
β

= nF4Γ
4

Fαβ

= −
1

2
|gF44|

1/2g4iF (gFαi,β + gFβi,α − gFαβ,i)

=
1

2
|gF44|

1/2g44F gFαβ,4 , (11)

so that

ΩFαβ = −
1

2
|gF44|

−1/2gFαβ,4 . (12)

Equation (12) with F ′s dropped, i.e.

Ωαβ = −
1

2
|g44|

−1/2gαβ,4 , (13)

is valid for any coordinate hypersurface x4 = constant, in an orthogonal coor-
dinate system and parametrized by xα = uα. No similar simplification of the
second fundamental form of Σ is possible in the Schwarzschild frame. Moreover,
for us to calculate the second term in eq. (4) we need nSi as a function of xi

S .

However, if we once more differentiate the second condition in eq. (8) with
respect to uα it follows that

nSi,j
∂xi

S

∂uα

∂x
j
S

∂uβ
= −nSi

∂2xi
S

∂uα∂uβ
,

giving

ΩSαβ = Γp
SijnSp

∂xi
S

∂uα

∂x
j
S

∂uβ
+ nSi

∂2xi
S

∂uα∂uβ
. (14)

Using equations (12) and (14), we find that ΩSαβ = 0 = ΩFαβ , ∀α 6= β. The
remaining, diagonal components of Ωαβ and the continuity condition ΩSαβ =
ΩFαβ on Σ, result in the following three differential equations

ΩS11 ≡ Γ4

S11
nS4

(

dT

du

)2

+ Γ4

S44
nS4

(

dρ

du

)2

+ 2Γ1

S14
nS1

dT

du

dρ

du

+nS1

d2T

du2
+ nS4

d2ρ

du2
= 0 ≡ ΩF11 , (15)

ΩS22 ≡ Γ4

S22nS4 = α|K|r0 ≡ ΩF22 , (16)

ΩS33 ≡ Γ4

S33
nS4 = α|K|r0 sin

2 θ ≡ ΩF33 , (17)

where the Christoffel symbols are given by

Γ1

S14 = −Γ4

S44 =
M

ρ(ρ− 2M)
,
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Γ4

S11 =
(ρ− 2M)M

ρ3
,

Γ4

S22 = −(ρ− 2M) ,

Γ4

S33
= sin2 θΓ4

S22
,

and α ≡ (1− kr2
0
)1/2.

Equations (16) and (17) being equivalent, we can use either of them and eq.
(7) to obtain

dT

du
=

ǫαρ

ρ− 2M
. (18)

It then follows from eq. (6) that

(

dρ

du

)2

= α2 −

(

ρ− 2M

ρ

)

. (19)

Differentiating eqs. (18) and (19) w.r.t. u, one obtains

d2T

du2
= −ǫα

2M

(ρ− 2M)2
dρ

du
. (20)

and
d2ρ

du2
= −

M

ρ2
. (21)

With equations (18)-(21), eq. (15) is now identically satisfied. Thus, both the
first and second fundamental forms are continuous on Σ.

It remains to verify that the pressure is also continuous across the spherical
boundary. Since in the Schwarzschild space-time the pressure is zero, it must
vanish in the FLRW space-time. The FLRW space-time is a perfect fluid space-
time, and as such its Einstein field equations are given by

Gij ≡ Rij −
1

2
Rgij = 8π

[

(µ+ p)uiuj − pgij
]

, (22)

where Gij is the Einstein tensor, Rij the Ricci tensor, R the Ricci curvature
scalar, µ the matter-energy density, p the pressure, and ui the unit four-velocity.
Specifically, eq. (22) implies

G1
1 =

3(K̇2 + k)

K2
= 8πµ (23)

and

G2
2 = G3

3 = G4
4 =

2K̈

K
+

(K̇2 + k)

K2
= −8πp , (24)

where K̇ ≡ dK
du ≡ dK

dt , and K̈ ≡ d2K
du2 ≡ d2K

dt2 .
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To obtain K̇ and K̈, we differentiate eq. (7) w.r.t. u. The results are

K̇ = η
1

r0

dρ

du
, (25)

and

K̈ = η
1

r0

d2ρ

du2
, (26)

where η ≡ K
|K| . Substituting eqs (19) and (21) into (25) and (26), and using

K = η ρ
r0

(from eq. (7)), it follows from (24) that p = 0. Finally, we note that,

from eq. (23), 8πµ = 6M
r3
0
|R|3

, a positive quantity, which shows that the matching

is physically admissible.

3 Discussion and Conclusions

We have shown, in a mathematically rigorous way, that an FLRW space-time can
be joined smoothly to a Schwarzschild space-time across a spherical boundary,
a construction used in the “Swiss cheese” cosmological model of the Universe.
The boundary has a fixed coordinate radius in the FLRW frame, but changes
with time in the Schwarzschild frame. In particular, we have shown that the
intrinsic metric and extrinsic curvature are both continuous on the boundary as
is required for a smooth, permanent matching. These matching requirements
also imply the continuity of the pressure on the boundary, which has been
verified here.

Our results differ from those of ref. [3]. Specifically, we have not found a
discontinuity in the extrinsic curvature on the spherical boundary as claimed
in [3]. The claim in [3] can be explained out as follows. The author, without
justification, uses equation (13) (his eq. (2.10) with Nα = 0) for calculating the
components of Ωαβ in both the FLRW and Schwarzschild frames. This results
in the mismatch of ΩSαβ and ΩFαβ on the spherical hypersurface, leading to
the claim that “the ’Swiss cheese’ model is at best only an approximation, with
a singular interface”.

The use of eq. (13) in the Schwarzschild frame is incorrect. Assuming, a
priori, (as the author of ref. [3] and we have done) that the boundary surface
changes with time in the Schwarzschild frame, it follows that the boundary
is not a coordinate boundary in that frame, and, therefore, eq. (4) for the
extrinsic curvature, cannot be reduced to eq. (13). Equation (13) can be used for
calculating ΩSαβ only under the assumption that the matching hypersurface in
the Schwarzschild frame is the coordinate hypersurface ρ = constant. But then
eq. (7) cannot be satisfied unless R(t) = constant; obviously not an interesting
case, since then the FLRW space-time reduces to the Minkowski space-time.
Thus the use of eq. (13) in the Schwarzschild frame is an error.
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