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ABSTRACT

We investigate shear and buoyancy instabilities in radially stratified, magnetized,

cylindrical flows, for application to magnetocentrifugally driven winds - such as those

from protostars - and to magnetized accretion disks. Our motivation is to characterize

the susceptibility of cold MHD disk winds to growing internal perturbations, and to

understand the relation of wind instabilities to known accretion disk instabilities. Using

four different linear analysis techniques, we identify and study nine principal types

of unstable or overstable disturbances, providing numerical and analytic solutions for

growth rates for a wide range of parameters.

When magnetic fields are predominantly toroidal, as in protostellar winds far from

their source, we find the system is susceptible to growth of five different kinds of pertur-

bations: axisymmetric fundamental and toroidal resonance modes, axisymmetric and

non-axisymmetric toroidal buoyancy modes, and non-axisymmetric magnetorotational

modes. Winds having a sufficiently steep field gradient (d lnB/d lnR < −0.75 for a

purely toroidal-field case) are globally unstable to the long wavelength fundamental

mode concentrated at small radii; these promote the establishment of narrow dense jets

in the centers of wider winds. Long-wavelength outer-wind modes are all stable for

power-law wind equilibria. The toroidal buoyancy instabilities promote small-scale ra-

dial mixing provided the equilibrium has nonzero magnetic forces. For low-temperature

toroidal-B winds, both axisymmetric and non-axisymmetric magnetorotational insta-

bilities have very low growth rates. The stabilization of buoyancy instabilities by shear

and of magnetorotational instabilities by compressibility may be important in allowing

cold MHD winds to propagate over vast distances in space.

When magnetic fields are predominantly poloidal, as may occur in protostellar winds

close to their source or in astrophysical disks, we find the system is susceptible to

four additional growing modes: axisymmetric magnetorotational (Balbus-Hawley), ax-

isymmetric poloidal buoyancy, non-axisymmetric geometric buoyancy, and poloidal res-

onance modes. The well-known axisymmetric Balbus-Hawley mode has the fastest
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growth rate. When the magnetic field is nonuniform, the axisymmetric poloidal buoy-

ancy mode promotes radial mixing on small scales. The geometric poloidal buoyancy

mode requires high m, thus is readily stabilized by shear.

Previous work on magnetorotational instabilities has concentrated on near-

incompressible systems (accretion disks or stellar interiors). We extend this analysis

to allow for compressibility (important in winds). We introduce a “coherent wavelet”

technique (a WKB temporal approximation), and derive closed-form analytic expres-

sions for instantaneous instability criteria, growth rates, and net amplification factors for

generalized non-axisymmetric magnetorotational instabilities in compressible flows with

both poloidal and toroidal fields. We confirm that these are in excellent agreement with

the results of shearing-sheet temporal integrations, and that “locally-axisymmetric”

perturbations have the largest amplifications only provided (k · vA)/Ω . 1.

Subject headings: accretion, accretion disks — ISM: dynamics — ISM: jets and outflows

— ISM: magnetic fields — MHD — stars: pre-main-sequence

1. Introduction

The ubiquity of energetic molecular outflows and atomic jets from young stellar objects (YSOs)

ranging from deeply embedded infrared sources to classical T Tauri stars suggests that they are an

inescapable by-product of star formation (e.g., Richer et al. 2000, and references therein). Winds

from YSO disks play an important role in shedding angular momentum carried by inflowing mate-

rial, thereby permitting further accretion in order for the central objects to attain stellar dimensions

(Hartmann & MacGregor 1982; Pudritz & Norman 1986; Shu et al. 1988). These winds may also

have strong effects on the dynamical evolution of the parent cloud by providing a source of turbu-

lent energy (Norman & Silk 1980), and may help to determine the final masses of stars by reversing

the infall of surrounding gas (Shu, Adams, & Lizano 1987). Therefore, understanding the physics

of protostellar winds is of essential importance to the theory of star formation.

Among the various scenarios regarding the origin and nature of the protostellar winds, the

most promising is magnetohydrodynamic (MHD) models in which winds are driven by the inter-

action of the centrifugal force with open magnetic fields threading rapidly rotating disks. These

magnetocentrifugally driven wind models can account for observed high mass and momentum losses

(Lada 1985; Bachiller 1996) and the kinematic and structural characteristics of bipolar molecular

outflows in general (Li & Shu 1996), as well as in specific cases (e.g., HH111, cf. Nagar et al. 1997).

It is, however, still controversial whether the wind originates only from a small magnetosphere-disk

interaction region near the central star (Shu et al. 1994, 2000), or whether it emanates from an

extended region of the disk (following the seminal model of Blandford & Payne 1982; see, e.g.,

Königl & Pudritz 2000).

Although the role of magnetic fields in driving protostellar winds is by now well established



– 3 –

(at least theoretically), their complementary role in governing the stability properties of winds is

less well explored. In addition, azimuthal and vertical shear within winds may also affect their

stability properties. Questions of wind stability are potentially important for both large scale and

small-scale phenomena. These include understanding the role of magnetic fields and velocity shear

in (a) helping winds to propagate over enormous distances (up to a factor ∼ 106 in dynamic range)

through the ISM in parsec-scale giant HH flows (Reipurth, Bally, & Devine 1997); (b) creating bright

HH “knots” spaced throughout optical jets (Hartigan et al. 2000); (c) governing the angular extent

of the emergent wind and establishing the momentum distribution for driving molecular outflows;

and (d) converting large-scale ordered flow energy to jet heating through small-scale instabilities.

In addition, it is important to study the dynamical properties of large classes of theoretical wind

solutions to test whether they are stable equilibria which can represent real astronomical systems,

or whether they are unstable equilibria which should rarely be observed in nature because they

evolve rapidly into other configurations.

Previous studies of time-dependent behavior in steadily-input MHD winds have focussed pri-

marily on the Kelvin-Helmholtz instabilities driven by the interaction of the wind surface layer

with the ambient medium (see, e.g., the studies of Appl & Camenzind 1992; Hardee et al. 1992;

Rosen et al. 1999, and references therein). Generally, heavy jets containing strong toroidal fields

are relatively resistant to these instabilities. In addition to “driven” instabilities resulting from

boundary conditions, winds may also be subject to “free” instabilities in their interiors. Whether

a given wind solution is internally unstable must depend on the velocity shear, magnetic geometry,

and internal stratification. One route to studying internal wind instabilities is via time-dependent

numerical simulations of winds. Although such studies (e.g., Ouyed & Pudritz 1997, and references

therein) have yielded intriguing results on the development of episodic knots in MHD winds, the

computational demands in carrying out simulations precludes extensive exploration of parameter

space, large spatial dynamic range, or very long-term integration. In addition, some of the time-

dependent internal features found in simulations may be introduced by particular choices of inflow

boundary conditions that are inconsistent with a steady-state flow, rather than occurring as a result

of intrinsic instability of the wind.

Due to the importance of gaseous accretion disks in a wide variety of astrophysical systems,

major attention has focussed on disk dynamics, and, in particular, the role of instability-driven

turbulence in angular momentum transport (see, e.g., Balbus & Hawley 1998; Stone et al. 2000,

for reviews). Saturated magnetorotational instabilities (hereafter MRIs; Balbus & Hawley 1991,

1992; Hawley & Balbus 1991; Hawley, Gammie, & Balbus 1995) represent perhaps the most impor-

tant local dynamical process affecting disk evolution. Magnetized disk winds share many generic

properties with disks, so it is interesting to investigate the potential importance of MRIs in winds.

In this work, we investigate the internal stability of rotating, magnetized protostellar winds

to (primarily) local shear and buoyancy modes. We also extend previous studies of local MRIs in

accretion disks. The fundamental difference between “wind” and “disk” systems in our idealized

models is in the absence or presence of gravity as a confining force. These systems may also be
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distinguished by the geometry of the magnetic field, with toroidally-dominant fields expected in

the wind case, but either poloidal or toroidal fields possible for the disk case. Our most general

analysis and results apply to cold flows, but we also perform separate calculations (see §7) including
thermal effects which specialize to local analysis of MRIs.

Whether a wind originates from a narrow boundary layer or an extended radial region, the

radial expansion of the flow will lead to shear in the azimuthal velocity field of the asymptotic state.

The total specific angular momentum of the flow, J = R(vφ−BpolBφ/(4πρvpol)), is conserved along

streamlines (where Bpol, Bφ and vpol, vφ are the poloidal, toroidal components of the magnetic field

and the flow velocity). If the Alfvén mach numberMA ≡ vpol/vA,pol ≫ 1, the kinetic part dominates

the specific angular momentum and vφ ≈ J/R. Thus, the angular velocity Ω = vφ/R ≈ J/R2 in

the asymptotic wind will have a gradient d ln Ω/d lnR = d ln J/d lnR − 2. If the wind comes

from a boundary layer, then d ln J/d lnR may be small; if the wind originates from a large region

with self-similar scalings, then d ln J/d lnR = 1/2. In either case, d ln Ω/d lnR is expected to be

a negative, order-unity quantity for wind systems. For thin disk systems (i.e., negligible pressure

support), a Keplerian radial profile d ln Ω/d lnR = −3/2 is expected if the central mass is dominant.

For the analysis of this paper (except where noted otherwise), we adopt d ln Ω/d lnR = −3/2 for

both “wind” and “disk” systems, but our qualitative results are insensitive to this assumption. As

discussed below, order-unity radial logarithmic gradients may also be expected in the magnetic

field strengths; we allow for a range of magnetic gradients.

Significant shear may also exist in the poloidal velocities of jets if they originate from an ex-

tended radial region. The asymptotic outflow speed v0z generally scales linearly with the rotational

speed at the footpoint Rfoot of the streamline, so that

∂ ln v0z
∂ lnR

=
∂ ln v0z
∂ ln vfoot

∂ ln vfoot
∂ lnRfoot

∂ lnRfoot

∂ lnR
∼ −1

2

∂ lnRfoot

∂ lnR
.

If the range of footpoint radii is small compared to the range of asymptotic radii (as for a wind from a

boundary layer), then |∂ ln v0z/∂ lnR| ≪ 1; if the radial ranges are comparable, then ∂ ln v0z/∂ lnR

is negative and order unity. For disks, the vertical velocity shear is negligible. We allow for a range

of vertical shear rates in the present analysis.

Our analysis consists of developing and solving sets of linearized MHD equations for several

general classes of background flows. Both axisymmetric and non-axisymmetric disturbances are

explored. Even in linearized form, MHD problems present considerable technical challenges. Thus,

instead of attacking sophisticated sets of steady-state wind solutions, for many specific examples

we will take as an unperturbed configuration one of the power-law cylindrical equilibrium solutions

recently identified by Ostriker (1997) as asymptotic states of self-similar disk winds. These have

density ρ ∝ R−q, B ∝ R−(1+q)/2, v ∝ R−1/2, and sound speed cs = 0. Although these adopted

initial configurations are relatively simple, they retain general asymptotic characteristics of MHD

disk winds in the sense that they have both azimuthal and vertical magnetic field and velocity

components with arbitrary ratios, and all the physical variables have radial gradients. These

gradients may also be thought of as representing local scalings within a more complex overall
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stratification. We also include models without vertical motion but with significant equilibrium

gravity to study stability in magnetized astrophysical disks. In our analysis of MRIs, we use

equilibria with uniform B, ρ, and cs 6= 0, and take Ω ∝ R−a with arbitrary a.

Because the systems we are studying contain significant azimuthal shear, an arbitrary initial

spatial planform is not maintained indefinitely. When Ω′ 6= 0 and the azimuthal wavenumber m 6= 0

(and/or when v′0z 6= 0 and the vertical wavenumber kz 6= 0; the prime represents a differentiation

with respect to R), spatial wavefunctions may become increasingly radially corrugated in time due

to the kinematic shearing of the wavefronts imposed in the initial conditions. If we describe the

radial spatial wavefunction in terms of the amplitudes of Fourier coefficients with radial wavenum-

bers kR, this corresponds at late times to a secular increase in the amplitudes of large-kR terms and

decrease in the amplitudes of small-kR terms. As we shall show, all the disturbances we identify

are stabilized at sufficiently large kR. Thus, if mΩ′ and/or kzv
′
0z 6= 0, the net amplification factor

for any arbitrary initial disturbance is limited by the rate of kinematic growth of radial corrugation

compared to the growth rate of any dynamically-driven instabilities.

In previous work, two complementary analytical methods have been used to study small-

amplitude disturbances in shearing astrophysical systems. One approach adopts the “shearing-

sheet” formalism, and integrates the local, time-dependent, linearized wave equations directly to

obtain the evolutionary behavior of shearing wavelets treated as an initial-value problem (Goldreich

& Lynden-Bell 1965; Julian & Toomre 1966; Balbus & Hawley 1992). An alternative analytical

approach uses WKB techniques to derive dispersion relations for spatial Fourier modes, superposi-

tions of which represent local wavefunctions (e.g., Shu 1974, 1992; Ryu & Goodman 1992; Terquem

& Papaloizou 1996). This paper includes analyses using both approaches, and also introduces a

hybrid technique which we term a “coherent wavelet” analysis. We adopt the “modal” strategy

in order to identify characteristic instantaneous growth rates and physical mechanisms for a wide

variety of spatial disturbances. By considering the time over which a spatial pattern is altered

by shear, we can estimate the net amplification factor of a given initial modal disturbance. We

use the shearing-sheet formalism for studying magnetorotational instabilities, which are cut off at

relatively small values of RkR/m (whereas the modal analysis applies to large RkR/m), and also for

studying buoyancy instabilities in the high-m regime where modes are short-lived. We show that

the results obtained from the shearing-sheet integrations in both cases are in excellent agreement

with the predictions of a coherent wavelet analysis, in which time-dependent growth rates γ(t)

are computed by time-localizing the shearing-sheet equations and solving an analytic dispersion

relation.

The organization of this paper is as follows: We begin by studying instabilities in cold, magne-

tized winds. In §2, the basic MHD equations and the specific adopted wind equilibria are described.

In §3, we analyze the stability of winds to the simplest perturbation with kz = m = 0, where kz and

m are respectively the vertical and azimuthal wavenumbers of the perturbation. We term these

the “fundamental modes”; we present solutions for stable and unstable global modes under the as-

sumption of free Lagrangian boundary conditions. The modal analysis and general local dispersion
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relation for cold flows with arbitrary kz and m are presented in §4. We present numerical solutions

of the dispersion relation for both axisymmetric and non-axisymmetric perturbations in §5. In §6,
we classify the unstable or overstable modes and provide the physical interpretation for each mode.

Next, we include (variable) thermal pressure terms to compare the susceptibility of cold winds vs.

warm disks to shear instabilities. In §7 we analyze the axisymmetric Balbus-Hawley instability of

poloidal fields and the non-axisymmetric MRI of toroidal fields, discuss the respective instability

mechanisms, and provide the corresponding instability criteria. Here, we use the coherent wavelet

technique to compute growth rates, and compare with direct shearing-sheet integrations. The gen-

eralized instability criteria and net amplification factors for the magnetorotational disturbances

with both toroidal and poloidal background fields are also derived. Finally in §8, we summarize

and discuss conclusions of the present work.

2. Basic Equations and Cylindrical Equilibrium for Cold Wind

We begin with the ideal MHD equations

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂v

∂t
+ v · ∇v =

1

4πρ
(∇×B)×B− ∇P

ρ
−∇ΦG, (2)

∂B

∂t
= ∇× (v ×B), (3)

and

∇ ·B = 0, (4)

where ρ is the density, v is the fluid velocity, B is the magnetic field, P is the thermal pressure,

and −∇ΦG ≡ −g is the gravitational force due to a central object. We ignore self-gravity in the

flow.

We now consider cold, magnetized cylindrical flows. Since the flow velocity in disk winds is

always supersonic except in the vicinity of the disk where the material is lifted by the thermal

pressure (Blandford & Payne 1982), the thermal pressure term in eq. (2) can generally be neglected

compared to magnetic stress. Except for investigations of generalized MRIs (§7), we shall drop the

thermal pressure term. We adopt standard cylindrical coordinates (R,φ, z).

By assuming that vR = BR = 0 and all variables are independent of z, we have a general

equilibrium condition from eq. (2)

Ω2R ≡
v2φ
R

=
1

4πρ

(

B2
φ

R
+B ·B′

)

+ gR, (5)

where a prime denotes differentiation with respect to R. At a large distance from the origin, the

gravitational force due to the central source can also be ignored on the grounds that magnetic and
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centrifugal forces far exceed it. In this case, the magnetic hoop stress acting inward is the only force

that balances the outward centrifugal force and outward magnetic pressure gradient force (under

the assumption that the magnetic field strength decreases outward).

As an initial equilibrium configuration of the wind, for specific cases we will adopt the asymp-

totic solutions for cylindrically symmetric axial flows presented by Ostriker (1997). All variables

have power-law dependences on R: ρ ∝ R−q, Bφ ∝ Bz ∝ R−(1+q)/2, and vφ ∝ vz ∝ R−1/2. We

define the local pitch angle i of the magnetic fields as i ≡ tan−1 (Bz/Bφ). Neglecting gR in eq. (5),

radial momentum balance requires

v2φ =
v2A
2

(cos 2i− q) , (6)

where vA is the local Alfvén speed defined by

v2A ≡ v2Aφ + v2Az with vAφ ≡ Bφ√
4πρ

and vAz ≡
Bz√
4πρ

.

It is obvious from eq. (6) that there would be no such power-law solutions if q > 1. This is

because when q > 1, the magnetic field has so steep a gradient that the corresponding pressure

force always exceeds the tension. Therefore, to ensure force balance and cylindrical collimation in

winds with power-law profiles, the magnetic field strength must decline with R more slowly than

R−1.

We can define an angular velocity Ωf ≡ Ω − vpolBφ/(RBpol) as that of a rotating frame in

which the flow of winds is parallel to the local field line. Ωf is the rotation rate of the magnetic

field lines thought of as rigid wires. In such a frame, the family of solutions can be completely

described in terms of scaled values of the specific angular momentum j, the Bernoulli constant e,

and q, where

j ≡ Ω

Ωf

(

1− (vAφ/RΩ)
2

1− Ωf/Ω

)

and e ≡ 1

(RΩf)2

(

1

2
v2 +ΦG −R2ΩfΩ

)

,

(Ostriker 1997). The condition for a super-Alfvénic outflow velocity requires 0 < j ≤ 1. Generally

speaking, the pitch angle i does not depend on q, although one can parameterize i in terms of q, e,

and j. However, for flows originating from a Kepler-rotating disk, angular momentum and energy

conservation requirements limit the range of i available to an equilibrium (asymptotic) magnetic

field configuration. Utilizing eqs. (15) to (23) of Ostriker (1997) one can show that the maximum,

over all permitted values of e and j, pitch angle imax is given by

tan2 imax =

(

4

3 + q

)2

− 1, (7)

which is attained when e = 0 and j = 1. If j > 1, the streamline never reaches the Alfvén radius.
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3. Fundamental Mode

3.1. Dynamical Equations

We first consider the response of the equilibrium state when small, axisymmetric perturbations

with an infinite wavelength along a vertical direction are imposed. We term the waves with kz = 0

and m = 0 the “fundamental modes” analogous to eigenfunctions of oscillations without any node.

Let the subscripts 0 and 1 denote the equilibrium and perturbed states, respectively. Linearizing

the set of the dynamical equations (1) to (4), we may write

∂ρ1
∂t

= − 1

R

∂

∂R
(Rρ0v1R) , (8)

∂v1R
∂t

= 2Ωv1φ − 1

4πρ0

{

2B0φB1φ

R
+

∂

∂R
(B0 ·B1)−

ρ1
ρ0

(

B2
0φ

R
+B0 ·B′

0

)}

, (9)

∂v1φ
∂t

= − κ2

2Ω
v1R, (10)

∂v1z
∂t

= −v′0zv1R, (11)

∂B1φ

∂t
= − ∂

∂R
(B0φv1R) , (12)

∂B1z

∂t
= − 1

R

∂

∂R
(RB0zv1R) , (13)

and B1R = 0. In eq. (10), κ stands for the epicycle frequency

κ2 ≡ 1

R3

d

dR
(R4Ω2).

Combining the perturbed equations (8)−(13) and eliminating all other variables in favor of

the perturbed radial velocity v1R, one obtains the wave equation

1

v2A

∂2v1R
∂t2

=
∂2v1R
∂R2

+
d ln (RB2

0)

dR

∂v1R
∂R

−
[

κ2

v2A
+

1

R2

(

1 + cos2 i
d ln ρ0
d lnR

)

− ρ0
RB2

0

d

dR

(

R

ρ0
B0 ·B′

0

)]

v1R. (14a)

For power-law profiles, this becomes

1

v2A

∂2v1R
∂t2

=
∂2v1R
∂R2

− q

R

∂v1R
∂R

−
[

κ2

v2A
+

1

R2

(

1− q

2
− q cos2 i

)]

v1R. (14b)

To transform eqs. (14) to the Schrödinger form, we define a new independent variable Ψ through

v1R =
Ψ(R)
√

RB2
0

eiωt; or v1R = Rq/2Ψ(R)eiωt (15)
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for the power-law case. Then, we have

d2Ψ

dR2
+K2(R)Ψ = 0, (16)

with K(R) defined by

K2(R) ≡ ω2 − κ2

v2A
− 3

4R2
− d ln ρ0

dR

(

cos2 i

R
+

B0 ·B′
0

B2
0

)

+

(

B0 ·B′
0

B2
0

)2

, (17a)

or

K2(R) ≡ ω2 − κ2

v2A
− 1

R2

(

1

2
+
q2

4
− q cos2 i

)

(17b)

for the power-law case. Local (WKB) solutions to eq. (16) have Ψ ∼ ei
∫

kRdR with RkR ≫ 1 and

dkR/dR ≪ k2R. In this case, Ψ′′ → −k2RΨ, and we can use K2(R) = k2R to write a local dispersion

relation

ω2 = v2Ak
2
R, (18)

which corresponds to MHD fast modes propagating along the radial direction. When |ω|2 is com-

parable to or smaller than v2A/R
2, however, modes are not localized, and solutions must be sought

as a global problem subject to boundary conditions.

3.2. Global Analysis for the Fundamental Modes

In the previous section we showed that there is no short wavelength (local) unstable funda-

mental mode with kz = m = 0 in self-similar MHD disk winds. Here, we present the results of a

global normal-mode analysis performed with carefully chosen boundary conditions, and adopting

the power-law equilibrium. Define the dimensionless radial variable r ≡ R/Re, and dimensionless

parameters α ≡ (q − 1) cos2 i + q(2 − q)/4 and σ2 ≡ ω2R2
e/v

2
A(Re), with Re being the position of

the unperturbed outer edge of the wind. Then eq. (16) can be cast into the form

d2Ψ

dr2
+
( α

r2
+ σ2r

)

Ψ = 0. (19)

It is not difficult to show that the general solutions of eq. (19) are

Ψ =











A
√
rJν(2σr

3/2/3) +B
√
rYν(2σr

3/2/3), if σ2 > 0, (20a)

C
√
rIν(2|σ|r3/2/3) +D

√
rKν(2|σ|r3/2/3), if σ2 < 0, (20b)

with 3ν ≡
√
1− 4α =

√

(1− q)2 + 4(1− q) cos2 i. In eqs. (20), Jν , Yν , and Iν , Kν are the ordinary

and modified Bessel functions of the 1st and 2nd kinds, respectively, and the coefficients A,B,C,

and D are constants to be determined from imposed boundary conditions.
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Let us consider the case of a free Lagrangian boundary at which the total pressure due to

initial and perturbed fields balances with a fixed external pressure at both inner and outer edges,

which is equal to the unperturbed magnetic pressure. If the total pressure at an edge of an outflow

is different from the external pressure, the boundary itself will move until a new balance exists. To

first order, this condition of constant pressure at the boundary is written

1

2

dB2
0

dR

∂Rb

∂t
+B0 ·

∂B1

∂t
= 0, (21)

where Rb is the location of the perturbed boundary. The first term of eq. (21) represents the change

in the total pressure due to the boundary movement, while the second term arises from perturbed

magnetic pressure itself. All quantities are evaluated at the unperturbed boundary position. Using

eqs. (12), (13), and (15), and using ∂Rb/∂t = v1R at boundaries, we find the desired boundary

conditions are
dΨ

dr
+
q/2 + sin2 i

r
Ψ = 0, at r = ri and 1, (22)

where ri ≡ Ri/Re is the normalized distance of an inner boundary from the axis. Together with the

boundary conditions (22), eq. (19) forms a Sturm-Liouville system. By employing the variational

principle one can show that σ2 is real and that σ2(Ψ) is stationary subject to an arbitrary variation

of Ψ.

When σ2 > 0 (stable modes), the oscillatory properties of Jν and Yν guarantee the existence

of discrete eigenvalues σn with n denoting the number of nodes in the corresponding eigenfunction

Ψn. The resulting eigenvalues for ri = 10−1 and 10−4, and 0 < i < imax(q) are plotted in Fig. 1.

Only a few cases with small n are shown. Eigenvalues associated with different i’s fill each shaded

area completely. When ri = 10−4, eigenfunctions which link inner and outer boundaries have to

extend across enormous changes in density and magnetic field strengths. In this case, B/A ≪ 1

and eigenvalues become rather insensitive to the local properties such as q and i. When ri = 10−1,

however, the wind mimics a slender hollow cylinder. The variation in density and field strengths

over radius is slight, causing eigenvalues to be sensitive to i and q. In addition, the narrow width

of the wind changes the number of nodes in eigenfunctions. When q > 0.5, for example, the

eigenfunctions with ri = 10−1 have almost the same eigenvalues as, but one more node than, the

ri = 10−4 case, as seen in Fig. 1.

When ri ≪ 1 and σ2 ≫ 1, the asymptotic solutions to eqs. (20a) and (22) gives σn = 3πn/2 +

3π(2ν + 1)/8. These are plotted with dotted lines in Fig. 1b, and show good agreement with the

values calculated without any assumption (even for n = 0). The case with q = 0.5 and i = 0 is

special, because the slope of the eigenfunction at the inner boundary is −1/4, which automatically

satisfies the boundary condition (22). In this case the asymptotic eigenvalues are σn = 3πn/2,

drawn as filled circles in Fig. 1b. Eigenvalues have no upper bound as n → ∞, which is a general

property of solutions to a Sturm-Liouville equation (Morse & Feshbach 1953).

Now consider the unstable global solutions with σ2 < 0. Let ψ1 and ψ2 be the two linearly

independent solutions of Ψ: ψ1 ≡ √
rIν(2|σ|r3/2/3) and ψ2 ≡ √

rKν(2|σ|r3/2/3) such that Ψ =
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Cψ1 +Dψ2. Because ψ1 is a monotonically increasing function of r (i.e., ψ1, ψ
′
1 > 0 always) and

Ψ must have a negative logarithmic slope at the inner and outer boundaries (cf. eq. [22]), ψ1 alone

can not constitute eigenfunctions for global modes. In addition, since ψ1 increases exponentially

for a large value of |σ|r3/2, while ψ2, ψ
′
2 → 0, the outer free Lagrangian boundary condition requires

C/D → 0. Although C is not strictly zero when |σ| has a relatively small value, the contribution

of ψ1 to global solutions near the inner boundary is negligibly small. Thus, unstable eigenvalues,

if they exist, are essentially determined by the inner boundary condition imposed on ψ2.

As we move inward from the outer boundary, ψ2 rapidly increases asymptoting to

ψ2 ∼ r(1−3ν)/2

[

1− πν|σ|2ν
32ν sin(πν)Γ2(ν + 1)

r3ν + · · ·
]

, (23)

for r ≪ 1 (cf. Abramowitz & Stegun 1965), where Γ(ν+1) is a Gamma function. In fact, (1−3ν)/2 is

the maximum logarithmic slope ψ2(r) can ever attain. From the inner boundary constraint (22), the

existence of unstable global solutions is guaranteed if (1− 3ν)/2 > −(q/2 + sin2 i), or, equivalently

q > 1− (1 + sin2 i)2

2
, (24)

is satisfied. Eq. (24) is the global instability criterion for the fundamental modes of self-similar,

cold, magnetized winds, subject to the free boundary conditions expressed by eq. (22). By putting

C = 0 and neglecting higher order terms in ψ2, we derive from eqs. (22) and (23) the approximate,

analytic expression for the eigenvalues of the global instability

|σ|r3/2i =
|ω|Ri

vA(Ri)
= 3

[

sin(πν)Γ2(ν + 1)

πν

(1− 3ν + q + 2 sin2 i)

(1 + 3ν + q + 2 sin2 i)

]1/2ν

, (25)

which again shows that |σ| has a positive real value if eq. (24) holds.

In Fig. 2 we plot the approximate growth rates for unstable modes from eq. (25) as dotted

lines, as well as the exact growth rates numerically computed for ri = 10−4 (thin solid lines) and

for ri = 0.1 (dashed lines). The curves shown are for i = 0o, 5o, · · ·, 35o, 40o from right to left,

and the uppermost thick lines are for imax calculated from eq. (7). Note that varying the width of

outflow via ri yields very little change in the plotted solutions: ri-dependence of the growth rates

appears mainly through the product |σ|r3/2i . Eq. (25) gives accurate growth rates for relatively

small values of |σ|r3/2i , while its estimates deviate up to ∼ 16% from the exact values as |σ|r3/2i

becomes larger. In this case we need to include next order terms in ψ2 (cf. eq. [23]) to obtain

more accurate results. For a given set of equilibrium parameters, we note that whereas there

exist an infinite set of stable eigenmodes, there is (at most) a unique unstable eigenmode. Noting

|ω| ≡ |σ|vA(Re)/Re = |σ|r3/2i vA(Ri)/Ri, we expect from Fig. 2 that the system is typically globally

unstable within ∼5 crossing times of Alfvén waves at the inner boundary.

Once the ratios of the coefficients and the eigenfrequencies are found for the fundamental

modes, one can easily construct radial solutions for the perturbed variables: ρ1, v1R, v1φ, and B1φ.
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These are plotted in Fig. 3 for i = 0o and ri = 10−3. Fig. 3a corresponds to a stable case with

q = 0.4 and σ0 = 2.42, while Fig. 3b depicts an unstable case with q = 0.6 and |σ|r3/2i = 0.11.

Although normalization is arbitrary, we note that for the unstable modes, the negative radial

velocity case drives the entire system into a more stable configuration (with lower magnetic energy)

when the equilibrium magnetic field is predominantly toroidal. This can be shown as follows:

Let δM , δEB, and δΦB denote the mass, magnetic energy, and toroidal magnetic flux per unit

height in a local flux tube. Then we have δEB = (π/2)(δΦB/δM)2δMρR2. For a given flux tube,

δM and δΦB/δM are constant in time and δM > 0. Thus, sgn d(δEB)/dt = sgn d(ρR2)/dt =

sgn [ρ0R
2(v1R/R − ∂v1R/∂R)] from the equation of continuity. If v1R/R dominates ∂v1R/∂R and

v1R < 0, then sgn d(δEB)/dt < 0; magnetic energy decreases with time, meaning that the system

evolves into a more stable state. Thus we scale v1R/v0φ = 1 at r = 1 for Fig. 3a and v1R/v0φ = −1

at r = ri for Fig. 3b, respectively. Note that stable eigenfunctions have their largest amplitude

near the outer boundary, while the inner, high density region is nearly static during oscillation.

Unstable eigenfunctions, on the other hand, are almost zero except in the region close to the

inner boundary. The respective inner-region vs. outer-region predominance of unstable vs. stable

eigenfunctions reflects the respective characteristic frequencies as well: the inner-wind unstable

modes grow at large rates comparable to Alfvén frequencies in the interior, whereas outer-wind

stable modes oscillate at low frequencies comparable to the Alfvén frequencies in the exterior.

We remark that there is no globally unstable fundamental mode when one adopts rigid bound-

aries with Ψ(r) = 0 at both r = ri and r = 1, instead of the free Lagrangian boundaries, since both

ψ1 and ψ2 are monotonic functions of R. If Ψ′(r) = 0 is imposed at both boundaries (cf. Dubrulle

& Knobloch 1993), however, we still have unstable fundamental modes with a different instability

criterion1 and different growth rates.

We discuss the significance of fundamental modes to protostellar outflows in §8.3.

4. Local Analysis for Cold Winds

We now consider general non-axisymmetric Eulerian perturbations with small amplitudes.

Neglecting the effects of thermal pressure and external gravity due to a central object, we linearize

eqs. (1)∼(4)
dρ1
dt

= − 1

R

∂

∂R
(Rρ0v1R)−

1

R

∂

∂φ
(ρ0v1φ)−

∂

∂z
(ρ0v1z), (26)

dv1R
dt

= 2Ωv1φ+
1

4πρ0

[

−2B0φB1φ

R
+
B0φ

R

∂B1R

∂φ
+B0z

∂B1R

∂z
− ∂

∂R
(B0 ·B1) +

ρ1
ρ0

(

B2
0φ

R
+B0 ·B′

0

)]

,

(27)
dv1φ
dt

= − κ2

2Ω
v1R +

1

4πρ0

[(

B′
0φ +

B0φ

R

)

B1R +B0z

(

∂B1φ

∂z
− 1

R

∂B1z

∂φ

)]

, (28)

1In this case, eq. (24) would become (1− 3ν)/4 = α > 0, corresponding to R2(K2(R)− ω2/v2A) > 0.
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dv1z
dt

= −v′0zv1R +
1

4πρ0

[

B′
0zB1R +B0φ

(

1

R

∂B1z

∂φ
− ∂B1φ

∂z

)]

, (29)

dB1R

dt
=
B0φ

R

∂v1R
∂φ

+B0z
∂v1R
∂z

, (30)

dB1φ

dt
= RΩ′B1R − ∂

∂R
(B0φv1R) +B0z

∂v1φ
∂z

−B0φ
∂v1z
∂z

, (31)

dB1z

dt
= v′0zB1R − 1

R

∂

∂R
(RB0zv1R) +

B0φ

R

∂v1z
∂φ

− B0z

R

∂v1φ
∂φ

, (32)

where the Lagrangian time derivative is denoted by

d

dt
≡ ∂

∂t
+Ω(R)

∂

∂φ
+ v0z

∂

∂z
, (33)

and again the subscripts 0 and 1 indicate the equilibrium and perturbation variables, respectively.

Since all the coefficients of the perturbed variables in eqs. (26)∼(32) do not depend on the co-

ordinates φ and z, we may look for solutions having sinusoidal dependence on φ and z. Furthermore,

if there exist any normal modes, we can write eigenfunctions in the form

χ1(R,φ, z, t) = χ1(R)e
i(mφ+kzz−ωt), (34)

where χ1 refers to any physical variable of perturbations. Substituting eq. (34) into the set of

eqs. (26)∼(32) and eliminating all other variables in terms of the radial Lagrangian displacement

ξR ≡ −v1R/iω̃ with a Doppler shifted frequency

ω̃ ≡ ω −mΩ− kzv0z,

we obtain the second order differential equation

d2ξR
dR2

+
d

dR
ln

(

RB2
0

ω̃2
A

ω̃2
F

)

dξR
dR

+
H(R)

ω̃2
A

ξR = 0, (35)

where

H(R) ≡ ω̃2
F

{

ω̃2
A − κ2

v2A
− FB

d ln ρ0
dR

− 1

R2
+

1

RB2
0

d

dR

(

RB0 ·B′
0

)

}

− 4Ω

{

ω̃

(

m

R
FB +

B0z

RB0
G+

)

+Ωk2
B2

0z

B2
0

− v2Ak
2FB

B0φ(k ·B0)

ω̃B2
0

}

(36a)

−
(

d

dR
ln

ω̃2
F

RB2
0

− d

dR

){

v2AFBG
2
− + 2ΩG−ω̃

B0z

B0
+
v2A
R
G+G−

}

− v2A

{

k2F 2
B

ω̃2
A

ω̃2
+

2

R
FBG+G− +

G2
+

R2

}

,

with

FB ≡ 1

B2
0

(

B2
0φ

R
+B0 ·B0

′

)

, G± ≡ 1

B0

(m

R
B0z ± kzB0φ

)

, (36b)
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ω̃2
A ≡ ω̃2 − v2A(k · b0)

2, ω̃2
F ≡ ω̃2 − v2Ak

2, and k ≡ (0,
m

R
, kz).

Here, FB represents the equilibrium magnetic force, and ω̃A and ω̃F are frequencies connected

to the Alfvénic and fast magnetosonic modes in cold MHD fluids, respectively. b0 ≡ B0/|B0| is
the unit vector along an equilibrium field direction, and finally k is a vector wavenumber. When

m = kz = 0, only the terms in the first bracket in the definition of H(R) do not vanish, recovering

the radial wave equation (eq. [16], [17a]) for the fundamental mode.

The second order differential equation (35) has a singularity at ω̃2
A = 0, but if we treat a fully

general problem including the thermal effects of compressible gas, we will find another singularity

(a so called cusp singularity) at the positions where Doppler shifted frequencies of traveling waves

match with slow MHD wave frequencies of the medium (cf. Roberts 1985). For an incompressible

medium, ω̃2
A = 0 singularities are often referred to as shear Alfvén singularities where because of

resonances the characteristics of waves propagating radially would be modified to be either absorbed

into or amplified by background medium, if considered as a boundary value problem (Ross et al.

1982; Curry & Pudritz 1996). As pointed out by Appert et al. (1974), the locations with ω̃2
F = 0

in eq. (35) are not singularities; these cut-off points in our local analyses appear as resonance

waves with frequencies having relatively small imaginary parts, suggesting potential attenuation or

amplification of amplitudes.

To remove the second term in eq. (35) we further define

ξR ≡ Ψ

(

RB2
0

ω̃2
A

ω̃2
F

)−1/2

. (37)

Then eq. (35) is reduced to the standard Schrödinger form of eq. (16), with generalized K2(R)

defined by

K2(R) ≡ H(R)

ω̃2
A

− 1

2

d2

dR2
ln

(

RB2
0

ω̃2
A

ω̃2
F

)

− 1

4

[

d

dR
ln

(

RB2
0

ω̃2
A

ω̃2
F

)]2

. (38)

Generally speaking, K(R) is a function of R for fixed values of m, kz, and ω. However, we can

still consider the behavior in a local sense near some fixed Ro, such that K is close to K(Ro). This

is mathematically formalized as described in Lin et al. (1993) and Terquem & Papaloizou (1996).

Let us consider in the nonuniform background the spatially localized wave packet of the form

Ψ = ψ(R −Ro)e
ikR(R−Ro) +O(

1

kR
),

where ψ(r) is a function which is non-zero only in a small neighborhood of r ≡ R − Ro = 0. The

scale over which ψ(r) varies significantly must tend to zero as kR → ∞, but no faster than k−1
R .

Then, to leading order, d2Ψ/dR2 ≈ −k2RΨ, and the solution k2R = K2(R, ω̃,m, kz) of the Schrödinger

equation yields a local dispersion relation with the right hand side evaluated at a reference point Ro,

provided kR is limited to a sufficiently large value (i.e., RokR ≫ 1). We may invert this dispersion

relation to find ω̃ = W (m,kz, kR, R), so that kR now plays the role of an independent parameter
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and the dispersion relation yields the Doppler-shifted frequency ω̃ of a wave near a position Ro

having local wavevector k. This is equivalent to a standard WKB approximation in the radial

direction.

Solution of the local dispersion relation near Ro yields

ω =W (m,kz, kR, Ro) +mΩ(Ro) + kzv0z(Ro) +O(r), (39)

where the O(r) term is (mΩ′(Ro) + kzv
′
0z(Ro))r. Defining dkR/dR ≡ −(∂W/∂R)/(∂W/∂kR) ∼

kR/R, the WKB condition |dkR/dR| ≪ k2R will be satisfied for kRR ≫ 1. For normal mode

solutions, the O(r) term in ω must provide a negligible contribution to the phase; this requires

that we must have |mΩ′(Ro) + kzv
′
0z(Ro)|t ≪ kR. For axisymmetric modes with negligible vertical

shear, this is always satisfied. However, for m 6= 0 disturbances, or flows with non-negligible kzv
′
0z,

spatially localized wavepackets maintain a characteristic radial wavenumber for only a limited

time, altering their spatial pattern because of the background shear. For a wavepacket with initial

wavenumber kR(0), the radial wavenumber at time t becomes, upon inclusion of −t times the O(r)

term in ω in the phase,

kR(t) = kR(0)− (mΩ′ + kzv
′
0z)t. (40)

Thus, for example, with kz = 0, the pitch tan p ≡ m/RkR of a spiral pattern changes by a fraction

ǫ = |dkR|/kR over time t = ǫkR/|mΩ′|. If RkR ≫ m, the pattern changes slowly compared to

the orbit time. Among nonaxisymmetric disturbances, the wavepackets with low m/RkR have the

largest temporal range for which they remain close to normal modes of the system. In the following

two sections, we present solutions for the growth rates of unstable disturbances determined from a

local modal analysis (i.e., producing solutions ω̃ = W (k, Ro)), with the understanding that when

|mΩ′ + kzv
′
0z| 6= 0, the modal growth (i.e., ∼ e|ω̃|t) with fixed pattern holds only for a limited

time. In assessing the potential of the non-axisymmetric instabilities we shall identify to affect flow

dynamics, we will consider their total amplification over times < kRR/mΩ, for which the spatial

pattern changes little.

For simplicity let us define dimensionless variables

σ ≡ ω̃Ro/vA(Ro), xz ≡ kzRo, xR ≡ kRRo, κ ≡ Roκo/vA(Ro),

Ω ≡ RoΩo/vA(Ro), and ζ ≡ Rov
′
0z(Ro)/vA(Ro).

Here, ζ measures the amount of shear in the vertical velocity of the winds, and the “o” subscripts

in the equilibrium epicyclic and rotation frequencies denote evaluation at the reference point Ro.

We adopt the power-law equilibria of §2. We now organize the terms in eq. (38) finally to get a

12th-degree polynomial

0 = σ12 +

10
∑

j=0

fj(q, i, xR, xz,m,Ω, ζ)σ
j . (41)

The functional dependences of the coefficient fj’s on the parameters are so complicated that it is

not illuminating to write down the whole expression here. We may obtain more simplified forms
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for fj’s by sorting out terms and taking the limit of xR ≫ 1. Because there are various interesting

modes which demand different regimes of parameters, however, we keep all the terms as the general

local dispersion relation (with xR large) and compute numerical growth rates by solving eq. (41)

for σ as a function of the other variables. We present these numerical results in §5. In §6, we
will classify individual (either unstable or overstable) modes and provide their limiting dispersion

relations.

Terquem & Papaloizou (1996) considered only incompressible modes, for disk applications

where thermal pressure is considerable, by taking a divergence-free displacement vector as a pertur-

bation eigenvector, thus obtaining a 4th-order polynomial. Our dispersion relation, for applications

to supersonic MHD winds in which thermal pressure is negligible hence motions are compressible,

contains information about all possible, either oscillating or unstable, modes of cold MHD winds.

5. Numerical Solutions of Modal Dispersion Relation

The derived dispersion relation (41) is a 12th-order polynomial with real coefficients, indicating

that solutions appear as complex conjugate pairs. Solutions having non-zero real and imaginary

parts are overstable modes, and solutions with vanishing real parts are unstable modes. In this

section, we present both types of solutions which are consistent with the local analysis by fixing

xR = 10. As we shall show, both higher values of xR (more spatially localized) and lower values of

xR (less spatially localized) give qualitatively the same family of solutions as with xR = 10.

5.1. Axisymmetric Modes of Instabilities

First, we consider the axisymmetric case with m = 0. For 4 selected sets of parameters,

we plot the real and imaginary parts of the unstable and overstable modes in Fig. 4. A Keplerian

rotation gradient with κ2 = Ω2 is assumed and vertical shear is neglected except in ω̃. We take Ω as

arbitrary rather than using the relation (6), by allowing that the gravitational force from a central

object also contributes to the equilibrium rotation velocity. Then, from eq. (5), the normalized

angular velocity becomes

Ω2 = κ2 = cos2 i− 1 + q

2
+GR, (42)

where GR ≡ gR(Ro)Ro/v
2
A(Ro) > 0 is the normalized gravitational acceleration. Note that for

1 + q > 0 (i.e., magnetic fields decreasing outward), equilibrium solutions with i approaching 90o

require non-zero gravity (because hoop stresses do not confine a primarily-poloidal flow). Also note

that as GR strengthens, the initial equilibrium is maintained by the balance between centrifugal

and gravitational forces, implying that the magnetic force is negligible.

The behavior of the solutions shown in Fig. 4 (and similar behavior for other parameters)

allows us to identify 4 different axisymmetric mode families: a toroidal resonance mode (TR),
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an axisymmetric toroidal buoyancy mode (ATB), a poloidal buoyancy mode (PB), and a Balbus-

Hawley (BH) mode. One (TR) of these is an overstable mode and the others (ATB, PB, and BH)

are purely growing modes.

Fig. 4a and 4b correspond to a disk wind at large distance from the source, where magnetic

fields are dominantly toroidal (small i) and centrifugal force balances magnetic force (small GR),

while Fig. 4c and 4d correspond to an accretion disk or inner part of a wind where magnetic

fields are poloidal (large i) and centrifugal force is balanced by the gravity from a central object

(relatively large GR). In each frame, solid and dotted lines represent the imaginary and real parts

of the frequencies, respectively. Fig. 4a shows the TR mode which splits into two branches in the

presence of (arbitrarily small) poloidal magnetic fields (Fig. 4b and 4c). This TR mode is not

a generic instability mode because it has a far larger real part (associated with ordinary MHD

oscillations), indicating an overstability. With the presence of poloidal field components, there

exist two different types of buoyancy modes, namely ATB and PB modes. When the pitch angle

of the magnetic field is relatively small, the buoyancy instabilities are driven by the interplay of

the centrifugal force with the hoop stress of toroidal fields, so we call these ATB modes. Since,

as explained in §6.1.2, the ATB modes need non-zero poloidal fields as well to be unstable, they

disappear when i = 0. On the other hand, the PB instability modes arise when the fields are

predominantly poloidal so that the pressure gradient forces of poloidal fields and the gravity from

a central object are main driving forces, similar in character to the Parker instability. ATB and

PB are pure instability modes with Re(σ)=0, as shown in Fig. 4. These instability modes operate

even in the arbitrarily high-kz limit because of our cold MHD assumption; otherwise sound waves

would stabilize short wavelength perturbations, as they do in the Parker instability. Fig. 4d shows

that the BH instability mode appears when GR ≫ 1, corresponding to dynamically weak magnetic

fields in the equilibrium; with reduced GR (also shown in Fig. 4d), BH is stabilized by radial MHD

wave motions when xR is large. As discussed in §6.1.3 and §7.1, one interesting finding in our work

is that the compressible axisymmetric BH mode is strongly suppressed even for GR large when the

toroidal field is sufficiently strong; in a cold, Kepler-rotating MHD flow, it is fully stabilized when

the pitch angle i < 30o (see §6.1.3).

Fig. 5 shows how the characteristics of unstable/overstable modes change as i and GR vary

for the fixed values of xz = 4, xR = 10, and q = ζ = 0. For a pure toroidal field configuration with

i = 0o, we observe only overstable TR modes that are almost independent of GR. As i increases,

ATB emerges but is stabilized by rotation with GR large. When i = 45o and q = 0, the buoyancy

mode disappears because with these parameters the net force from the background magnetic fields

vanishes (cf. eqs. [5], [6], and [42]). When i > 30o the BH mode strengthens as GR increases. This is

because in our normalization higher values of GR correspond to weaker equilibrium magnetic fields,

with which the BH instability operates efficiently. At a pure poloidal configuration of magnetic

fields, BH and PB modes remain unstable (Fig. 5d). Dotted lines at very small GR in Fig. 5c and

5d mark the minimum value of GR, available for given values of q and i, below which no initial

equilibrium exists (cf. eq. [42]).
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5.2. Non-Axisymmetric Modes of Instabilities

When non-axisymmetric perturbations are applied, the cold MHD system responds with 3

more modes which are either unstable or overstable, in addition to the axisymmetric modes. We

shall refer to these as non-axisymmetric toroidal buoyancy (NTB), geometric poloidal buoyancy

(GPB), and poloidal resonance (PR) modes. The PR modes are MHD waves which have non-zero

azimuthal wavenumbers and become overstable when there is a radial gradient of the axial field,

analogous to the TR modes. In addition to the above modes, systems with toroidal magnetic

field configurations and non-zero sound speed are also subject to significant non-axisymmetric

magnetorotational instability (NMRI) modes. Unlike the other three non-axisymmetric modes, the

NMRI mode arises due to a differential rotation with dΩ/dR < 0, where Ω is an angular velocity of

the rotation. More than anything else, the fact that the NMRI in Bφ-dominated systems needs a

finite sound speed to be unstable distinguishes it from the axisymmetric Balbus-Hawley instability,

which can be unstable regardless of temperature for purely axial fields. As we shall discuss later, the

basic mechanism for the onset of NMRI is quite different from that of axisymmetric BH instability.

We reserve the discussion of NMRI modes for §7, concentrating here on numerical results for our

basic cold MHD system.

Fig. 6 shows the unstable and overstable solutions of the dispersion relations for two combina-

tions of selected parameters: Fig. 6a corresponds to a disk wind with small i and small GR, while

Fig. 6b is for the near-disk case with large i and large GR. We assume a Keplerian rotation and

take an arbitrary Ω once again using eq. (42). For all cases, we chose xR = 10, q = ζ = 0, and

m = 1, and confirmed that changes to these parameters do not appreciably affect the qualitative

results. Solid and dotted lines in Fig. 6 represent imaginary and real parts of the normalized wave

frequencies, respectively. When i = GR = 0, Fig. 6a shows the presence of unstable NTB and over-

stable TR modes which are split by the non-axisymmetry. NTB modes are nearly like PB modes

in their physical basis and have an almost constant growth rate over a wide range of xz. But they

depend sensitively on the logarithmic gradients of the density and magnetic structures (i.e., q; see

Fig. 7). For an intermediate value of i, both TR and PR modes coexist. At some wavenumber xz,

they combine to simply vanish, but overall they give rise to complicated behavior of Im(σ). When

i = 90o, we observe three unstable GPB, BH, and PB modes, and overstable PR modes (Fig. 6b).

GPB modes are driven by a buoyancy force together with the geometrical effect. Note that the

real parts of PR modes are linearly proportional to the vertical wavenumber xz, as TR modes are,

indicating that they are really overstable modes. Since xR ≫ m, however, there exists only a small

contribution from non-axisymmetric effects to the axisymmetric BH and PB modes (cf. Fig. 4d).

Remember that when m ≫ xR, the normal mode assumption rapidly breaks down because such

high-m modes lose their spatial pattern very quickly; we investigate m ≫ xR cases using different

methods in §§7 and 8.

Fig. 7 shows how the characteristics of the buoyancy modes change as xz, i, and q vary. When

GR=0, an initial equilibrium exists only for a limited range of i < icrit ≡ cos−1
√

(1 + q)/2 from eq.

(42), with toroidal field components dominating over poloidal field components. In Fig. 7, therefore,
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the unstable modes with i < icrit correspond to toroidal buoyancy modes, while poloidal buoyancy

modes have i > icrit. Generally speaking, with the assumption of extremely cold medium, smaller-

scale buoyancy modes with high xz have larger growth rates. When i is very small, as seen in Fig. 7,

ATB modes are stable because they need the aid of poloidal fields to be unstable, while NTB modes

become unstable for all i < icrit. This reflects the physically different driving mechanisms between

ATB and NTB instabilities. PB modes become more unstable with higher q (steeper background

gradients), while ATB/NTB modes are more efficient with smaller q. Greater instability is simply

associated with higher background magnetic force in the respective cases (cf. the initial equilibrium

condition [42]).

The kR-dependence of the unstable/overstable modes are summarized in Fig. 8. Here we fix

xz = 2 for all cases and choose q = 0.8, GR = 0, and small i for Fig. 8a and 8c, corresponding

to disk wind-like systems, and q = 0, GR = 5, and large i for Fig. 8b and 8d, corresponding

to accretion disks or disk winds near their sources. The BH instability modes are completely

suppressed by MHD waves when xR & 3; we will show that this is consistent with the prediction of

the asymptotic dispersion relation. All the other modes extend with smaller growth rates to larger

xR, with Im(σ) ∼ x−1
R , which we will show agrees well with the asymptotic dispersion relations (43),

(45), (50), and (52) for the PB, ATB, TR, and NTB modes, respectively. For the PR modes the

asymptotic dispersion relation (56), showing Im(σ) ∼ x
−2/3
R , is valid only when Rkz ≫ m, which is

not consistent with the parameters adopted in Fig. 8d. When kR ≫ kz ∼ m/R, one can confirm

analytically that the PR modes also behave as Im(σ) ∼ x−1
R . In the shearing-wavelet point of

view with eq. (40), Fig. 8 shows that kinematic shear arising from the background flows ultimately

stabilizes both unstable and overstable modes, as kR grows secularly increases in time. Although

the local approximation breaks down if xR is not large, Fig. 8 indicates that the BH mode exists

and may show interesting behavior for small xR. In addition, Fig. 8 also suggests larger growth

rates when xR is small for other modes, although the assumptions of this section of a radially-local,

slowly-changing pattern are not self-consistent when xR is small. To study dynamical growth of

disturbances which occurs when xR ≪ m, we use direct integrations of the shearing-sheet equations.

We present these results in §8.2 (for the NTB modes) and §§7.2 and 7.3 (for the NMRI modes and

generalized MRIs).

6. Mode Classification

The cold MHD system we are investigating has 8 distinct local modes with Im(σ) > 0. Some

of them (TR and PR) have larger Re(σ) corresponding to overstability, while the others (PB, ATB,

BH, NTB, GPB, and NMRI) have negligible Re(σ), indicating pure instability. The NMRI modes

do not appear in the numerical solutions because of the cold MHD assumption we made. Detailed

discussion of the NMRI modes will be separately given in §7.2. In this section we describe the

physical nature of the individual cold-fluid modes and present the respective dispersion relations

under some limiting approximations.
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6.1. Axisymmetric Modes

6.1.1. Poloidal Buoyancy Mode

Consider a system with pure axial fields. If gravitational forces are large, then they may balance

the combined outward radial centrifugal force and pressure gradient force of outward-decreasing

B0z(R); otherwise, if gR = 0, then the strength in the magnetic fields must increase outward for

an equilibrium to exist. In an initial state, at any point in the system the magnetic pressure

force acting outward is balanced by the difference between gravity and the centrifugal force acting

inward. If perturbed, a denser fluid element experiences reduced magnetic forces but unchanged

centrifugal and gravitational forces per unit mass, and thus it would tend to sink radially inward

dragging the field line with it; a lighter fluid element would correspondingly tend to float outward.

Then, in a frozen-in-field condition, the neighboring gas finds itself on sloping lines of force and

thus slides inward to add its weight and to cause field lines to bend more, expediting the instability.

This poloidal buoyancy mode is analogous to the Parker instability (Parker 1966), with the driving

force role of external gravity in Parker’s instability replaced by combination of gravity and the

centrifugal force in the PB. The PB mode can occur for both axisymmetric and non-axisymmetric

disturbances.

Putting B0φ = m = 0 and considering short wavelength perturbations with v2Azk
2
z ≫ ω̃2 in eq.

(38), one can find the dispersion relation for the poloidal buoyancy mode is

ω̃2 = −
(

1 + q

2

)2 v2Azk
2
z

R2(k2z + k2R)
= −

( |gR −RΩ2|2
v2Az

)

k2z
k2z + k2R

. (43)

Eq. (43) states that there is no preferred length scale as long as kz is large. However, the

inclusion of thermal effects would stabilize the PB mode with shorter wavelengths, as in the Parker

instability2 Also, sufficiently large kR ≫ kz stabilizes the mode.

2Also by taking a local approximation and by neglecting density stratification and the effects of thermal and

cosmic ray pressures, one can simplify eq. (III.12) of Parker (1966) to get the asymptotic (k → ∞) dispersion relation

ω2 = −

(

g2

v2
A‖

)

k2

‖

k2

⊥ + k2

‖

,

where g is the gravity perpendicular to the galactic plane, vA‖ is the Alfvén speed of initial fields parallel to the

galactic plane, and k‖ and k⊥ are perturbation wavenumbers in the respective directions parallel and perpendicular

to the galactic disk and magnetic field. Comparing the above with eq. (43), we may write geff ≡ gR − RΩ2 for the

PB modes, with wavenumber correspondence kz ↔ k‖ and kR ↔ k⊥.
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6.1.2. Axisymmetric Toroidal Buoyancy Mode

Now consider a system with weak poloidal but strong toroidal field components and negligible

gravity. When magnetic fields are predominantly toroidal (i.e., when i < cos−1
√

(1 + q)/2 from

eq. [42]), an initial equilibrium state is maintained by the balance mainly between the centrifu-

gal force acting outward, and magnetic hoop stresses which act inward. With sinusoidal density

perturbations with kz imposed on the equilibrium, a heavier blob of material would tend to float

radially outward under the action of unchanged centrifugal forces per unit mass but reduced specific

magnetic forces; a lighter element would correspondingly tend to sink. The radial motions of the

heavier and lighter blobs are in opposite directions and thus cause the poloidal field lines to bend,

creating radial perturbed fields.

The azimuthal fluid motion is slightly accelerated by the tension force exerted by the initial

toroidal and the perturbed radial fields (cf. B0φB1R/R term in eq. [28], associated with spiral

magnetic field line projections in the z=constant plane). This causes the initial poloidal component

of field lines to bend now in the azimuthal direction, creating bands of perturbed azimuthal fields

with signs alternating in the ẑ direction. The resulting total azimuthal fields are distributed in such

a way that the heavier (lighter) blob in the initial perturbation has a lower (higher) toroidal field

strength. Induced motions due to the vertical magnetic pressure gradient force carry the matter

from under dense to over dense regions, closing the loop and amplifying the initial perturbation.

By setting m = v0z = 0 and taking the v2Ak
2
z ≫ ω̃2 limit, we obtain from eq. (38) the following

dispersion relation

0 = ω̃4 −
[

v2Az

(

k2z + k2R
)

+ κ2 − 4Ω2B
2
0z

B2
0

]

ω̃2 − 4ΩvAφvAzFBkzω̃ − v2Av
2
AzF

2
Bk

2
z , (44)

with FB = (cos2 i − (1 + q)/2)/R. When vAφ = 0 (i.e., with pure poloidal fields), eq. (44)

immediately recovers eq. (43), the limiting dispersion relation for PB modes. On the other hand, if

vAz = 0, there is no unstable ATB mode, clearly demonstrating that ATB modes operate by bending

poloidal field lines. From Fig. 5b, we note that ATB modes are stabilized by rotation (larger GR

corresponds to stronger rotation). It can be shown from eq. (44) that when Rkz, RkR ≫ ω̃, the

critical wavenumbers are (k2z +k
2
R)crit = −(dΩ2/d lnR)/(v2A sin2 i), below which the system is stable

against the ATB modes. For kz ≫ kz,crit, eq. (44) is further reduced to

ω̃2 = −
(

cos2 i− 1 + q

2

)2 v2Ak
2
z

R2(k2z + k2R)
= −

( |gR −RΩ2|2
v2A

)

k2z
k2z + k2R

. (45)

Since ATB instabilities are axisymmetric modes, they can persist without being disturbed by the

kinematic growth of kR due to shear, if v′0z = 0.

Among well-known plasma modes, the pinch or sausage mode of a plasma column is most

similar to the ATB in overall geometry and effect. Both are axisymmetric and require the radial

tension force from predominantly toroidal magnetic fields to drive the instability. For both the
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plasma pinch mode and the ATB of cold cylindrical winds, the net effect is that matter tends to

be ejected radially in bands alternating with contracting magnetic field loops. However, in pinch

modes, the plasma is generally unmagnetized and surrounded by external toroidal fields, and axial

fields tend to suppress the instability. In the ATB, on the other hand, internal toroidal magnetic

fields permeate the fluid, and non-zero axial fields are required for instability.

6.1.3. Compressible Balbus-Hawley Mode

In the presence of axial magnetic fields, a differentially rotating disk is unstable to an ax-

isymmetric incompressible perturbation (Balbus & Hawley 1991; see also Velikhov 1959 and Chan-

drasekhar 1960). Because this Balbus-Hawley instability3 has a rapid growth time (comparable to

the local rate of rotation) and exists for arbitrarily weak magnetic field strength, it is believed to

provide a powerful mechanism for the generation of the effective viscosity in astrophysical accretion

disks. Through numerical simulations, Hawley & Balbus (1991) argued that the roles of compress-

ibility and toroidal fields are not significant as long as the total field strength is subthermal. Also,

Blaes & Balbus (1994) studied the effect of toroidal fields on the compressible axisymmetric BH

instability and showed that toroidal fields do not modify the instability criterion, while reducing

growth rates slightly if vAφ < cs. We find the striking result that under extremely cold conditions

(i.e., vA ≫ cs), compressibility prohibits the axisymmetric BH instability from occurring if the

toroidal fields are as strong as the poloidal fields.

By taking the weak magnetic field limit (Ω ≫ vAkR, vAkz) and m = 0, we obtain from eq. (38)

the following dispersion relation for the compressible axisymmetric BH instability in a cold MHD

flow

ω4 − ω2[v2A(k
2
z + k2R) + v2Azk

2
z + κ2] + v2Ak

2
z [v

2
Az(k

2
z + k2R) + κ2 − 4Ω2 sin2 i] = 0, (46)

and thus from the last term in eq. (46) we obtain the instability criterion

v2Az(k
2
z + k2R) + κ2 − 4Ω2 sin2 i < 0. (47)

With an Ω ∝ R−a rotation profile, eq. (47) implies that if sin2 i < 1 − a/2, we anticipate no BH

instability in a cold flow. For a Keplerian rotation law with a = 3/2, for instance, no axisymmetric

BH instability occurs if i < 30o!; when the magnetic field strength is superthermal, the inclusion of

toroidal fields tends to suppress the growth of the BH instability. With a steeper rotation profile

(as would occur, for example, in winds from boundary layers), there is an increase in the range of

i for which a system is BH-unstable.

We defer the full discussion on the BH instability until §7.1, where we explicitly include pressure

terms in the dynamical equations.

3Often referred to magnetorotational instability, or briefly, MRI.
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6.1.4. Toroidal Resonance Mode

Consider a system having pure toroidal fields without rotation. If the initial fields are homo-

geneous in space, magnetosonic waves, driven solely by magnetic pressure (with the assumption of

the cold medium), would propagate without any interruption in the plane whose normal is per-

pendicular to the magnetic field direction. In an inhomogeneous medium, however, MHD waves

no longer maintain a sinusoidal planform, and the characteristics of the waves change through the

interaction with the background medium. The amplitudes of the waves may sometimes increase as

they propagate, or sometimes they may become evanescent and decay at a resonance, or even may

be trapped between two resonance points (cf. Rae & Roberts 1982). In such a strongly structured

medium, the classification of MHD waves is not in general possible.

Our local treatment of MHD waves can provide some insight on the amplification or evanescence

of propagating MHD waves in a structured medium. For ω̃2
F → 0 and B0z = Ω = 0, the local wave

equation (35) can be simplified as

d2ξR
dR2

− d ln ω̃2
F

dR

dξR
dR

+
ω̃2
F

v2Aφ

ξR = 0. (48)

Again we define ξR ≡ (ω̃2
F)

1/2Ψ, then eq. (48) takes the form of eq. (16) with kR ≡ K(R) defined

by

k2R ≡ ω̃2
F

v2Aφ

− 3

4

(

v2Aφk
2
z

Rω̃2
F

)2

, (49)

where vAφ ∝ R−1/2 was assumed. Thus, considering limiting cases of kz and kR, one can find the

dispersion relation for this mode near the resonance frequencies (i.e., ω̃ ≈ vAφkz)

ω̃2 =











v2Aφk
2
z

[

1 + (3/4)1/2e±πi/2(RkR)
−1
]

, for RkR ≫ Rkz ≫ 1,

v2Aφk
2
z

[

1 + (3/4)1/3e±2πi/3(Rkz)
−2/3

]

, for Rkz ≫ RkR ≫ 1,

(50)

showing that the imaginary part of toroidal resonance mode vanishes quickly as kR → ∞, while

its real part gets bigger as kz increases. Therefore, it is not adequate to regard TR modes as a

true local instability mode. Though the TR mode is not a local instability, it suggests potential for

waves to have global instabilities in which the magnetosonic resonance (ω̃ = vAφkz) plays a similar

role to the Lindblad resonance in rotating disks. Thus, waves of fixed frequency propagating with

a radial component of k into their magnetosonic resonances may be amplified or reflected.

The modification of traveling waves due to the inhomogeneity of the medium is mediated

through the magnetic pressure. A similar effect would occur when hydrodynamic waves propagate

into an inhomogeneous medium.
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6.2. Non-Axisymmetric Modes

6.2.1. Non-Axisymmetric Toroidal Buoyancy Mode

The non-axisymmetric toroidal buoyancy mode is very similar to the PB mode in its physical

mechanism, in spite of the different field geometry. For toroidal-field dominated cases, an equilib-

rium can exist with the net inward magnetic stresses balancing the outward centrifugal force. When

the system is perturbed non-axisymmetrically, the instability would develop similarly to PB modes,

as described in §6.1.1. For the Bφ-dominated case, however, over-dense regions float outward and

under-dense regions sink, because the inward magnetic forces are enhanced when the density drops.

Setting B0z = v0z = 0 and assuming Rkz ≪ m,RkR, one can show that the general dispersion

relation (38) is reduced to the following quartic equation in terms of ω̃

0 = ω̃4 −
[

v2Aφ

(

m2

R2
+ k2R

)

+ κ2
]

ω̃2 − 4Ω
m

R
FBv

2
Aφω̃ − v4AφF

2
B

(m

R

)2
, (51)

with FB = (1− q)/2R, The negative last term in eq. (51) guarantees the existence of unstable NTB

modes. The third term (caused by the coupling of the rotation with the background fields) tends

to stabilize NTB modes. Thus, if

m2

R2
+ k2R <

(4Ω2 − κ2)

v2Aφ

,

there is no unstable NTB mode. Note that for wind equilibria with B0z = 0, from eq. (6) the

RHS of the above equals 3(1 − q)/2R2; thus the NTB instability will be present at all m when

1/3 < q < 1.

In the limit of large m, we obtain the asymptotic dispersion relation for the NTB mode

ω̃2 = −
(

1− q

2

)2 v2Aφm
2

R2(m2 +R2k2R)
= −

(

|gR −RΩ2|2
v2Aφ

)

m2

m2 +R2k2R
. (52)

Here for the second equality, eq. (6) with i = 0o is used. Eq. (52) is akin to eq. (43), the dispersion

relation for the PB mode, and to eq. (45), the dispersion relation for the ATB mode, reflecting

the common origin in buoyancy forces of all three. In fact, Fig. 7 clearly shows how the various

buoyancy modes extend and smoothly join at intermediate pitch angles.

6.2.2. Geometric Poloidal Buoyancy Mode

Now suppose a system with pure vertical fields. When perturbed azimuthally, a fluid element

becomes over dense and tends to move inward due to the decreased background magnetic pressure

force per unit mass if 0 < q < 1. This geometrically converging motion of fluid increases density

and field strength by factors of (1− q) and (1− q)/2, respectively. On the other hand, the magnetic
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field enhancement induces diverging motions of the fluid in the azimuthal direction by building up

a pressure gradient, tending to lower the density. The net effect of these two processes is a density

increase by a factor of (1 − q)/2, accelerating the inward motion of the heavier element. When

m≫ Rkz, the dispersion relation for this GPB mode is found to be

ω̃2 = −
(

1− q2

4

)

v2Azm
2

R2(m2 +R2k2R)
. (53)

When q = 1, there is no instability. This is because the initial configuration of the density and the

field is such that the mass and magnetic flux contained in a thin ring with the thickness dR and

the radius R are constant over R, and no gain from the geometrical effect is possible.

6.2.3. Poloidal Resonance Mode

The physical basis for the poloidal resonance mode is quite similar to that of the toroidal

resonance mode. The only difference between them is the background field geometry. In the

presence of pure axial fields, MHD waves with non-zero m are easily influenced by radial magnetic

pressure gradients.

To derive the dispersion relation near the resonance frequencies (i.e., ω̃F ≈ 0), let us suppose

a system with pure axial fields and neglect the vertical velocity shear. The system is also assumed

to rotate slowly enough that the effects of rotation may not be important in the wave dynamics

(i.e., mvAz ≫ RΩ). For ω̃2 → v2Az(k
2
z +m2/R2), we are left from eq. (35) with

d2ξR
dR2

+
d

dR
ln

(

ω̃2
A

ω̃2
F

)

dξR
dR

+
ω̃2
F

v2Az

ξR = 0. (54)

We now define ξR ≡ (ω̃2
F/ω̃

2
A)

1/2Ψ to simplify eq. (54) into eq. (16) with kR ≡ K(R) defined by

k2R ≡ ω̃2
F

v2Az

− m2v2Az

R2ω̃2
F

(

d ln ω̃2
F

dR

)2

, (55)

where we took the limit of Rkz ≫ m and assumed vAz ∝ R−1/2. Solving eq. (55) for two limits of

kR, we obtain the dispersion relation near the resonance frequencies

ω̃2 =











v2Azk
2
z

[

1 + eπi/3(mash)
2/3(R2kRkz)

−2/3
]

, for RkR ≫ Rkz ≫ m,

v2Azk
2
z

[

1± eπi/2(mash)
1/2(Rkz)

−1
]

, for Rkz ≫ RkR ≫ m,

(56)

where ash ≡ 1± 3mΩ/vAzkz, showing again a rapidly declining imaginary part as kR increases, at

which the local approximation is valid. Thus, just like TR modes, PR modes are not strictly local

instability modes.
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7. Magnetorotational Instability

7.1. Axisymmetric BH Instability

In the preceding section, we briefly discussed the axisymmetric BH instability in a cold, dif-

ferentially rotating medium and found that the BH instability can be suppressed by the azimuthal

component of magnetic fields, if the medium is cold enough. Incompressibility has generally been

adopted in the study of the BH instability in an accretion disk on the grounds that in such a

system the magnetic fields are subthermal and thus acoustic waves can maintain the incompress-

ible condition over many rotation periods. For magnetocentrifugally driven winds, however, sound

waves play a minor role in controlling the dynamics and thus the incompressible approximation

is inapplicable. In addition, since an initial equilibrium is attained through the balance between

the centrifugal and magnetic forces (cf. eq. [5]), the Alfvén crossing time scale is comparable to

the rotation time scale (vA ∼ RΩ); in this case, the fields are not weak and the unstable range of

wavenumbers becomes narrow.

We generalize the previous discussion of the axisymmetric compressible BH instability by

explicitly including the thermal pressure terms in the momentum equation and exploring the role

of compressibility to the development of the Balbus-Hawley instability. We consider a cylindrical

flow threaded by both vertical and azimuthal magnetic fields, ignoring the radial variations in the

initial configuration except Ω = Ω(R) and neglecting the vertical velocity. We assume the medium

is isothermal and take the WKB (Rkz ≫ 1) approximation. Through the standard approach to

linear analyses, we arrive at the dispersion relation for the compressible version of the BH instability

(ω2
A − κ2)f(ω2) = k2Rω

2
A((c

2
s + v2A)ω

2 − c2sv
2
Azk

2
z ) + 4Ω2v2Azk

2
z (ω

2 − c2sk
2
z ), (57)

where cs is the isothermal sound speed of the medium, ω2
A ≡ ω2 − v2Azk

2
z , and f(ω

2) is defined by

f(ω2) ≡ ω4 − ω2(c2s + v2A)k
2
z + c2sv

2
Azk

4
z .

Eq. (57) is a sixth-order equation for ω with only even terms. When kR = 0, eq. (57) is identical

to eq. (64) of Blaes & Balbus (1994) or eq. (99) of Balbus & Hawley (1998). Now let us take the

two opposite limits of cs to obtain the following dispersion relations

ω4
A − (κ2 + v2Ak

2
R + v2Aφk

2
z )ω

2
A + (κ2v2Aφ − 4Ω2v2Az)k

2
z = 0, for cs → 0, (58a)

(1 + k2R/k
2
z )ω

4
A − κ2ω2

A − 4Ω2v2Azk
2
z = 0, for cs → ∞, (58b)

and the corresponding instability criteria4

v2Az(k
2
z + k2R) + κ2 − 4Ω2 sin2 i < 0, for cs → 0, (59a)

v2Az(k
2
z + k2R) + dΩ2/d lnR < 0, for cs → ∞. (59b)

4In fact, from eq. (57) the formal instability criterion (59b) is generic for any value of cs 6= 0; it may be written

as v2Az(k
2
z + k2

R) + κ2 − 4Ω2 < 0. However, when cs/vA ≪ 1, growth rates for small i are very low.
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Note that eq. (58b) is the same as the original dispersion relation of the incompressible BH

instability (eq. [2.9] of Balbus & Hawley 1991 without the Brunt-Väisälä frequency). The instability

criterion (59a) in the extremely compressible limit depends explicitly on the local pitch angle,

showing that as i departs from 90o the instability becomes gradually confined to smaller values of

kz. For a cold Keplerian flow, no instability occurs when i is smaller than 30o.

To examine what role thermal pressure plays to the growth of the BH instability and why

the instability criterion depends on i, we plot the unstable solutions of eq. (57) as functions of

qA ≡ (k · vA)/Ω (= kzvAz/Ω for the axisymmetric case) and β ≡ c2s/v
2
A in Fig. 9. For the time

being, we confine our discussion to the kR = 0 case. When i = 90o, the instability criterion

from eqs. (59a,b) is v2Ak
2
z < −dΩ2/d lnR and the growth rate is independent of β, implying that

the compressibility does not alter the instability (Fig. 9a). This can be understood as follows:

when magnetic fields are mainly axial, sound waves propagating along a vertical direction decouple

completely from the magnetic fields and are undisturbed by rotation. But transverse MHD waves

which are intrinsically incompressible are influenced by rotation to become ultimately unstable for

a range of kz when dΩ/dR < 0. Therefore, i = 90o is a very special case.

On the other hand, when both vertical and azimuthal fields are present, toroidal perturbed

fields generated by an initial azimuthal displacement or by sheared motion following a radial pertur-

bation of the initial axial fields tend to cause vertical oscillations, but in a cold assumption, mainly

due to the magnetic field gradient terms, −B0φ(∂B1φ/∂z). This oscillatory vertical motion tries

to distribute the perturbed fields as uniformly as possible, thereby tending to suppress the growth

of the disturbances. However, the vertical magnetic pressure gradients are not strong enough to

create significant vertical motions if thermal pressure is large: a compressed region tends to expand

vertically but with little change in the strength of the toroidal fields, thus providing a favorable

condition for the development of the BH instability. This explains why higher β cases have higher

growth rates at fixed i, and why the growth rate decreases as i decreases at fixed β (Fig. 9b∼9d).

Although the instability criterion (59b) is completely independent of the strength of the az-

imuthal fields provided that β 6= 0, indicating as noted by Blaes & Balbus (1994) that to all orders,

azimuthal fields do not modify the stability criterion, the corresponding growth rates drop progres-

sively as β decreases if i 6= 90o. When β & 1, any change of an inclination angle i from 90o does not

bring significant reductions in growth rates, implying that the characteristics of the instability are

essentially the same as the pure poloidal case. If β ≪ 1, however, we observe dramatic stabilizing

effects from toroidal fields, as illustrated in Fig. 9.

A few comments should be devoted to the effect of kR. Radial wave motions do nothing but add

another restoring force to perturbations. This in turn means that thermal pressure has a stabilizing

influence on the growth of the BH instability. Thus there are two competing processes of thermal

pressure: thermal pressure associated with vertical wave motion promotes the BH instability, while

thermal pressure controlling radial motion opposes it. It turns out that for i 6= 90o the former

process always dominates. For i = 90o, only the latter effect exists, giving higher growth rates for
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smaller β, when kR 6= 0.

Notice the stabilizing effect of kR in eqs. (59). If the background vertical flow has significant

shear, the local radial wavenumber would increase with time (cf. eq. [40]), suppressing the instability.

Thus when v′0z 6= 0, the compressible BH instability will exhibit a transient growth, as must happen

to all modes if kzv
′
0z 6= 0 and/or mΩ′ 6= 0.

In conclusion, we have found that compressibility has a stabilizing effect on the axisymmetric

BH instability. Even though its effect is small if the sound speed is super-Alfvénic, compressibility

must be considered whenever the Alfvén speed is comparable to or even exceeds the thermal sound

speed, as is expected in winds and also in disk coronae (cf. Miller & Stone 1999).

The above discussion applies only for axisymmetric perturbations. It was also found that

an accretion disk with purely toroidal fields is subject to non-axisymmetric instability (Balbus &

Hawley 1992; Terquem & Papaloizou 1996), but we will show in the following section that the

physical role of compressibility in that case is completely different, in spite of the same quantitative

instability criteria.

7.2. Non-Axisymmetric MRI: Coherent Wavelet Analysis

Balbus & Hawley (1992) found that a differentially rotating disk of incompressible fluid with

embedded toroidal magnetic field is unstable to non-axisymmetric perturbations. Adopting shearing

sheet coordinates (see below), they integrated a set of the perturbed equations and showed that

perturbations with an intermediate azimuthal wavenumber m can exhibit transient, but enormous

growth over a time scale of several percent of Ω−1.

An alternative approach was taken by Terquem & Papaloizou (1996) to study a similar insta-

bility to that identified by Balbus & Hawley (1992). They solved the problem using the local WKB

approximation. They started from a general compressible equation of state, but subsequently they

supposed divergence-free poloidal Lagrangian displacements, which made their treatment essen-

tially incompressible. They derived a sufficient condition for the instability which is exactly the

same form as that of axisymmetric BH instability (i.e., dΩ2/d lnR < 0). Noting that azimuthal

shear is the main driving mechanism and bending of the field lines provides a stabilizing restoring

force, they suggested the non-axisymmetric instability of toroidal magnetic fields might resemble

the original BH instability.

We argue in this work that the underlying physical mechanisms for non-axisymmetric toroidal-

B MRI (which we refer to as “NMRI”) and axisymmetric poloidal-B MRI (which we refer to as

“BH”) are in fact quite different from each other. In this section, we analyze the NMRI by looking

at “coherent wavelet” solutions in which every physical variable, localized in both space and time,

oscillates or grows with the same space-time dependence, and provide quantitative results in detail.
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7.2.1. Localization in Space and Time

We begin by considering a shearing, rotating disk with uniform density, and magnetic fields

with only an azimuthal component. We ignore any unperturbed vertical motion in the medium.

We include thermal pressure effects with an isothermal equation of state to obtain the explicit

dependence of the NMRI on the temperature, but neglect effects of cylindrical geometry. This

configuration is the same as Balbus & Hawley’s (1992), except that they considered only the in-

compressible case with the Boussinesq approximation, and allowed for vertical equilibrium gradients

yielding buoyant oscillations. Adopting the shearing sheet coordinates (R̃, φ̃, z̃) such that R̃ = R,

φ̃ = φ − Ω(R)(t − to), and z̃ = z (Goldreich & Lynden-Bell 1965; Julian & Toomre 1966; Balbus

& Hawley 1992), we consider the time development of an initial plane-wave disturbance which

preserves sinusoidal variation in the local rest frame of the equilibrium shearing, rotating flow

χ1(R,φ, z, t) = χ1(t)e
imφ̃+ikzz̃+ikR(to)R̃, (60)

where kR(to) is a radial wavenumber at a fiducial time t = to. The linearized form of the MHD

eqs. (1)∼(4), can be written in dimensionless form as

dα

dτ
= −qRu1R − qmu1φ − qzu1z, (61)

du1R
dτ

= 2u1φ − qmbR + qR(βα+ bφ), (62)

du1φ
dτ

= − κ2

2Ω2
u1R + βqmα, (63)

du1z
dτ

= −qmbz + qz(βα+ bφ), (64)

dbR
dτ

= qmu1R, (65)

dbφ
dτ

=
d ln Ω

d lnR
bR − qzu1z − qRu1R, (66)

dbz
dτ

= qmu1z, (67)

where the dimensionless Lagrangian derivative is denoted by

d

dτ
=

1

Ω

∂

∂t
+

∂

∂φ
. (68)

In eqs. (61)∼(68), all perturbed variables are dimensionless and defined by α ≡ ρ1/ρ0, u1 ≡
iv1/vAφ, b ≡ B1/B0φ, and τ ≡ tΩ, and dimensionless parameters are β ≡ c2s/v

2
Aφ, qm ≡ vAφm/RΩ,

qz ≡ vAφkz/Ω, and

qR(τ) ≡
vAφkR(t)

Ω
=
vAφ

Ω

[

kR(to)−m(t− to)
dΩ

dR

]

= −mtvAφ

Ω

dΩ

dR
= −τqm

d ln Ω

d lnR
, (69)
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where the third equality holds when to ≡ −kR(to)/mΩ′. Eqs. (65)∼(67) yield the divergence free

condition for the perturbed magnetic fields.

Since qR has a τ -dependence, the linear system of eqs. (61)∼(67) does not form an eigenvalue

problem; kinematics of shear wrap a given disturbance by increasing its radial wavenumber linearly

with time. In the original shearing sheet formalism, the fate of a system exposed to perturbations

is analyzed through direct integrations of linearized equations over time. In doing so, one may

observe transient amplification or decay of applied disturbances depending on their stability. One

can say that a system is unstable if some physical variables grow sufficiently over certain time scales.

The efficiency of instability for a system is identified by computing the response of the system to

variation of parameters input to temporal integrations. This approach was adopted by Balbus &

Hawley (1992) in their identification of the NMRI.

Here, we instead analyze the NMRI by proceeding one more step from the original shearing

sheet formalism to find solutions which are localized in time as well as in space. First, we note that

there exist two distinct time scales: the growth time of instabilities determined by the inverse of

the dimensionless instantaneous growth rate,

γ(τ) ≡ d

dτ
lnχ1(τ) =

1

Ω

d

dt
lnχ1(t), (70)

and the dimensionless shearing time, (d ln qR/dτ)
−1 = qR|qmd ln Ω/d lnR|−1, as a typical time scale

of the linear growth of the radial wavenumber. If the shearing time is much longer than the growth

time, that is, if qm|d ln Ω/d lnR|/(γqR) ≪ 1 (the “weak shear limit”), the time dependence of qR
in eq. (69) can be neglected, and thus normal mode solutions having an exponential or oscillatory

behavior can be sought. Shu (1974) applied this technique to investigate the effects of a differential

rotation on the Parker instability. Also, Ryu & Goodman (1992) obtained an algebraic dispersion

relation for the convective instability in differentially rotating disks, by assuming that qR is time-

independent.

Because the convective and the Parker instabilities arise from hydrodynamic and magnetic

buoyancy effects, respectively, independent of the rotation of a disk, one can always find a regime in

which the weak shear limit is applicable. In some cases, however, as for example in the axisymmetric

poloidal or the non-axisymmetric toroidal MRIs with weak magnetic fields, the instabilities result

directly from a differential rotation with Ω′ < 0. In such cases, peak growth rates are of the same

order as rotational frequencies (Balbus & Hawley 1998), and thus the weak shear is not a good

approximation for these non-axisymmetric instabilities.

However, we can still look for coherent solutions in which all perturbed variables vary as eγτ

with time, provided the variation of the instantaneous growth rate γ(τ) over the growth time γ−1

is relatively small, i.e.,
∣

∣

∣

∣

d ln γ(τ)

dτ

∣

∣

∣

∣

≪ γ(τ). (71)

We refer to the solutions under this approximation as “coherent wavelet solutions” because all phys-

ical quantities localized in both space and time grow at the same instantaneous rate. If the condition
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(71) holds, the changes in γ(τ) can be neglected over a short time interval, and the set of dynamical

equations (61)∼(67) constitutes an eigensystem instantaneously. This is equivalent to the WKB

method in the time dimension. Since γ−1d ln γ(τ)/dτ = −qm(d ln Ω/d lnR)(d ln γ/d ln qR)/(γqR),
eq. (71) is satisfied if either qm|d ln Ω/d lnR|/(γqR) ≪ 1 (the weak shear limit), or |d ln γ/d ln qR| ≪
1 (instantaneous growth rates are relatively insensitive to the radial wavenumber); the condition

(71) is less restrictive and in fact is the generalization of the weak shear limit. Of course, we need to

check the self-consistency of this coherent wavelet approximation by examining a posteriori whether

resulting solutions satisfy the condition (71). For incompressible media, Balbus & Hawley (1992)

mapped the regime of instability in [(k · vA)
2, |k|/kz] space using WKB methods similar to those

we adopt.

7.2.2. Coherent Wavelet Dispersion Relation

Upon substituting eq. (70) into eqs. (61)∼(67) and applying the approximation (71) so that

dχ1/dτ → γχ1, one can form a matrix equation γQ = MQ, where Q = (α, u1R, u1φ, u1z, bR, bφ, bz)
T

is a column vector and M is a 7×7 matrix whose components are determined by the coefficients

of Q in the right hand sides of eqs. (61)∼(67). By solving the condition det(M− γI) = 0, where

I is the identity matrix, we obtain a seventh order polynomial in γ. As a further approximation,

however, if at least one of the conditions, qz ≫ qR, γ ≫ τ , or γτ ≫ 1, is satisfied, all even order

terms that depend linearly on τ and qm but are independent of qz, can be neglected compared to

the remaining terms. The first two conditions apply when the radial wavenumber is not significant,

either because disturbances are highly localized in the vertical direction (qz ≫ qR) or simply because

we are looking at modal behaviors at the time τ ∼ 0, while the third condition holds when net

amplification of perturbations is large. This simplification yields a trivial solution γ = 0 (this

arises from the fact that perturbed magnetic fields, bR, bφ, and bz, are linearly dependent via the

divergence-free condition) and a third-order polynomial in γ2 which is the resulting instantaneous

dispersion relation for NMRI

0 = γ6 + γ4
[

(1 + β)q2 + q2m +
κ2

Ω2

]

+ γ2
[

(1 + 2β)q2q2m +
κ2

Ω2
(q2m + (1 + β)q2z )

]

+ βq2m

[

q2q2m +
d ln Ω2

d lnR
q2z

]

, (72)

where the amplitude of the total wavenumber defined by q2(τ) ≡ qR(τ)
2 + q2m + q2z is a function of

τ through eq. (69). Combining eqs. (69) and (72), one can evaluate a local, instantaneous growth

rate at a given time.

With vanishing magnetic fields and thermal pressure, we would obtain from eq. (72) stable

epicyclic oscillations. In the limit of strong magnetic fields and no rotation, eq. (72) is immediately

reduced to (γ2+q2m)(γ
4+(1+β)q2γ2+βq2mq

2) = 0, the usual dispersion relations for the Alfvén waves

and the fast and slow MHD waves in a medium embedded with toroidal magnetic fields. In the
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presence of rotation with non-vanishing but weak fields, however, these Alfvén and MHD modes are

coupled to exhibit generally complex modal behaviors. They can be stable or unstable depending

on the parameters, but it is always a slow MHD wave that becomes unstable because it has the

lowest frequency so that there is a plenty of time during which destabilizing forces (centrifugal

forces for NMRI) act on it. We have instantaneously growing solutions with real positive values of

γ provided that the last term in eq. (72) is negative. Thus, when βqm 6= 0, the local, instantaneous

instability criterion in terms of the dimensionless variables for the NMRI can be written

q2m

(

1 +
qR(τ)

2 + q2m
q2z

)

+
d ln Ω2

d lnR
< 0, (73)

demonstrating that dΩ2/d lnR = κ2 − 4Ω2 < 0 is indeed a sufficient condition for the instability

to arise when the magnetic field strength is negligible (Balbus & Hawley 1992; Foglizzo & Tagger

1995; Terquem & Papaloizou 1996). Eq. (73) recovers the results of Balbus & Hawley (1992)

for the instability regime for toroidal-field NMRI. The result of eq. (73) can be compared to the

poloidal-field BH instability criterion of eq. (59b). Notice that the NMRI (with B0z = 0) vanishes

completely as β → 0, while the axisymmetric BH instability still exists even when β = 0 (see §7.1).

Although they share the same instability criterion, the operating mechanisms for the NMRI

of toroidal fields are quite different from the axisymmetric BH instability of poloidal fields. Both

arise via destabilization of the slow mode. The NMRI mode, just as the poloidal BH mode,

depends on shear to generate azimuthal fields from radial perturbations of the background fields.

But there is more to the story. The key mechanism for the NMRI instability lies in the vertical

MHD wave motions driven by the gradient of the total (initial plus perturbed) azimuthal fields, as

schematically illustrated in Fig. 10. Since we suppose perturbations which are sinusoidal in both

vertical and azimuthal directions, the perturbed azimuthal fields are also periodic in both directions.

Rapid vertical motions with high kz, generated by −B0φ(∂B1φ/∂z) stress, would produce over- and

under-dense regions which regularly alternate along the azimuthal direction (Fig. 10a). And then,

azimuthal fluid motions are induced, according to the equation of continuity, from over-dense regions

to under-dense regions (Fig. 10b). Depending on the direction (∓φ̂) of these induced motions, the

coriolis and/or centrifugal force would alter the paths, radially inward or outward (Fig. 10c). Under

the condition of field freezing, these radial motions would produce radial magnetic fields with a

small amplitude from the background toroidal fields (Fig. 10d). These radial fields would in turn

be sheared out to generate (positive or negative) perturbed azimuthal fields, due to the differential

rotation of the background flows. When dΩ/dR < 0, the resulting azimuthal fields from initial and

perturbed ones would be distributed (Fig. 10e) such that they reinforce the applied initial vertical

perturbations (Figs. 10a and 10f), implying the MRI; the entire system would just oscillate with

rotation-modified MHD frequencies if dΩ/dR > 0. This explains how the NMRI operates.

When kz is large, the stabilization of the NMRI occurs when a magnetic tension from radially

bent field lines exceeds the centrifugal or coriolis force (Figs. 10b and 10c). Shear Alfvén waves

with radial polarization can suppress the instability if the field lines are sufficiently strong or if the

azimuthal wavenumber is large enough, as expressed by the dimensionless parameter q2m outside
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the parentheses in eq. (73). When qz ≪ qR, on the other hand, MHD waves propagating along the

radial direction stabilize the NMRI, as indicated by the terms inside parentheses in eq. (73); qR(τ)

clearly reflects the stabilizing effect of the background shear.

The maximum instantaneous growth rate is achieved when qR ≈ 0. In this case, eq. (73)

implies instability if

q2m < q2m,crit ≡
1

2

[

−q2z+
√

q4z − 4q2z
d ln Ω2

d lnR

]

.

Note that q2m,crit → −d ln Ω2/d lnR, for qz ≫ 1, while q2m,crit → qz
√

−d ln Ω2/d lnR, for qz ≪ 1.

Numerical solutions of eq. (72) with qR = 0 are presented in Fig. 11. As both eq. (73) and Fig. 11

show, the maximum growth rates for toroidal-field background states are attained when qz → ∞,

which is a sharp contrast to the axisymmetric poloidal-field BH instability that has fastest growing

mode at moderate qz’s (cf. Fig. 9 and see also discussion in Balbus & Hawley 1998). But both forms

of the MRI have the same maximum growth rates at the same qA ≡ (k·vA)/Ω. Fig. 11b shows how

growth rates depend on the sound speed. As the sound speed increases, the medium becomes more

unstable. This reflects the incompressible nature of the NMRI. Even though the marginally critical

wavenumber is independent of temperature (for β 6= 0), the virulence of the instability is greatly

inhibited as β decreases. For qm ≪ 1, one can find from eq. (72) the temperature dependence of

the limiting growth rate

γ = qm

√

− β

κ2(1 + β)

dΩ2

d lnR
, (74)

or γ = qm
√

3β/(1 + β) for a Keplerian rotation. Eq. (74) gives slopes of the growth rates for small

qm (Fig. 11). For magnetocentrifugally driven winds which are as cold as β < 0.01, the NMRI is

not expected to play a significant role; the growth rate in dimensional units is
√
3csm/R.

When the medium is incompressible (β → ∞), eq. (72) allows the analytic expression for the

instantaneous growth rate for pure toroidal-field background states,

γ2 =











q2z
2q2

κ2

Ω2

[
√

1 + 16 q2q2m
q2z

Ω4

κ4 − 1
]

− q2m, if q2q2m
q2z

+ d lnΩ2

d lnR < 0,

0. otherwise,

(75)

When qz ≫ 1, one can derive the maximum growth rate γmax = |d ln Ω/d lnR|/2, which is achieved

when q2m,max = −(d ln Ω2/d lnR)/2 − γ2max. It can be shown from eq. (72) or (75) that dγ2/dτ ∼
q3mqR/q

2 → 0 as qz → ∞. This proves that the coherent wavelet approximation is self-consistent

for the NMRI with high qz.

7.2.3. Comparison With the Shearing Sheet Formalism

In order to compare the coherent wavelet solutions for toroidal-field NMRI with the results

from the shearing sheet approximation, we directly integrate eqs. (61)∼(67) over time, with given
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sets of initial conditions. In Fig. 12, we display the time evolution of all perturbed variables for

qm = 0.1, qz = 1, and β = 100, which are the same parameters as chosen for Fig. 3 of Balbus

& Hawley (1992). We adopt a Keplerian rotation profile in what follows. The initial amplitudes

are 0.1 for every variable except bR = 0.01 and bz = 0.4, and the initial τ̃ , where the orbit

number τ̃ ≡ τ/2π = tΩ/2π, is allowed to be determined from the divergence free condition of the

initial, perturbed magnetic fields. When τ̃ < −20, the system responds with MHD wave motions

before they start to grow. During this relaxation stage, fast MHD modes having large |qR| are
nearly longitudinal acoustic waves, affecting u1R and α, while u1φ and bφ are mostly influenced by

transverse slow modes. As time increases, |qR| gradually decreases, permitting rotational shear to

affect the overall dynamics. Once the condition (73) is satisfied, shear drives the slow modes to be

unstable, following the process illustrated in Fig. 10. Even though the growth of disturbances shows

a transient nature due to the kinematic growth of qR, the net amplification is about 9 orders of

magnitude, a bit higher than Balbus & Hawley’s result. This is because the integration interval in

Balbus & Hawley covered a slightly smaller part of the unstable time range. At later time when qR
has a large value, the system exhibits stable oscillations with the slow MHD wave frequency. Fig.

12 also shows the predicted amplification magnitude (thick solid line) from the coherent wavelet

approximation (see below).

In Fig. 13, we plot the numerical growth rates for each variable calculated from Fig. 12 based

on the direct numerical integrations in the shearing sheet formalism, together with the growth rate

of the corresponding coherent wavelet solution. Here, a dimensionless instantaneous growth rate γ̃

as a function of τ̃ is defined through 10γ̃τ̃ = eγτ , (or γ̃(τ̃ ) = 2πγ(τ) log e). Note that the heavy solid

line for γ̃ drawn from eq. (72) fits well with various curves computed from the direct numerical

integrations. The instantaneous growth rates are almost symmetric with respect to their maxima

near τ̃ = 0, as expected. Growth of the modes occurs only when |τ̃ | < 18.3, which is in good

agreement with the results of the direct integrations, demonstrating the validity of the coherent

wavelet approximation.

We define a dimensionless amplification magnitude as

Γ(τ̃ ) ≡
∫ τ̃

−∞
γ̃(τ̃ ′)dτ̃ ′ = log e

∫ τ

−∞
γ(τ ′)dτ ′. (76)

Then, Γ(τ̃) is an order of magnitude measurement of the amplification of an unstable mode during

the time interval (−∞, τ̃). The total amplification is given by 10Γ(∞). When eq. (75) is substituted,

the analytic evaluation of the integral in eq. (76) is not an easy task. In view of a shape of γ̃(τ̃ )

(Fig. 13), we further approximate γ̃ with a simple form

γ̃ =

{

γ̃o(1− |τ̃ |/τ̃c)1−qm/2, if |τ̃ | < τ̃c,

0, otherwise,
(77)

where

γ̃o ≡
√
2π log e

{

q2z
q2m + q2z

κ2

Ω2

[
√

1 + 16
(q2m + q2z )q

2
m

q2z

Ω4

κ4
− 1

]

− 2q2m

}1/2

, (78a)
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and the termination epoch of growth τ̃c is defined by

τ̃c ≡
1

2πqm

∣

∣

∣

∣

d ln Ω

d lnR

∣

∣

∣

∣

−1
√

−
(

d ln Ω2

d lnR

)

q2z
q2m

− q2m − q2z . (78b)

Notice that eq. (77) is valid only if τ̃c is real, that is, only if the condition (73) is satisfied. From

eqs. (76) and (77), the total amplification magnitude is easily found to be

Γ(∞) =
4γ̃oτ̃c
4− qm

, (79)

which is illustrated with solid contours in Fig. 14. Also shown with dotted contours are the direct

results from numeral integration of eq. (75), which are in excellent agreement with Γ(∞). The

thick contour is the locus of τ̃c = 0, demarcating the stable and unstable regions: the system is

stable at the right hand side of the thick contour. In the qm − qz plane, the total amplification

tends to be greater as qz becomes larger and as qm becomes smaller. This is because the NMRI

with B0z = 0 acquires maximum instantaneous growth rates at qz = ∞ (Fig. 11a) and because the

shearing time is longer with smaller qm (cf. eq. [78b]). For comparison, we also include in Fig. 14

the results from the shearing sheet equations for four parameter sets: (qm, qz) = (0.03, 0.1), (0.1,

1), (1, 10), and (
√
2, 100

√
2), and β=100 for all cases: these are marked with dots on qm− qz plane,

labeled by the respective exact and estimated (in parentheses) amplification magnitudes. Note that

all of the estimated amplification magnitudes are within 5% of the results of direct shearing sheet

integrations. This indicates that eq. (79) is an excellent analytic estimate for the amplifications of

incompressible NMRI modes.

7.3. Generalized MRI

Motivated by the success of the coherent wavelet method in finding the solutions of the NMRI

with purely toroidal background fields, we now generalize both the axisymmetric BH and NMRI in-

stabilities by considering non-axisymmetric perturbations applied to the rotating medium threaded

by both vertical and azimuthal magnetic fields. We include the effect of thermal pressure and allow

the angular velocity Ω to be a function of R, but ignore any other radial variations in the initial

state. We adopt the shearing sheet coordinates as before, and linearize eqs. (1)∼(4). After ap-

plying perturbations in the form of eq. (60), we assume that the perturbations evolve with time

as eγ(t)t with the coherent wavelet condition (i.e., d ln γ(t)/dt ≪ γ(t)). Following the same proce-

dure as §7.2, we obtain the general instantaneous dispersion relation for the MRI (now written in

dimensional form)

0 = γ6 + γ4
[

(c2s + v2A)k
2 + κ2 + (k · vA)

2
]

+ γ2
[

(2c2s + v2A)(k · vA)
2k2 + κ2

(

c2sk
2
z + v2Aφ(

m2

R2
+ k2z )

)

+ (k · vA)kzvAz
dΩ2

d lnR

]

+ c2s (k · vA)
2

[

(k · vA)
2k2 +

dΩ2

d lnR
k2z

]

, (80)
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where k2 ≡ k2R(t)+m2/R2 + k2z with the radial wavenumber defined by kR(t) = −mtdΩ/dR when

we choose to = −kR(to)/mΩ′. When either m = 0 (axisymmetric case) or vAz = 0 (pure toroidal

field case), eq. (80) becomes identical respectively with eq. (57) for the BH modes or eq. (72) for

the NMRI modes.

From eq. (80), we obtain the instantaneous instability criteria for the generalized MRI modes

v2Ak
2(t)(k · vA)

2 + κ2v2Aφ

(

m2

R2
+ k2z

)

+ (k · vA)vAzkz
dΩ2

d lnR
< 0, for cs = 0, (81a)

(k · vA)
2

(

1 +
k2R(t) +m2/R2

k2z

)

+
dΩ2

d lnR
< 0, for cs 6= 0, (81b)

which are obviously the generalizations of eqs. (59) and (73). It can also be shown that when i =

90o, both equations (81a) and (81b) become identically v2Az(k
2
R(t)+m2/R2 + k2z )+ dΩ2/d lnR < 0.

With an Ω ∝ R−a rotation profile, eq. (81a) gives the sufficient condition for the instability in an

extremely cold medium: sin i > (4 − 2a)/(4 − a). Keplerian flows for example become unstable

only if i & 24o, indicating that cold, Bφ-dominated media are not subject to the generalized non-

axisymmetric MRI disturbances, just as we found earlier that axisymmetric BH modes are also

stable in cold flows for small i. We remark that the case with a → 2, as potentially possible in

MHD winds from boundary layers, can just barely satisfy the cold medium instability criterion for

i → 0. Note that unlike the NMRI mode with vAz = 0, maximum growth rates in the cs 6= 0

case are not achieved as kz → ∞. In fact, high-kz or high-m disturbances are efficiently stabilized

by Alfvén and/or MHD waves whenever both poloidal and toroidal fields are present. However

small they may be, therefore, inclusion of poloidal fields would yield a different result from the case

with pure toroidal fields (this point was previously noted by Balbus & Hawley 1998). Again the

stabilizing effect of kinematic shear appears through the time dependence of k2R(t), when m 6= 0.

Fig. 15a shows how the compressible BH modes are stabilized by azimuthal magnetosonic

waves. Here, we confine consideration to the radial wavenumber kR = 0. As qm(= vAm/RΩ)

increases, both the growth rates and the ranges in qz(= vAkz/Ω) of unstable modes decrease. This

is because if qm 6= 0, azimuthally displaced material feels relatively stronger restoring forces due to

both thermal and magnetic pressures of the medium as well as stronger tension forces from bent

field lines. Non-axisymmetric poloidal-field BH instability modes become stabilized with increasing

values of m. When qm >
√

−d ln Ω2/d lnR (=
√
3 for a Keplerian rotation), the instability is

strictly cut off, even when the effect of kinematic shear is not taken into account.

We remark that the role of temperature of the medium to the BH instability is different

between axisymmetric (with qm = 0 and i 6= 90o; see Fig. 9) and non-axisymmetric (with qm 6= 0

and i = 90o; see Fig. 15) cases. When i = 90o, as already explained in §7.1, the axisymmetric BH

instability with qm = 0 is independent of β, because only Alfvén and sound waves exist and they

do not interact with each other. When qm = 0 and i 6= 90o, magnetic pressure induces vertical

MHD wave motions which tend to stabilize the system when β is small. If β ≫ 1, however, the

vertical wave motions become nearly acoustic, leaving the toroidal component of perturbed fields
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unaffected and permitting higher growth rates. When qm 6= 0 and i = 90o, on the other hand, the

coupling of thermal pressure with magnetic pressure occurs through azimuthal MHD motions, and

the growth rate depends only weakly on β.

Fig. 15b shows loci of equi-growth rate on the qz−qm plane for i = 10o and β = 0.01 (dotted

contours) and β = 100 (thin solid contours). For 0 < qm < 1.17, there exist upper and lower critical

vertical wavenumbers, qz,u and qz,l such that the system is unstable with qz,l < qz < qz,u. When

qz > qz,u, disturbances are stabilized by MHD waves propagating mainly along vertical direction,

while perturbations with qz < qz,l approach stable Alfvén waves. Each contour has a slope of

∼ − tan i (= −0.18 for i = 10o) at both ends. Note that dotted contours with lower β are labeled

with much smaller growth rates than solid ones with higher β, even though they are similar in

shape. Compared to Fig. 9 or Fig. 15a, this implies that the NMRI instability with a toroidal

field configuration is more sensitive to temperature than the axisymmetric/non-axisymmetric BH

instability with poloidal fields.

When β → ∞, from eq. (80) we have the instantaneous growth rates for the generalized MRI

modes

γ2 =
κ2k2z
2k2

[
√

1 + 16(k · vA)2
k2Ω2

k2zκ
4
− 1

]

− (k · vA)
2, (82)

for (k · vA)
2k2/k2z + dΩ2/d lnR < 0, which is also a generalization of eq. (75). With weak mag-

netic field strength, one can show from eq. (82) that γ−3dγ2/dt ∼ −mkR(k · vA)/(Ωk
2
z ) → 0 as

(k · vA)/Ω → 0. Thus, we see that for the generalized MRIs, the coherent wavelet approach is

self-consistent in the weak field limit. When the field strength is moderate, on the other hand, we

obtain dγ2/dt ∼ mΩ′kR(k · vA)
2/k2. Since γ ∼ Ω ∼ (k · vA) in this case, the coherent wavelet

condition is met only when m|Ω′| ≪ kRγ (the weak shear limit). Of course, the predominantly

toroidal-field case that becomes unstable with kz ≫ 1 also satisfies the coherent wavelet condition,

since k2 becomes arbitrarily large without increasing the (k · vA)-term, as discussed in §7.2.2.

Comparing eq. (75) with eq. (82), we note that the incompressible MRI can be generalized

simply by replacing the dimensionless azimuthal wavenumber qm with (k · vA)/Ω. Therefore, we

can write the net amplification magnitude for the generalized incompressible MRI as

Γ(∞) =
4 log e

4− qA
γotc (83)

where the dimensional peak growth rate γo and the cut-off time of the instability tc are defined by

γ2o
Ω2

≡ κ2 cos2 θ

2Ω2

[
√

1 + 16
q2A

cos2 θ

Ω4

κ4
− 1

]

− q2A (84)

and

tc ≡
1

sin θ

∣

∣

∣

∣

dΩ

d lnR

∣

∣

∣

∣

−1
√

−d ln Ω
2

d lnR

cos2 θ

q2A
− 1, (85)
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respectively. The net amplification can thus be completely determined by the two parameters:

the dimensionless wavenumber qA ≡ (k · vA)/Ω projected in the direction of initial equilibrium

magnetic fields, and the angle θ ≡ tan−1(m/Rkz) of the wavenumber vector with respect to the

vertical axis. Note that γo → 0 with vanishing qA, while tc → ∞ as θ → 0, indicating that

low-m instabilities show higher net amplifications than high-m disturbances as long as qA 6= 0.

The total amplification magnitudes, eq. (83), are plotted in Fig. 16 with thin solid contours. For

comparison, we also plot the numerical results from eqs. (76) and (82) with dotted contours. We

assume a Keplerian rotation profile. The heavy curve with q2A = 3cos2 θ draws the locus of the

marginal stability. In the limit of a weak magnetic field strength (i.e., qA → 0), it can be shown

from eqs. (83)∼(85) that Γ(∞) = (2 log e)Ω/(κ tan θ), inversely proportional to θ (for θ ≪ 1)

but independent of qA, as illustrated in Fig. 16. Also shown in Fig. 16 are the results from the

direct temporal integrations of shearing-sheet equations with β = 100 as filled circles (for i = 90o),

filled triangles (for i = 30o), and open circles (for i = 0o), labeled by the respective exact and

estimated (in parentheses) amplification magnitudes. These two results agree very well, implying

that the coherent wavelet approach indeed provides excellent approximations to the solutions for

amplification of generalized MRIs.

From Fig. 16, it is apparent that it is the locally near-axisymmetric (in the sense m/Rkz =

tan θ ≪ 1) disturbances that experience maximum amplification, with the amplification magnitude

only weakly dependent on qA = (k · vA)/Ω within the unstable regime (qA . 1). The increase

in amplification factor with Rkz/m predicted from linear theory may in part explain the larger

amplitudes of power spectra for modes with larger k̂ · ẑ measured from nonlinear simulations of the

saturated MRI (cf. Hawley, Gammie, & Balbus 1995). In addition, for the case of pure toroidal

fields, Fig. 16 suggests only low amplification factors unless kz is very large, which may help explain

why Hawley, Gammie, & Balbus (1995) found lower magnetic field saturation amplitudes in cases

with initial Bz = 0.

8. Summary and Discussion

8.1. General Conclusions Based on Linearized Analysis

Through linear analyses of the ideal MHD equations, we have explored the stability of shearing,

rotating flows to a wide range of (primarily local) disturbances. The chief motivation for this

study is to characterize the internal instabilities that could develop in disk winds that emanate

from an extended region of a differentially rotating protostellar disk around a young star. The

dynamics of such winds has inspired intensive theoretical effort because they may be responsible for

observed YSO jets and outflows. In our analysis, we include both results based on generic density,

magnetic field, and flow profiles, and results which adopt as initial equilibrium configurations

the power-law asymptotic solutions of self-confined cylindrically symmetric winds presented by

Ostriker (1997): ρ ∝ R−q, Bφ ∝ Bz ∝ R−(1+q)/2, and vφ ∝ vz ∝ R−1/2. For most of our analysis
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(§§2-6), the flows were assumed to be cold enough that thermal effects can be ignored compared

with magnetic forces. To make contact with other studies of shear-induced MHD instabilities

in rotating disks, we also consider stability of specific models which include non-zero thermal

pressure (§7). For the lowest-order “fundamental” modes, we employ a normal-mode analysis with

free Lagrangian boundary conditions to find eigenvalues and eigenfunctions of both stable and

unstable modes (§3). For higher-order modes, we employ three different local techniques to study

growth of unstable disturbances: In §§4-6, we present numerical and analytic solutions of dispersion

relations obtained from normal mode analyses in the RkR ≫ 1 WKB limit. These are exact for

mΩ′ + kzv
′
0z = 0 disturbances and are valid for a limited time for weakly-shearing circumstances

where kR ≫ m|Ω′/Ω|, kz|Rv′0z/v0z| (see also §8.2 below). In §7, we employ temporal integrations

of the shearing-sheet equations to study MRI modes (which are cut off for RkR ≫ 1). We also

introduce, in §7.2, a “coherent wavelet” formalism which adapts modal analyses for situations where

shear is considerable (i.e., small RkR/m); the coherent wavelet analysis is equivalent to a WKB

approach in the temporal domain. We include a comparison of results from the shearing-sheet and

coherent-wavelet techniques applied to MRIs, in §7.2.3.

Applying these techniques we have identified a total of nine different unstable or overstable

families of disturbances that occur for a wide range of flow parameters: five (FM, BH, ATB, PB,

and TR) of them are axisymmetric and the other four (NTB, GPB, PR, and NMRI) are non-

axisymmetric. Table 1 summarizes the properties of these modes. The main general conclusions

drawn from the analysis in this work can be summarized as follows:

(1) Systems having a primarily azimuthal magnetic field, for example, disk winds far from

their source, are susceptible to the fundamental (FM), axisymmetric (ATB) and non-axisymmetric

(NTB) toroidal buoyancy, non-axisymmetric magnetorotational instability (NMRI) and toroidal

resonance (TR) modes. Unstable fundamental modes (see §3.2) are concentrated in the central

parts of jets, and occur in Bφ-dominated flows when the logarithmic gradient of the magnetic field

is steeper than ≈ −0.75 (cf. eqs. [24] and [25]). Growth rates of unstable FM are comparable to

inner-wind Alfvén frequencies. Long wavelength modes with large amplitudes at large radii are

all stable, for power-law wind profiles. The TR mode (see §6.1.4) is an overstability, with growth

suppressed when kR increases through shear of the vertical velocity, simply becoming oscillatory

MHD waves. The axisymmetric toroidal buoyancy mode (ATB; §6.1.2) is activated initially by

the buoyancy force and subsequently by bending poloidal magnetic fields. In geometrical form, it

is locally similar to the sausage mode of a plasma column confined by toroidal fields, and leads

to radial mixing. Because growth rates are larger on smaller scales, ATB can contribute to the

generation of local turbulence in disk winds. The non-axisymmetric toroidal buoyancy mode (NTB;

see §6.2.1) is much like the Parker instability, but with the centrifugal force replacing the role of

external gravity. Although the normal-mode analysis for NTB has the largest temporal validity at

small m/RkR, the instantaneous growth rate increases with increasing m/RkR (cf. eq. [52] and Fig.

8c). We thus return to the NTB in §8.2, below, applying time-dependent techniques to study the

RkR/m ≪ 1 limit. Because the NTB is present whenever radial magnetic forces are non-zero, it
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may be important in promoting radial mixing. Both of the toroidal buoyancy instabilities require

non-zero magnetic forces in the equilibrium state. The rarefied and cold conditions of disk winds

do not favor the development of the NMRI (see §7.2.2 and §7.3). Like the original (poloidal field)

magnetorotational (BH) instability, NMRI requires d ln Ω2/d lnR < 0, but also requires a relatively

incompressible medium, as is provided by the relatively dense and warm (cs & vA) conditions in

an accretion disk. We show the NMRI vanishes in the limit of cs/vA → 0. We further discuss

perturbations in cold, Bφ-dominated flows in §§8.2 and 8.3, below.

(2) Systems having primarily axial magnetic fields, for example, accretion disks or winds very

near their origin, are susceptible to the Balbus-Hawley (BH), poloidal buoyancy (PB and GPB),

and poloidal resonance (PR) modes. The well-known axisymmetric Balbus-Hawley instability (BH;

see §6.1.3 and §7.1) is the most efficient member of the family of magnetorotational instabilities

(MRIs; see §7.3). It will work to produce channel flows, eventually generating fully-developed MHD

turbulence through coupling to non-axisymmetric disturbances in the non-linear stage. Driven by

background magnetic pressure and the centrifugal force, the axisymmetric poloidal buoyancy mode

(PB; see §6.1.1) requires a gradient in the magnetic field strength to be unstable. If the field

distribution is steep enough, the poloidal buoyancy modes would also work effectively to generate

radial mixing and turbulence over much smaller scales than the BH instability. Because of their

overstable characteristics, the impact on the system of poloidal resonance modes (PR; see §6.2.3)
would be best evaluated with a global rather than local formalism. Configurations with shallower

background magnetic gradients (q < 1) are also subject to a non-axisymmetric poloidal buoyancy

instability (GPB; see §6.2.2) which arises in part from geometric effects.

(3) In distinction to the original, incompressible, axisymmetric BH instability, we found that

the compressible axisymmetric BH mode is strongly stabilized by the presence of an azimuthal

magnetic field if the medium has substantially sub-Alfvénic sound speeds. For example, in a cold

rotating flow with Ω ∝ R−3/2, the axisymmetric BH instability would be completely suppressed

if the local pitch angle i ≡ tan−1(Bz/Bφ) is less than 30o (cf. eq. [47]). In an incompressible

medium (as provided by a disk with cs & vA), faster sound waves preserve perturbed toroidal

fields from being dispersed by MHD wave motions, thereby providing a favorable condition for the

BH instability. When the field configuration is purely poloidal, the compressible BH instability is

identical with its incompressible counterpart, independent of temperature (cf. eqs. [58] and [59]).

(4) Even though they share the same instability criterion (cf. eqs. [59b] and [73]), the operating

mechanisms for the NMRI of purely toroidal B-fields is entirely different from the axisymmetric BH

instability of primarily poloidalB-fields. In the NMRI (see §7.2), vertical MHD wave motions driven

by magnetic pressure play an essential role in the feedback loop for induced radial disturbances,

while the axisymmetric BH instability tends to be stabilized by vertical wave motions. Faster

sound speeds produce higher growth rates in both instabilities, but for different reasons: in the

NMRI by activating azimuthal fluid motions preceded by the vertical MHD wave motions; in the

BH instability by maintaining the perturbed azimuthal fields generated by shear (when B0φ 6=
0). Because of their non-axisymmetric nature, the NMRI has a transient growth, stabilized by
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the growth of kR from kinematic azimuthal shear. For the NMRI mode, we show explicitly by

comparison to direct temporal integrations of the shearing sheet equations that the growth rate at

kR = 0 can be used to provide a good estimate of the net amplification magnitude (see §7.2.3).

(5) The coherent wavelet formalism we develop (§7.2) may be used to compute instability

criteria and net amplification factors for generalized MRI disturbances with arbitrary magnetic

field and wavevector orientations (§7.3). Eq. (80) gives the instantaneous dispersion relation for

generalized MRIs. For strongly compressible flows (cs/vA → 0), instability does not occur in Bφ-

dominated configurations (cf. eq. [81a]); in this case, flows with an Ω ∝ R−3/2 rotation law can

be unstable only when the magnetic pitch angle i > 24o. Because MHD disk winds generally

have very small pitch angles, this result has the important implication that such winds will not be

subject to the development of strong internal turbulence that occurs as a consequence of nonlinear

MRIs in disks. The absence of MRIs in cold, Bφ-dominated winds may be crucial in enabling

them to propagate over large distances from their sources. High-kz and/or high-m modes of the

generalized MRI are stabilized by MHD waves, which is a sharp contrast with the NMRI of purely

toroidal fields in which maximum growth rates are attained at kz → ∞. For incompressible flows,

the amplification factor for all MRIs can be written analytically in terms of qA = (k · vA)/Ω and

θ = tan−1(m/Rkz) (eqs. [83]∼[85]); within the unstable regime (qA < |d ln Ω/d lnR|1/2, from eq.

[81b]), the amplification is ∼ exp[2Ω/(κ tan θ)], favoring “locally-axisymmetric” disturbances.

8.2. Effect of Shear on Dynamical Growth of Buoyancy Instabilities

Apart from the results of §7 where we adopted the shearing sheet formulation of the dynamical

equations to study MRIs, the results in this work have been elicited on the basis of the local normal

mode analyses. As described in §4, these modes may have a limited range of temporal validity, due

to the effects of background shear. For axisymmetric disturbances with negligible vertical shear (i.e.,

mΩ′+kzv
′
0z → 0), the results presented in §5 and §6 are acceptable for all time; the modes with pure

imaginary ω will show an exponential growth without interruption over arbitrarily long time until

nonlinearity sets in. However, for non-axisymmetric disturbances, or for flows with non-negligible

vertical shear, unstable modes identified in §5 and §6 are not purely growing. As time evolves, the

differential velocities build up the radial wavenumber through the kinematic shear (cf. eq. [40]),

which in turn tends to stop the further growth of disturbances. This can be seen directly through

the suppression of instabilities in the local analysis when kR is large (cf. Fig. 8). The characteristic

time for the wave pattern to change by a fraction ǫ is t = ǫkR/|mΩ′ + kzv
′
0z|; over this interval,

the disturbance will be amplified by a factor exp(ǫkRIm(ω̃)/|mΩ′ + kzv
′
0z|). When kR ≫ m/R, kz,

Fig. 8 shows that Im(ω̃) ∝ k−1
R , so that the net amplification factor is nearly independent of kR.

Since, however, Im(ω̃) is not larger than ∼ |mΩ′ + kzv
′
0z|k−1

R , only order-unity amplification can

be expected for disturbances which are consistent with the requirements for quasi-steady normal

mode analysis.

Because the normal-mode dispersion relations indicate larger values of growth rates when
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RkR/m is small (which is however not self-consistent with the WKB treatment), it is desirable to

extend investigation to allow for RkR/m small. The coherent wavelet formalism used for the MRI

in §7 suggests that when m ≫ 1 (or Rkz ≫ 1 for v′0z 6= 0 cases), this can be done by regarding kR
as a time-dependent variable according to eq. (40) and using the asymptotic dispersion relations

of §6 (i.e., eq. [43] for PB, eq. [45] for ATB, eq. [52] for NTB, and eq. [53] for GPB). To verify

this argument, we specifically consider the NTB modes (which are one of the chief instabilities

in Bφ-dominated winds) and compare the results with the shearing sheet temporal integrations.

For the latter, we set Bz = 0 and integrate eqs. (26)∼(31) in time, setting all of the coefficients

to constant values. The resulting instantaneous growth rates and time evolutions of variables are

plotted in Fig. 17 as functions of the normalized time τ = tΩ. We omitted the kR-dependent term

in eq. (26) in order to remove rapid oscillations arising from a phase mismatch between the density

and radial velocity; the amplitude evolution is independent of this term. We also neglected the

vertical velocity shear and and selected q = kR(0) = kz = 0, RΩ = 0.1vAφ, and m = 100. As

initial conditions, we chose 0.1 for every variable except bR = 0.01 and integrated the system of the

linearized equations. Various curves are computed from direct numerical integrations of shearing

sheet equations, while the heavy solid lines are drawn from the normal mode solution, eqs. (52)

and (86) (see below), after taking allowance for the time dependence of kR. The rapid fluctuations

of the perturbed variables for τ < 0 are due to MHD waves with high |kR|, disappearing after

variables grow substantially. Again, most of growth occurs over a relatively short period of time

near kR ∼ 0. Note an excellent agreement between the results from two different approaches; we

have also obtained similar results with integration from other initial conditions. This confirms that

our normal mode results can also be applied to high-m disturbances if kR is allowed to vary with

time.

Using eq. (52) with kR(t) from eq. (40), we integrate ω̃ over time to estimate the net amplifi-

cation for the NTB modes

χ1(t)

χ1(0)
= exp

∫ t

0
Im(ω̃) dt =





3

2
Ωt+

√

1 +

(

3

2
Ωt

)2




(1−q)vAφ/3RΩ

, (86)

where we put v′0z = kR(0) = 0 and assume a Keplerian rotation. Thus instead of an exponential

growth, at later time of evolution we have the power-law growth due to the kinematic shear. This

behavior is distinct from the MRI modes, which are strictly stable for large enough kR. However,

the continued local growth of buoyancy perturbations is offset by the role of kinematic shear in

mixing phases of disturbances. Considering waves on z=constant plane in a square with sides L, the

maximum averaged contrast in any variable relative to the mean value is (λ/L)χ1(t), where λ is the

local wavenumber of the waves. With λ ∼ kR(t)
−1 and using eqs. (6) and (86), the average contrast

for the NTB modes evolve with time as ∼ (Ωt)
√

2(1−q)/3−1, vanishing as t → ∞ for 0 < q < 1.

From eq. (86), amplification factors are essentially scale-free. Although there may be a significant

growth of the NTB modes on large scales, their dynamical effect on small scales is limited by the

phase mixing due to shear.
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In the presence of vertical shear, the evolution of ATB modes is also affected by the kinematic

growth of kR although they are axisymmetric modes. The net amplification of the ATB modes

follows a power-law growth as that of the NTB mods does. In fact, eq. (86) with Ω replaced by

2v′0z/3 gives the temporal behavior of the net amplification for the ATB modes.

8.3. Discussion of Applications to Protostellar Winds

In order for a disk wind to overcome the gravitational barrier due to a central object and to

be centrifugally launched from the surface of a Keplerian disk, the poloidal components of field

lines should thread the disk at an angle of 30o or more from the axis (Blandford & Payne 1982).

Once material starts to flow outward along such field lines, it is accelerated primarily in the radial

direction by the centrifugal force or by the pressure gradient in the toroidal field. Beyond the Alfvén

surface where the local, poloidal component of the flow velocity is equal to that of the Alfvén wave

velocity, the magnetic field is not strong enough to play a role of “a rigid wire”, and the inertia

of gas becomes important, winding up the field lines to be progressively more toroidal. In this

process, the azimuthal flow velocity decreases below the corotation value. With the increase in the

azimuthal component of the magnetic field, the associated hoop stress provides the collimation of

the outflow and causes the streamlines to bend upward. The radial flow velocity of the outflow is

still positive, although it decreases gradually, eventually becoming zero at the cylindrical asymptotic

limit. The power-law solutions (with vR = BR = 0) we adopted for many specific cases represent

the asymptotic limit of each streamline.

Ostriker (1997) presented self-similar steady solutions for disk winds with cylindrical asymp-

totics and gave the asymptotic fluid and Alfvén speeds and the location of the asymptotic stream-

lines, characterized by q together with RA/R1 or R0/R1, where R0, RA, and R1 denote the radii of

the footpoint, the Alfvén surface, and the asymptote of each given streamline, respectively. Typical

numerical values for those solutions are Ω = 0.2Ω0, vAφ/R = 0.42Ω0, and vAφ/vz = 6 for q = 0.5,

and Ω = 0.1Ω0 and vAφ/R = 0.45Ω0 for q = 0.9, where Ω0 is the Keplerian rotation rate at the

streamline footpoint.

Using these values we can estimate the growth times of the global fundamental mode and the

fastest growing (with kR near 0) toroidal buoyancy modes. The foregoing analysis suggests that

these disturbances will play the most significant dynamical role, given the ineffectiveness of MRIs

in cold, Bφ-dominated flows. We define the time to grow by Γ orders of magnitude as tΓ. For FM,

tΓ,FM = Γ/(|ω| log e), so from Fig. 2 and eq. (25) we have for q = 0.9

tΓ,FM ∼ 14Γ

Ω0,i
= 25 Γ days

(

M

M⊙

)−1/2( R0,i

0.1 AU

)3/2

.

For ATB and NTB, from eqs. (45) and (52), we have for i→ 0 and q = 0.5

tΓ,ATB ∼ 10Γ

0.21Ω0
= 24× 10Γ yrs

(

M

M⊙

)−1/2( R0

10 AU

)3/2

and
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tΓ,NTB ∼ 101.4Γ

3Ω0
= 1.7× 101.4Γ yrs

(

M

M⊙

)−1/2( R0

10 AU

)3/2

,

respectively. Here, M is the mass of the central star and Ω0,i is the angular speed of a disk at the

footpoint R0,i of the innermost streamline of winds. The fact that the growth of the FM by a factor

10Γ occurs within ∼ Γ times the rotation period of the disk at the inner radius, far shorter than

the lifetime of winds (∼ 104 − 105 yrs), suggests that the FM mode is dynamically important in

the evolution of the disk winds. When q is small, the radial turbulent mixing of the wind, caused

by both axisymmetric and non-axisymmetric toroidal buoyancy modes over a relatively short time,

is likely to cascade down into arbitrarily smaller scales to dissipate when the microscopic processes

such as magnetic reconnection are included. The released energy in the dissipation processes may

heat up the flow, potentially making a significant contribution to the heating of protostellar winds

and jets. Because the growth rates of buoyancy modes are proportional to the equilibrium magnetic

forces (cf. eqs. [45] and [52]), winds that have approached a force-free magnetic configuration will

not be subject to the ATB and NTB instabilities.

The global fundamental mode affects only the inner region of the disk winds (e.g., the central

tenth for the model shown in Fig. 3). The logarithmic density gradient ∂ ln ρ/∂ lnR changes relative

to the equilibrium value by ∂(ρ1/ρ0)/∂ lnR. Fig. 3 shows that as a consequence of the fundamental

mode, the very central region becomes more steeply stratified, a surrounding concentric region

less steeply stratified, and the balance (most of the wind) remains nearly unchanged. Thus, the

FM tends to enhance jetlike structure in the central parts of winds. In addition, because of their

tendency to compress interior gas via the FM mechanism, disk winds may help to collimate any

interior flows into narrow, fast jets, even when the disk winds themselves have relatively slow motion

(cf. Ostriker 1997).

What do the present results imply about the likely radial extent of protostellar winds? First,

we note that observed optical jets are unlikely to be isolated structures, because if so they would be

significantly overpressured relative to the ambient medium: Since magnetocentrifugal jet models

typically predict internal Alfvén speeds comparable to their flow speeds in the range 150 ∼ 400

km s−1, they have strong internal magnetic pressure Pwind = B2
φ/8π ∼ ρwv

2
A/2 ∼ 2.8 × 10−7 ergs

cm−3, which is about 6 orders of magnitude greater than the gas pressure of ambient medium,

Pext = c2sρext ∼ 1.3 × 10−13 ergs cm−3. Here as reference values we adopted ρw = 350 mH cm−3,

ρext = 200 mH cm−3, vA = 310 km s−1, and cs = 0.2 km s−1 with mH being the mass of a hydrogen

atom (Hartigan et al. 1999). Thus the pressure imbalance at the outer boundary of the jet would

cause either the wind as a whole or only its surface layer to expand until a new balance is attained.

Based on the results of this paper, if the magnetic field at the base of the wind is stratified less

steeply than R−1, then perturbations of the outer parts of the wind are stable. As a consequence,

only the surface layers of such winds would expand in order to achieve a pressure-balanced condition

with the ambient medium. If, on the other hand, the wind’s magnetic field is stratified more steeply

than R−1 at its base, no equilibrium is even possible; the wind would expand as a whole to fill

the entire 4π steradians, with the inner parts having higher density observable as a narrow optical
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jet (cf. Shu et al. 1994; Shang et al. 1998). Numerical simulations presently underway (Lee et

al. 2000) support previous work indicating that protostellar winds with a wide-angle component

are better able to produce observed molecular outflow structures than purely jetlike winds (see

also Li & Shu 1996; Ostriker 1997, 1998; Matzner & McKee 1999) but further studies are required

to determine just how distributed in angle the wind momentum should be - i.e., to discriminate

between “fully-expanded” and “surface-expanded” models. Recent observations (see, e.g., Richer

et al. 2000) showing a correlation in molecular outflow kinematics with age - with extremely high

velocity, highly-collimated flows seen only in the youngest sources - may indicate an underlying

temporal evolution from more-collimated to more-expanded protostellar winds.

We acknowledge a stimulating report from an anonymous referee, and helpful comments from

N. Turner and S. Balbus.
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Fig. 1.— Eigenvalues σ = ωRe/vA(Re) of stable global fundamental modes for (a) ri = 0.1 and (b)

ri = 10−4 are plotted as functions of q (Re is the radius of the outer boundary, Ri is the radius of

the inner boundary, and ri ≡ Ri/Re). Each shaded envelope is filled with eigenfrequencies having

the same n but different i < imax. Since imax is a decreasing function of q, having imax = 0 when

q = 1, the envelopes narrow in width as q increases. Eigenvalues with ri = 0.1 are more sensitive to

q and i than those with ri = 10−4. Mode conversion (see text) occurs when a cylindrical wind has

a narrow thickness (ri near 1). Dotted lines in (b) represent asymptotic eigenvalues with ri ≪ 1,

which are in good agreement with numerical solutions. Also shown are the eigenvalues for the case

with q = 0.5 and i = 0 as filled circles. The upper boundary of each envelope corresponds to i = 0o.
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Fig. 2.— Eigenvalues |σ|r3/2i = |ω|Ri/vA(Ri) of unstable global fundamental modes. Solid lines

(ri = 10−4) and dashed lines (ri = 10−1) are the exact results computed from eqs. (20b) and

(22). Drawn as dotted lines, the approximate, analytic solutions (eq. [25]) follow the exact values

fairly well when |σ| is relatively small. The various curves represent different pitch angles of the

equilibrium magnetic field configuration: i = 0o, 5o, · · ·, 35o, 40o from right to left. The uppermost

thick lines correspond to the maximum pitch angle, imax. Note that |σ|r3/2i is almost independent

of ri.
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Fig. 3.— Examples of normalized (a) stable and (b) unstable fundamental modes with i = 0o and

ri = 10−3. We choose q = 0.4, σ0 = 2.42, and v1R/v0φ = 1 at r = 1 for the stable modes, and

q = 0.6, |σ|r3/2i = 0.11, v1R/v0φ = −1 at r = ri for the unstable modes. Stable eigenfunctions

dominate the outer region, while unstable ones affect only the inner part of the system.
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Fig. 4.— Normalized frequencies σ ≡ ω̃Ro/vA(Ro) of unstable and overstable modes of axisym-

metric perturbations are plotted against the normalized vertical wavenumber xz = kzRo. For all 4

cases, xR = 10, q = ζ = 0 are adopted. In each frame, solid and dotted lines represent imaginary

and real parts of the solution frequencies, respectively. (a) When i = 0, only the toroidal resonance

mode (TR) exists, which is overstable with larger real parts. (b) and (c) The TR splits into two

branches with the inclusion of poloidal fields. Axisymmetric buoyancy modes begin to appear; with

relatively small i, the axisymmetric toroidal buoyancy mode (ATB) exists, whereas the poloidal

buoyancy mode (PB) operates with predominant poloidal fields. (d) For a pure poloidal configu-

ration, only BH and PB modes exist. The BH is dominant at a relatively larger wavelength region

with a higher growth rate when magnetic field is weak (larger GR).
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Fig. 5.— Changes of axisymmetric unstable and overstable modal growth rates with GR and i.

Normalized vertical wavenumber is fixed as xz ≡ kzRo = 4. A rotation profile Ω ∝ R−3/2 is

assumed and xR = 10, q = ζ = 0 are taken. ATB and PB modes need to have smaller GR to

be unstable. Note that as GR increases, corresponding to a weak field regime, only the BH mode

prevails. Dotted lines in the frames (c) and (d) mark the minimum value of GR, available for given

q and i, below which no initial equilibrium exists. For details, see text.
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Fig. 6.— Frequencies of unstable and overstable modes for non-axisymmetric perturbations with

m = 1 are plotted against the normalized vertical wavenumber. For both frames, xR = 10,

q = ζ = 0 are adopted and an Ω ∝ R−3/2 rotation profile is assumed. Solid and dotted lines

represent imaginary and real parts of the normalized wave frequencies, respectively. (a) In a

toroidal configuration, only TR and NTB exist, with TR being split by the non-axisymmetric

effect. NTB has a nearly constant growth rate independent of xz. Note that the real part of TR

increases linearly with xz, while that of NTB is nearly zero. (b) When i is high, GPB begins to

appear. PB is almost unchanged by the non-axisymmetry. Like TR, PR is also an overstable mode

with a larger real part proportional to xz.
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Fig. 7.— Effects of i and q on the (a and b) axisymmetric and (c and d) non-axisymmetric buoyancy

mode frequencies. A rotation profile Ω ∝ R−3/2 is assumed, and xR = 10, ζ = 0, and GR = 5 are

adopted. In all four frames, the unstable modes with i < icrit ≡ cos−1
√

(1 + q)/2 correspond to

toroidal buoyancy modes, whereas poloidal buoyancy modes have i > icrit. Note that at i = 0, no

unstable ATB mode exists while its maximum growth rates are achieved at i→ 0 as xz → ∞.
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Fig. 8.— Effects of changing kR ≡ xR/Ro on the unstable/overstable axisymmetric (a and b) and

non-axisymmetric (c and d) modes. A rotation profile Ω ∝ R−3/2 is assumed, and xz = 2 and

ζ = 0 for all cases; q = 0.8, GR = 0 for left frames and q = 0, GR = 5 for right frames are adopted.

BH modes cease to exist when xR & 3, but all the other modes follow Im(σ) ∼ x−1
R at xR ≫ 1,

which is in good agreement with the asymptotic dispersion relations presented in the text. Since

kinematic shear causes kR to increase linearly with time, the growth of perturbations would occur

in a power-law fashion rather than an exponential one at later time of evolution.
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Fig. 9.— Temperature effect of the compressible BH instability. The abscissa is the normalized

wavenumber qA ≡ (k·vA)/Ω (= kzvAz/Ω for m = 0). A rotation profile Ω ∝ R−3/2 is assumed and

no radial perturbation is considered (kR = 0). Curves with different β ≡ c2s/v
2
A show how thermal

effects modify the BH instability. For i = 90o, the BH growth rate is independent of β, while β has

a significant impact on the growth rates when i 6= 90o. In a cold MHD limit (β = 0), no BH mode

is expected if i < 30o.
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Fig. 10.— Schematic diagram showing the development of the NMRI with pure toroidal fields.

Magnetic fields, thermal pressure, and differential rotation with dΩ/dR < 0 all work in cooperation

to amplify applied disturbances. See text for the detailed explanation.
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Fig. 11.— Non-axisymmetric magnetorotational instability of toroidal magnetic fields. Here, we

define qA ≡ (k·vA)/Ω (= vAφm/RΩ ≡ qm in the text for vAz = 0), qz ≡ vAkz/Ω (= vAφkz/Ω for

i = 0o), and β ≡ c2s/v
2
Aφ. Rotation with Ω ∝ R−3/2 is assumed. The NMRI instability becomes

more unstable with (a) higher qz and (b) higher sound speed. The critical wavenumber qm is

independent of β, but the maximum growth rates are sensitive to temperature for β . 10. For

qm ≪ 1, γ = qm
√

3β/(1 + β). Eventually at β = 0, no NMRI is expected.
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Fig. 12.— An exemplary run of the NMRI shearing sheet equations for qm = 0.1, qz = 1, and

β = 100. We choose the initial conditions as bR = 0.01, bz = 0.4, and 0.1 for the other variables,

and integrate the system of equations from τ̃ = −42.44 with which the initial perturbed magnetic

field is divergence free. Overall evolution can be divided into three stages: initial relaxation phase

(τ̃ < −20), instability phase(|τ̃ | < 20), and stable oscillation phase (τ̃ > 20). Most of growth occurs

when |τ̃ | is relatively small. Although kinematic growth of the radial wavenumber eventually stops

the further growth of disturbances, the net amplification is tremendous. The coherent wavelet

solution (eq. [76]) represented by thick solid lines in (a) and (b) is in excellent agreement with the

shearing sheet results.
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Fig. 13.— Instantaneous growth rates γ̃(τ̃) for the NMRI with pure toroidal fields are plotted

against the orbit τ̃ (≡ tΩ/2π) for qm(= vAφm/RΩ) = 0.1, qz(= vAφkz/Ω) = 1, and β = 100.

The thick curve representing the coherent wavelet solution agrees fairly well with the behaviors

of various curves for individual variables from the direct numerical integration of the shearing

sheet equations. The NMRI shows only a temporary growth, but the net amplification is about 9

orders of magnitude in this example. Kinematic shear increases qR with time so that eventually it

suppresses the instability completely at orbit τ̃ ≃ 18.3. γ̃(τ̃) is symmetric with respect to τ̃ ∼ 0

and the coherent solution can well be fitted with eq. (77).



– 61 –

Fig. 14.— The total amplification magnitude Γ(∞) of the NMRI with pure toroidal magnetic

fields is drawn on the qm−qz plane. Solid contours are computed from the approximate analytic

estimate, eq. (79), while dotted contours represent the results from direct numerical evaluation of

eqs. (75) and (76). Four dots correspond to the results of the direct temporal integrations of the

shearing sheet equations: the adapted parameters are β = 100 and (qm, qz) = (0.03, 0.1), (0.1, 1),

(1, 10), and (
√
2, 100

√
2) from lower-left to upper-right. The numbers labeling a dot is the exact

and estimated (in parentheses) total amplification magnitudes. Note that the analytic estimate

predicts the true amplification magnitude very closely. Γ(∞) has a higher value with larger qz and

smaller qm. The heavy contour corresponds to the locus of the marginal stability.
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Fig. 15.— Growth rates of the generalized MRI are drawn as functions of qz ≡ vAkz/Ω and

qm ≡ vAm/RΩ, (a) for i = 90o and (b) for i = 10o. We put kR = 0 in both frames. In frame (b),

solid contours corresponding to β = 100 show γ/Ω= 0.7,0.6,...,0.2, from inside to outside, while

dotted contours corresponding to β = 0.01 show γ/Ω= 0.1,0.08,...,0.02, from inside to outside. As

qm increases, both growth rates and unstable ranges of qz decrease. Eventually, if qm > 1.73 for

i = 90o or qm > 1.17 for i = 10o, the generalized MRI is completely suppressed by MHD wave

motions. When i = 90o, thermal pressure tends to reduce the growth rates by activating azimuthal

wave motions if qm 6= 0; however, the similarity between the β = 0, 100 curves in (a) shows its

effect is not significant. The uppermost thick curve in (b) represents the locus of the marginally

critical wavenumbers (cf. eq. [81b]) above which no instability can be expected.
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Fig. 16.— The total amplification magnitude Γ(∞) of the generalized incompressible MRI is

drawn as a function of qA ≡ (k · vA)/Ω and θ ≡ tan−1(m/Rkz). Thin solid contours are computed

from the approximate analytic estimate, eq. (83), while dotted contours represent the results from

numerical evaluation of eqs. (76) and (82). Both types of contours show Γ(∞) = 103, 102, 101, 1, 0.1,

from bottom to top. We adopt a Keplerian rotation profile. The results of the direct temporal

integrations of the shearing sheet equations with β = 100 are shown with different symbols. Open

circles corresponding to i = 0o, adopted from Fig. 14, are for (qm, qz) ≡ vA(m/R, kz)/Ω = (0.1,

1), (1, 10), and (
√
2, 100

√
2), filled circles corresponding to i = 90o for (qm, qz)=(5 × 10−4, 0.15),

(0.005, 0.3), and (0.05, 1), and filled triangles with i = 30o for (qm, qz)=(0.001, 0.2), (0.005, 0.3),

and (0.1, 1), from left to right. The numbers labeling each symbol is the exact and estimated (in

parentheses) total amplification magnitudes. Γ(∞) has a higher value with smaller θ but nearly

independent of qA ≪ 1. The heavy curve represents the locus of the marginal stability.
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Fig. 17.— (a) Instantaneous growth rates and (b) evolutionary behaviors of physical variables

are displayed for the non-axisymmetric toroidal buoyancy modes with q = 0, RΩ = 0.1vAφ, and

m = 100. As initial conditions, we choose 0.1 for all variables except bR = 0.01. Various curves

are computed from the direct temporal integrations of the shearing sheet equations. Thick solid

lines, drawn from the normal mode solution, eq. (52), and its time integration, eq. (86), with

kR(t) = −mtΩ′ provide excellent predictions of the numerical results. A Keplerian rotation is

assumed and vertical shear is neglected. The most significant growth of the NTB modes occurs

when kR is small. With increasing kR, the growth rate is gradually reduced. The rapid oscillations

for τ < 0 is due to MHD waves associated with high |kR|, which are smoothed out as disturbances

grow.
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Table 1. Summary of the unstable/overstable mode properties.

Type
Geometry of

Perturbation

Physical

Mechanism

Magnetic field

Configuration

Stability

Character

FM m = kz = 0 global mode toroidal unstable

ATB buoyancy toroidal unstable

PB m = 0 Parker poloidal unstable

BH kz 6= 0 MRI poloidal unstable

TR resonance toroidal overstable

NTB Parker toroidal unstable

PR m 6= 0 resonance poloidal overstable

GPB kz 6= 0 geometric poloidal unstable

NMRI MRI toroidal unstable


