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ABSTRACT

Isolated isothermal spheres of N gravitationally interacting points with equal mass

are believed to be stable when density contrasts do not exceed 709. That stability limit

does, however, not take into consideration fluctuations of temperature near the onset of

instability. These are important when N is finite.

Here we correlate global mean quadratic temperature fluctuations with onset of insta-

bility. We show that such fluctuations trigger instability when the density contrast reaches

a value near 709 · exp(−3.3N−1/3). These lower values of limiting density contrasts are

significantly smaller than 709 when N is not very big and this suggests (i) that numerical

calculations with small N may not reflect correctly the onset of core collapse in clusters

with big N and (ii) that a greater number of globular clusters than is normally believed may

already be in an advanced stage of core collapse because most of observed globular clusters

whose parameters fit quasi-isothermal configurations are close to marginal stability.
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1. Introduction

Bounded isothermal spheres of pointlike stars of equal mass interacting gravitationally

are unrealistic but instructive models to learn about the early stages of gravitational col-

lapse in stellar clusters. Their great advantages are mathematical simplicity and the fact

that other factors of evolution than the “gravothermal catastrophe” like escape of stars

to infinity, equipartition of energy among stars of different masses or formation of hard

binaries are switched off by the model. Isothermal spheres have been studied in statistical

mechanics (Antonov 1962, Horwitz and Katz 1978), in thermodynamics (Lynden-Bell and

Wood 1968, Katz 1978) and in numerical experiments (Hachisu et al. 1978, Inagaki 1980).

The various studies came up with consistent results and confirmed the following picture of

slow evolution of isothermal spheres through different stages of global quasi-static isother-

mal equilibrium with increasing entropy and density contrasts. It is nicely described In

Galactic Dynamics by Binney and Tremaine (1987).

Consider a bounded isolated isothermal sphere of radius R with N point particles

of mass m attracting each other gravitationally. The total energy E is a function of the

inverse global temperature T shown in figure 1. The winding-in of pairs of thermodynamic

equilibrium quantities like E and β = 1/kT as shown in figure 1 is also a property of

polytropic gas spheres (Chandrasekhar 1934), cold white dwarfs (Harrison et al. 1965), hot

isentropic stars (Thorne 1966) and relativistic gases with P/ρ =constant (Chandrasekhar

1972). Each point on the E(β) line, like A, B, C, etc. is associated with an equilibrium

configuration. The branch of thermodynamically stable equilibria indicated on figure 1

ends at point D where the density contrast is ≃ 709 and the energy is also the smallest

for equilibrium configurations (Antonov 1962; Lynden-Bell and Wood 1968). All points of

density contrasts bigger than ≃ 709 represent unstable configurations (Katz 1978).
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Evolution is down the slope in figure 1 say from point A towards point D, towards

higher entropy and higher density contrasts. What happens to a slowly evolving isothermal

sphere when it becomes unstable? Various interesting thought experiments have been

performed and vividly described in Lynden-Bell and Wood and in Binney and Tremaine.

The system becomes unstable when it reaches point D and a “gravothermal catastrophe”

develops. Notice that from B to D the entropy is a local maximum, while the heat capacity

CV < 0 since the slope is positive. From D to F the entropy extremum is a minimum but

CV > 0.

Notice also that those thought experiments are based on the assumption that the

system reaches a new local entropy minimum in a finite time. In fact the system spends a

limited time at each point of the linear series in (quasi-)equilibrium. It is thus assumed that

during the evolution, fluctuations, and in particular mean global temperature fluctuations

(which we shall precisely define in a moment)are small, i.e. that the probability of a

big fluctuation is negligibly small. This assumption is certainly not correct near point D

where fluctuations of global temperature become infinite (Horwitz and Katz 1977 referred

to below as HK77). One of the main objects of the present work is to try to assess how

close to point D the evolution can proceed before the system becomes unstable as a result

of big fluctuations. If the system spends an unlimited time in a stable equilibrium with

energy less negative than ED, it will eventually evolve to a non isothermal state because

big fluctuations of temperature have a chance to develop and bring the system to a state

of entropy which would increased indefinitely (see below) .

Now a few words about temperature fluctuations in isothermal spheres which are at the

center of our considerations. The global temperature T is a global equilibrium parameter

but it has also a local meaning (see Lynden-Bell and Wood again); T is related to the mean
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square velocity v2 by the same relation as in an ideal gas 3
2kT = 1

2mv2. The mean square

velocity is that of the stars which happen to be near a point at a given moment. At later

times stars left the vicinity and other stars came around. A local temperature can also

be defined if the cluster is not in global thermal equilibrium but such a local temperature

would differ from point to point and from time to time. A global equilibium temperature

does then not exist. The proper method to tackle the problem is then in kinetic theory

not statistical mechanics.

However, if an out of equilibrium entropy can be defined in statistical physics for a

system with a given energy E [see HK 1977], say w, than a global out of equilibrium

temperature T̃ can be defined as well by ∂w/∂E = 1/kT̃ = β̃. That T̃ will clearly be

equal to T at the point where w is equal to its maximum S and fluctuations of T can

be calculated like in classical statistical physics (see Landau and Lifshitz 1985).Thus we

may state without proof (but we shall give the prove below) that the mean quadratic

fluctuations of the global temperature (∆T )2/T 2 (from now on temperature will always

mean global temperature) is, like in classical thermodynamics, of order 1/N . Thus, if N

is big, (∆T )2/T 2 is small and fluctuations may be expected to remain very small along

the linear series up to or rather very near the stability limit at point D. In gravitational

thermodynamics N is much smaller than in atomic physics; N ∼ 1010 in galactic nuclei,

105∼6 in globular clusters and 103∼4 in present day numerical simulations (Meylan and

Heggie 1997). Fluctuations in these different cases are wildly different and some have

measurable effects as we shall see.

In this connection, it is worthwhile recalling Monaghan’s (1978) application of the

theory of hydrodynamic fluctuations to a self-gravitating gas. He showed that density

fluctuations become large before the point of ordinary stability is reached. Statistical
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mechanics confirms Monaghan’s finding.

In the present work we apply our own version of fluctuation theory in N body systems

in statistical physics with gravitational forces (Parentani et al. 1995). The theory, first

sketched in Okamoto et al. (1995), has been applied to evolutionary sequences of quasi-

static equilibrium configurations of self-gravitating radiation in the presence of a black

hole. Such systems exhibit a first order phase transition and fluctuation theory plays a

useful role in explaining when superheated black holes or superheated radiation become

unstable.

Fluctuation theory plays a very different role in an evolutionary sequence of quasi-

static isothermal spheres, for instance. These are in a state of local entropy maximum

and the maximum is unique.The global entropy maximum is in fact infinite as shown by

Antonov. The non-equilibrium entropy has thus a local maximum and a local minimum. It

is qualitatively like the dashed curve in figure 2. Large enough fluctuations in equilibrium

configurations near marginal stability at point D may bring the system along the dashed

line at a point where the entropy can grow towards the global maximum, at infinity.

Our aim is to find a limit where global temperature fluctuations become large enough to

put the system out of equilibrium. Such a limit exists if the mean square amplitude of

temperature fluctuations grows exponentially. This is the case in general and as we shall

see it is certainly so in isothermal spheres.

Our theory of fluctuations applies not only to isothermal spheres but to any ther-

modynamic equilibrium with long range forces which has a unique but local minimum of

entropy and satisfy some additional conditions which we describe in detail below.

In section 2 we review the theory of fluctuations that has been presented in Parentani

et al. (1995) and in section 3 we apply the theory to isothermal spheres. As we shall
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see, the stability limit induced by fluctuations depends exponentially on a power of N and

the density contrast at which instability develops may be significantly lower than 709 for

“small” N . The significance of these calculations is analyzed in section 4.

2. Fluctuation theory with long range forces

(i) Steepest descent expression for the entropy of a finite isolated system

Consider a system of gravitationally interacting particles in a finite volume V , with

total mass M and fixed energy E. The total Gibbs entropy is S = k lnΩ, where Ω is the

volume of available phase space; it can be evaluated by a steepest descent method, the

saddle point value giving the mean field entropy (HK77). Analysis of the quadratic fluctu-

ations yields thermodynamical stability conditions and the next order term in calculating

the entropy beyond the mean field approximation (see for instance Horwitz 1971). For a

recent review on the subject of statistical mechanics of gravitating systems, see Padman-

abhan (1990). In HK77’s scheme Ω is given by a functional integral but one needs only

consider continuous functions (Ginibre 1971) and, under general conditions (Courant and

Hilbert 1953) which are usually met in physical problems, the continuous functions can be

expanded in an eigenfunction series which converges absolutely and uniformly in the whole

domain of existence. Under such circumstances, the functional integral can be replaced

by discrete integrations in terms of an infinite but denumerable set of variables say xi. Ω

assumes thus a form like this

Ω(V,M,E) =
1

A

∫

L→∞

ew(V,M,E;xi)dx1dx2...dxL. (2.1)

In the steepest descent evaluation, w is extremized,

∂w

∂xi
= 0. (2.2)
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w is then expanded in powers of (xi−X i) = ∆xi where X i(V,M,E) is a solution of (2.2).

We shall assume that the xi’s are chosen in such a way that at the point of extremum

indicated by a sub-index e, the matrix of second derivatives of w is diagonal; thus

(

∂2w

∂xi∂xj

)

e

= −δijλj . (2.3)

The minus sign is for convenience‡. We can always denumerate the λi’s in such a way that

λ1 ≤ λ2 ≤ λ3... . . Expansion of w in powers of ∆xi may thus be written as follows (if A

is properly chosen)

w =
1

k
S(V,M,E)−

1

2

∞
∑

i=1

λi(∆xi)2 +O3. (2.4)

The λi’s are known as Poincaré’s coefficients of stability following Poincaré’s (1885) seminal

analysis of stability. In writing (2.4) we have nowhere assumed that we deal with pure

or not pure gravitational interactions. (2.4) is therefore quite general and applies to non-

extensive systems.

Equation (2.4) cries for qualifying restrictions:

(1) The summation like the integral is in general not convergent (see HK77 for details).

What makes them converge is a short distance cutoff in the gravitational interaction. The

effect of the cutoff is to modify the higher values in the spectrum λi which play no role in

stability and fluctuation considerations (see below). The effect of short distance cutoffs on

stability was analyzed in Aronson and Hansen (1972).

(2) w must admit second order derivatives with respect to xi. We shall assume that

w is twice differentiable also with respect to V , M and E in the vicinity of the maximum

otherwise thermodynamic coefficients would not exist. In what follows we shall concentrate

‡ By assuming that variables may be chosen such that (2.3) holds, we bypass of course

the main technical problem of stability theory which is to find the λi’s...

7



on the E dependence of equilibrium configurations and take V and M fixed. Therefore we

write S(E), β(E) etc...

(3) We shall now regard the smallest λi’s to be different from each other. This assump-

tion is more than we shall need and is made for convenience; it simplifies explanations. In

the paper by Horwitz and Katz of (1978) it was shown that in stable isothermal spheres

λ1 > 0 and that at density contrasts near but greater than 709, λ1 < 0 but λ2 > 0. An-

other case in which a few of the smallest λi have been shown to be different is in models

for stars of cold catalyzed matter; this includes cold neutron stars (see in Harrison et al.

1965). At each turning point of the linear series −µ(N) where µ is the chemical potential§

µ = dE/dN there is a change of stability at each of the three turning points calculated and

each corresponds to one and only one square eigenfrequency (ω2) of dynamical perturba-

tions changing sign. Degenerate spectra of λi’s are in fact rare in astrophysical applications

though not unknown. Degeneracy corresponds to bifurcations of equilibria; see for instance

the many bifurcations in liquid ellipsoids linear series (Chandrasekhar 1969). They usually

correspond to an excess of symmetry which can be lifted with small arbitrary perturbations

of the potential energy [see Thompson (1979), for Maclaurin ellipsoids in particular see

Katz (1979)]. There are a few exceptions of physical interest in which bifurcations cannot

be removed (see Arnold 1986). When all we are interested in is the passage of stability to

instability it is enough for λ1 to be different from λ2. Some interesting results about the

onset of instability may also be obtained without assuming that the spectrum of λi’s is

non degenerate (Sorkin 1981).

(ii) The standard limit of stability

With (2.4), we now define a “temperature function” T̃ (E; xi) or rather the more

§ The curve does not appear in Harrison et al.; it is represented schematically in Katz

(1981) and is based on Harrison et al.’s tables.
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convenient inverse temperature or β̃ = 1/kT̃ which has the same units as E−1:

β̃ =
∂w

∂E
=

1

k

dS

dE
+
∑

i

λi
dX i

dE
∆xi +O2 ≡ β +

∑

i

λi
dX i

dE
∆xi +O2. (2.5)

The extremal value of β̃ is β = 1/kT , T is the global temperature of equilibrium. For small

values of ∆xi’s

∆β̃ = β̃ − β ≃
∑

i

λi
dX i

dE
∆xi. (2.6)

These formal fluctuations are related to fluctuations of temperature in a small part of

the system in the usual sense when the rest of the system can be treated as a reservoir

[see Parentani et al. (1995) for a detailed discussion of this point]. That, however, is not

normally the case in gravitating systems.

Since w is twice differentiable, derivatives of β̃ with respect to xi and E exist; the

derivative of β̃ defined in (2.5) with respect to a certain xi, keeping E constant and all

other xi = X i is readily derived from (2.6)

∂β̃

∂xi
= λi

dX i

dE
=

(

∂β̃

∂xi

)

e

[no summation on i] (2.7)

and the derivative of β̃ with respect to E, keeping all xi = X i is obtained from (2.5)

∂β̃

∂E
=

dβ

dE
−
∑

i

λi

(

dX i

dE

)2

(2.8)

Now replace dX i/dE in (2.8) in terms of (∂β̃/∂xi)e as given by (2.7); then ∂β̃/∂E can be

written

∂β̃

∂E
=

dβ

dE
−
∑

i

1

λi

(

∂β̃

∂xi

)2

e

. (2.9)

We now turn our attention to the stability limit. The entropy is a maximum and the

X i(E)’s represent a stable thermodynamic mean field configuration when all the Poincaré

coefficients are positive, i.e. when λ1 > 0. Consider thus a linear series β(E) of stable
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equilibrium configurations. Any change of stability or change in the degree of instability is

characterized by a change of sign in one of the λi’s. Thus when a series of stable equilibria

becomes unstable, λ1 becomes small and changes sign. Near instability, the sum in (2.9)

is dominated by the 1/λ1 term assuming
(

∂β̃/∂x1
)

e
6= 0. If

(

∂β̃/∂x1
)

e
= 0 we can get

rid of the coincidence of zeros by adding a small perturbation δw(xi) to w, for instance

ǫx1E with ǫ small enough. Then
(

∂β̃/∂x1
)

e
= ǫ. This is the normal way bifurcations are

removed in ordinary stability analysis (Hunt 1977)‡. Small perturbations will generally get

rid of such degeneracies (but not always). We assume that
(

∂β̃/∂x1
)

e
6= 0 or, if necessary,

is non zero with a small perturbation of w . If the sum in (2.9) is indeed dominated by

the first term which diverges when λ1 = 0, and if both ∂β̃/∂E and (∂β̃/∂xi)e are finite,

then for λ1 → 0, dβ/dE must diverge and it follows from (2.9) that

dβ

dE
≃

1

λ1

(

∂β̃

∂x1

)2

e

(2.10a)

or that

λ1 ≃
dE

dβ

(

∂β̃

∂x1

)2

e

. (2.10b)

This is Poincaré’s turning point property of E(β): the energy is maximum or minimum

when a change of stability takes place. With (2.10) we can calculate the heat capacity CV

in stable configurations near instability:

CV =
dE

dT
≃ −kλ1β

2

(

∂β̃

∂x1

)

−2

e

< 0. (2.11)

Thus CV < 0 for a stable equilibrium (λ1 > 0) and CV > 0 for an unstable one. This

property is true near a turning point. It is interesting to remind the reader that CV < 0

‡ Notice however that we do not know what the xi’s are in general to begin with (see

footnote p.7). For details on this point see Katz (1980).
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in stable systems is a property of finite non-extensive microcanonical ensembles in thermal

equilibrium and not of gravitating systems only. Notice that a microcanonical ensemble is

here stable where a canonical ensembles is unstable (CV < 0).

(iii) Mean quadratic fluctuations of temperature and their probability

Consider now a stable equilibrium configuration near a point of instability where

λ1(> 0) → 0 and λi > 0 for i ≥ 2. All terms of the quadratic sum in (2.4) except the

one with λ1 may be integrated out in (2.1); they are by definition strongly stable if they

have strongly negative exponentials which is generally the case when N >> 1. Thus, near

instability, we are interested in the terms of w that are not (strongly) stable, i.e. in

w ≃
S(E)

k
− 1

2λ1(∆x1)2 (2.12)

with a slightly renormalized factor A in (2.1). We may replace λ1 in (2.12) by its expression

given in (2.10b). Near instability, with all other xi’s integrated out, the (new) temperature

function β̃ calculated from w(E; x1) reduces to

β̃ = β +∆β̃ ≃ β +

(

∂β̃

∂x1

)

e

∆x1. (2.13)

If we now replace ∆x1 in (2.12) in terms of ∆β̃ given by (2.13) we obtain

w ≃
S(E)

k
− 1

2

dE

dβ
(∆β̃)2. (2.14)

Equation (2.14) is of the same form as equation (110.3) of Landau and Lifshitz’s (1985)

chapter on (non-quantum) fluctuation theory. We can now use the standard arguments

of fluctuation theory and say that the probability dW for a fluctuation of β̃ in the range,

β + ∆β̃ and β + ∆β̃ + dβ̃, is proportional to exp(w − S); thus, the properly normalized

dW is given by

dW =

√

1

2π

dE

dβ
exp

[

−1
2

dE

dβ
(∆β̃)2

]

dβ̃ (2.15)
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From (2.15) it follows that the mean quadratic fluctuations of the global temperature, as

a function of the equilibrium parameters, is given by

(∆β̃)2 =
dβ

dE
= −

kβ2

CV
. (2.16)

The analogy with classical fluctuation theory is flagrant except for the sign of CV . Notice

that our analysis does not use small subsystems treating the rest of the system as a heat

bath. Small subsystems have no well defined energies independently of the big system

when there are long range forces. The intriguing difference of signs of CV and comparison

with familiar results is discussed in detail in Parentani et al. (1995). Before getting any

further it is good to remember that (2.15) and (2.16) are valid only close to the point of

marginal stability, point D, where dE/dβ = 0, CV = 0 and ∆β̃2 = ∞. The derivative of

E(β) near point D may be approximated by the lowest order in a Taylor expansion:

dE

dβ
≃

(

d2E

dβ2

)

D

(β − βD). (2.17)

and with (2.17) the exponential factor in dW can be written

exp



−1
2

(

β3 d
2E

dβ2

)

D

(

β − βD
βD

)

(

β̃ − β

βD

)2


 . (2.18)

There appears here two dimensionless quantities which deserve a special symbol, say

∆U =
β − βD
βD

and ∆Ṽ =
β̃ − β

βD
(2.19)

∆U depends on equilibrium parameters only, while ∆Ṽ is a fluctuation in units of βD.

The term in (2.18) that contains second order derivatives of E is non-dimensional. The

virial theorem for particles in a container tells us that the total kinetic energy and the total

potential energy are of the same order of magnitude. Thus the total energy E is itself of

the same order of magnitude than the total kinetic energy. On the other hand kT = 1/β
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is of the order of magnitude of the kinetic energy of one particle. Therefore the first factor

in 2.18, which “goes like βE” must be of order N

(

β3 d
2E

dβ2

)

D

= ΓDN. (2.20)

where the number ΓD must be of order 1 << N . In terms of ∆U , ∆Ṽ and ΓD, the

probability dW defined in (2.15) can be written

dW =

√

ΓD

2π
N∆U exp

[

−1
2
ΓDN∆U(∆Ṽ )2

]

dṼ . (2.21)

The expression for the mean quadratic fluctuations (2.16) can be rewritten in terms of U ’s

and Ṽ ’s in the following form

(∆Ṽ )2 = (ΓDN∆U)−1. (2.22)

The rate at which a small fluctuation of temperature disappears is, by virtue of the

fluctuation-dissipation theorem, the inverse of the time it takes to return to equilibrium,

1/trel. This relaxation time is proportional to some power of N (see for instance Binney and

Tremaine about stellar systems). But dW is a power of e−N∆U and if ∆U is not very small

(say ∆U ∼ 0.1), the exponent becomes extremely small for large N( say N > 100). The

probability per unit time dW/dt will thus also be dominated by the negative exponential

of dW .

(v) The destabilizing effect of fluctuations near a local maximum of entropy

Let us now determine the role of global temperature fluctuations near marginal sta-

bility. Consider a sequence of quasi-equilibrium configurations evolving with a relative

rate of change in volume V (dt/dV ) of a few trel. The quasi-static linear series has a local

entropy maximum and a local entropy minimum (see figure 2). The evolutionary sequence

approaches the turning point D through a succession of quasi-equilibria. However, as point
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D is approached, the mean quadratic fluctuations tend to infinity as can been seen from

(2.16) since CV → 0 and the system is unlikely to remain in thermal equilibrium. So how

close to point D will the system survive in quasi-equilibrium? Let us try to define such a

point, call it C, and find a posteriori if it has any physical sense.

Let TC be the temperature at point C and (∆T̃ )2C its mean quadratic fluctuation. We

define point C as one at which (see figure 2) the mean quadratic fluctuation is just equal

to (TE − TC)
2. For smaller mean fluctuations big real fluctuations have only a negligible

probability to put the system in a state of entropy at the left hand side of the minimum

of entropy in figure 2 (in one relaxation period). If mean quadratic fluctuations are bigger

than (TE − TC)
2 the probability for a real big fluctuation in a relaxation period increases

also. Big fluctuations may bring the system in a state in which the entropy can increase

indefinitely and if it can it will so that thermal equilibrium will be lost. Point C defines a

limit between these different behaviors; at C

√

(∆T̃ )2C = TE − TC ≃ 2(TD − TC) (2.23)

The last quasi-equality comes from a quadratic approximation near the horizontal tangent.

In terms of U ’s and Ṽ ’s defined in (2.19), (2.23) can be written

[(∆Ṽ )2]C = [2(∆U)C ]
2. (2.24)

and if (2.24) holds then, following (2.22),

(∆U)C = (4ΓDN)−1/3 (2.25)

This equality defines ∆UC and thus βC and also TC . At point C the exponent in (2.18) is

just equal to

−1
8

(

∆ṼC

∆UC

)2

= −1
8

(

β̃ − βC
βD − βC

)2

= −1
8

(

T̃ − TC

TD − TC

)2

. (2.26)
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(2.25) gives the following value for βC

βC = βD[1 + (∆U)C] = βD[1 + (4ΓDN)−1/3]. (2.27a)

The corresponding value of the energy EC can be estimated by expanding E(β) near point

D in powers of βC − βD, remembering that (dE/dβ)D = 0. Taking account of (2.20), we

have, to second order in βC − βD, using also (2.27a):

EC ≃ ED

[

1 +
(ΓD/2)1/3

4(βE/N)D
N−2/3

]

(2.27b)

(βC , EC) are the coordinates of point C.

3. Applications to Isothermal spheres

Isothermal spheres have been studied in great detail by many people. We refer to Binney

and Tremaine for a modern presentation of the theory of isothermal spheres. With a

Maxwellian distribution of energy per particle, the density ρ(r) depends exponentially

on the gravitational potential ρ ∼ e−βΦ. This explains why Newton’s equation can be

written in the form [see equation (371) in Chandrasekhar (1934) or (4.15b) in Binney and

Tremaine]

d

dr

(

r2
d ln ρ

dr

)

= −4πGmβr2ρ. (3.1)

The equation can be replaced by a set of two first-order differential equations (Emden

1907). Here we use the (u, v) variables introduced by Chandrasekhar; first define the mass

within a radius r as µ(r)

µ =

∫ r

0

4πρr2dr. (3.2)

Then introduce the variables

u =
4πρr3

µ
, v = 4πGmβρr2 and ζ = ln r. (3.3)
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Equation (3.1) is equivalent to the following pair of equations for u and v (Chan-

drasekhar’s equations (404) and (405))

du

dζ
= u(3− u)− v, (3.4)

dv

dζ
= 2v −

v2

u
. (3.5)

Tables of solutions of these equations have been published by Emden (1907) and Chan-

drasekhar and Wares (1949). The total energy E of isothermal spheres is calculable in

terms of uB and vB , the boundary values at r = R of u and v. The non-dimensional total

energy and inverse temperature in figure 1 are the following functions of uB and vB;

E∗ =

(

R

GNm2

)

E

N
=

uB

vB
(uB −

3

2
) (3.6)

and from (3.3) alone, since µ(R) = µB = M = Nm,

b =
GNm2

R
β =

vB
uB

. (3.7)

Reciprocally, in terms of E∗ and b

uB = bE∗ +
3

2
, vB = b

(

bE∗ +
3

2

)

. (3.8)

From (3.8), (3.7) and from (3.4), (3.5) at r = R we obtain a differential equation for

the linear series E∗(b) represented in figure 1:

dE∗

db
= −

1

b2

(

2bE∗ + b− 1
2
+

b− 2

bE∗ + 1
2

)

. (3.9)

Equation (3.9) can be integrated directly; however the parametric form (3.4)-(3.5) deduced

from (3.6)-(3.7) is more convenient for numerical integration; with ζB = lnR we have

dE∗

dζB
= −

1

b

[

2(bE∗ + 1
2 )

2 + (b− 3
2 )(bE

∗ + 1
2) + b− 2

]

, (3.10)
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db

dζB
= b

(

bE∗ + 1
2

)

. (3.11)

The density contrast R is obtained by integrating twice equation (3.1). In terms of u, v

and ζ, a first integration gives

d ln ρ

dζ
= −

v

u
. (3.12)

With (3.7), (3.11) and (3.12) it then follows that

R =
ρ(0)

ρ(R)
= exp

∫ b

0

dx

xE∗(x) + 1
2

(3.13)

Figure 1 has been obtained by integrating (3.10) and (3.11) setting ζ = 0 at a point with

b0 = 1.549 and E0 ≃ 0.327 calculated from Emden’s tables.

Let us now evaluate the quantities related to the stability limit triggered by fluctua-

tions. Point D, has coordinates bD, E∗

D and a density contrast RD all equal to

bD = 2.03, E∗

D = −0.335, RD = 709. (3.14)

The number ΓD associated with point D, and defined in (2.20) can be derived from (3.9);

it is non-dimensional and can be written using (3.6) and (3.7) like this

ΓD =

(

b3
d2E∗

db2

)

D

= −bD

(

2E∗

D + 1 +
2E∗

D + 1
2

(E∗

DbD + 1
2
)2

)

≃ 9.95 ≈ 10 (3.15)

Thus, following (2.27), the coordinates of the stability limit due to fluctuations are

bC ≃ bD(1 + ∆bC/bD) = 2.03(1 + 0.29N−1/3) (3.16a)

E∗

C ≃ E∗

D(1 + ∆E∗

C/E
∗

D) = −0.335(1− 0.63N−2/3) (3.16b)

at which point the density contrast, according to (3.13), is

RC = RD exp

∫ bC

bD

dx

xE∗(x) + 1
2

≃ RD exp

(

∆bC

bCE∗

D + 1
2

)

(3.17)

Thus, taking account of (3.16) we obtain

RC ≃ 709 · exp (−3.30N−1/3) (3.18)
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4. Remarks on these results and some observational implications

The Table gives the stability limit induced by fluctuations for values of N in the range

10 ≤ N ≤ ∞. In addition to the coordinates (bC , E
∗

C) and the corresponding values of

density contrasts RC , the table also provides relative changes in temperature ∆bC/bD and

energy ∆E∗

C/E
∗

D which give indications about the validity of the linear approximation

near point D. Notice that relative corrections of bC and E∗

C do not exceed 15% for N as

small as 10. The relative reduction of the density contrasts ∆RC/RD, on the other hand

changes significantly.

The numbers have a simple interpretation: in isolated sphere in slow quasi-static

evolution towards higher and higher density contrast as described in the Introduction the

gravitational catastrophe or core collapse appears at lower density contrasts than 709. The

change from RD to RC is very small for N = 106∼5 but quite significant for N ≃ 103 and

becomes drastic at lower values of N .

A gravothermal catastrophy, as is well known, is not like an avalanche; the central

parts of the stellar system gets hotter while the outer parts are left behind [see Lynden-Bell

(1999) for a recent revue on gravothermal catastrophy]. The instability induces a change

in the evolution which accelerates progressively. Our point here is to note that the change

does not happen at point D but rather earlier, at point C.

How sharply is point C defined? To appreciate the sharpness of this new stability limit,

consider the probability distribution dW at an inverse (non-dimensional) temperature

b > bC . Consider also a fluctuation (b̃− b) (refere to figure 1 again) as big as 2(b− bD), big

enough to put the system in a state of ever growing entropy. The probability distribution

for such a fluctuation defined by (2.21) can here be written in terms of b’s rather than U ’s;

18



we obtain for dW :

dW = .465N1/3r1/2 exp (−1
2r

3)dṼ (4.1)

where

r =
b− bD
bC − bD

(4.2)

Thus for a given r

b = bC + (r − 1)(bC − bD). (4.3)

For N = 106 (or N = 102), at point b ≃ 1.01 (1.12) higher than bC with a factor r = 3,

the exponential factor exp (−1
2r

3) ≃ 10−6 already. At b ≃ 1.15 (1.18) higher than bC with

a factor r = 4 , exp (−1
2r

3) ≃ 10−14. Thus, the probability (per unit time) for fluctuations

to be big enough to render the system unstable changes cery steeply for small departures

from bC . In this respect, point C is rather sharply defined .

The gravothermal catastrophe must thus take place at lower density contrasts because

of the fluctuations and this should show up in N -body calculations with isothermal spheres

evolving through quasi-static configurations. Possible implications for real globular clusters

are as follows. Galactic globular clusters are of course not closed isothermal spheres. They

are correctly modeled by Michie (1963)-King (1966) models which have truncated Gaussian

distributions and are not in thermodynamic equilibrium. However to the extent that our

results for isothermal spheres have any bearing on the behaviour of observed globular

clusters, we speculate that a greater number of globular clusters appearing in the tables

of Trager et al. (1993) than indicated there may actually be in an advanced stage of core

collapse because most observed globular clusters whose parameter allows fitting them to

energy truncated gaussian distributions are close to marginal stability, that is to point D

(Katz 1980).
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TABLE

N bC −E∗

C RC
∆bC

bD
−

∆E∗

C

E∗

D

∆RC

RD

∞ 2.03 0.335 709 0 0 1
106 2.04 0.335 686 .003 6.0 · 10−5 0.97
105 2.04 0.335 660 0.006 3.0 · 10−4 0.93
104 2.06 0.334 608 0.014 1.4 · 10−3 0.86
103 2.09 0.333 510 0.029 6.3 · 10−3 0.72
102 2.16 0.325 348 0.063 3.0 · 10−3 0.49
101 2.30 0.289 154 0.140 1.4 · 10−1 0.22

Figure Captions

Figure 1

The figure represents the dimensionless expression of the total energy E∗ =
RE/GN2m2 of isothermal spheres as a function of a dimensionless inverse
temperature b = GNm2/RkT , where k is Boltzmann’s constant, and G the
gravitational constant. Numbers along the line represent density contrasts
R = ρ(0)/ρ(R), ρ(0) is the density at the centre, ρ(R) is that at the boundary.
R grows continuously in the direction of the arrow.

Figure 2

The full line represents the schematic behaviour of the linear series E(β)
near point D with corresponding points C and E of equal energy EC . The
dashed line is a schematic curve representing w(EC; x

1) as a function of x1,
xi(i > 1) =constant.
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