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Mlynská dolina, 842 28 Bratislava, Slovak Republic

Abstract. Solutions of the two-body problem with the simultaneous action of the solar

electromagnetic radiation in the form of the Poynting-Robertson effect are discussed.

Special attention is devoted to pseudo-circular orbits and terminal values of osculating

elements. The obtained results complete those of Klačka and Kaufmannová (1992) and

Breiter and Jackson (1998).

Terminal values of osculating elements presented in Breiter and Jackson (1998) are

of no physical sense due to the fact that relativistic equation of motion containing only

first order of v/c was used in the paper.
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1. Introduction

Breiter and Jackson (1998; BJ-paper in the following text) have presented analytical

mathematical solutions of two-body problems with drag. The Poynting-Robertson effect

(P-R effect) is one of the special cases discussed in the BJ-paper.

The conclusion of the BJ-paper concerns the fact that analytical solution in terms of

special functions exists for the P-R effect. However, this result is useful only in the two

limiting cases: pseudo-circular orbits and terminal values of osculating elements. As for

http://arxiv.org/abs/astro-ph/0004181v1
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the general case, there is a complication with calculation of infinite functional series and

even with the divergence of the series.

The problem of the divergence of the infinite functional series can be overcome by

numerical integration of the equation(s) of motion(s). This can be easily done at the

present epoch of computers. However, it is nice, indeed, when a man can compare his

numerical calculations with analytical solutions in the limiting cases – analytical solutions

are very interesting.

The aim of this paper is to discuss analytical solutions for the P-R effect in the two

limiting cases: pseudo-circular orbits and terminal values of osculating elements. It is

shown that the real results do not completely correspond to the results presented in the

BJ-paper. General analytical solutions for pseudo-circular orbits presented in our paper

are presented.

2. Overview of the correctly presented results

The first correct special result for the P-R effect was presented by Robertson (1937; cited

in accordance with BJ-paper). The complete formula for the P-R effect is correctly de-

rived in Klačka (1992a). Other, more simple correct derivations may be found in Klačka’s

papers: 1992b, 1993a, 1993b. These papers present also arguments as for physical incor-

rectness in papers cited in the BJ-paper (except of Robertson).

As for the solutions of the equation of motion for the P-R effect, we refer also to

Klačka (1992c; error is in Eq. (10) of the paper – the right-hand side of Eq. (10) must

contain µ (1 − β) instead of µ when used in the section 3), Klačka (1993c, 1993d),

Klačka and Kaufmannová (1992, 1993 – typewriting error in Eq. (1)) (see also Klačka

1994a). As for other papers of the author, dealing mainly with general interaction of the

electromagnetic radiation (of the Sun; and, also, solar corpuscular radiation), we refer to:

Klačka (1993f, 1993g (some numerical errors which may be easily found are in the last

section; moreover, real particle should rotate around one axis – axis of rotation), 1994b),

Klačka and Kocifaj (1994).

3. P-R effect and analytical solutions

At first, we put Eq. (18) in BJ-paper into a correct form:

ṙ =
µ

αt
xν (ν y + x y′) . (1)
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In the case of the P-R effect we have ν = 1, µ must be substituted by µ0 (1 − β)

and αt = β µ0 / c:

ṙ = c
1 − β

β
x (y + x y′) ,

αt = β µ0 / c . (2)

3.1. Initial conditions

Let the initial orbit is given by rin, ṙin, hin and ϑin = 0. Eqs. (5) in BJ-paper and Eqs.

(2) of our paper yield

xin =
c

β µ0
hin ,

yin =
h2
in

µ0 (1 − β) rin
x− 3
in ,

y′in =

{

ṙin
c

β

1 − β
x2
in − h2

in

µ0 (1 − β) rin

}

x− 4
in . (3)

These equations complete Eqs. (16) in BJ-paper.

4. Special types of pseudo-circular orbits

4.1. Increasing eccentricity

Due to the fact that Bessel’s functions J1(x), Y1(x) can be expressed as linear combina-

tions of cos(x − 3 π / 4), sin(x − 3 π / 4), Eqs. (16) in BJ-paper enable to fulfil the

conditions A = B = 0. These conditions are fulfiled by conditions

yin = Ŝ1(xin) ,

y′in = Ŝ′

1(xin) . (4)

Eqs. (3) and (4) lead to special type of pseudo-circular orbits, as it is discussed in

section 5 in BJ-paper. The procedure goes in the way that giving hin we can calculate

xin = hin c /(β µ0); the first of Eqs. (4) and second of Eqs. (3) yield

rin =
β3

1 − β

µ2
0

hin

{

Ŝ1(xin)
}

− 1

; (5)

the second of Eqs. (4) and the third of Eqs. (3) yield

ṙin = c
1 − β

β
x−2
in

{

x4
in Ŝ′

1(xin) +
h2
in

µ0 (1 − β) rin

}

. (6)

Transversal component of velocity may be calculated from the relation vT in =

hin / rin.

The case e ≈ 2/x (Eq. (28) in BJ-paper), together with
√

µ0 (1 − β) p = x β µ0 / c,

leads to
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p e2 ≈ (2 β)
2

1 − β

µ0

c2
. (7)

In any case the conclusion about the increasing eccentricity is not completely correct.

The eccentricity begin to oscilate at some state of the orbital evolution, although its mean

value is an increasing function of time. The conclusion “The general conclusion is that

in the pseudo-circular solution the osculating eccentricity grows systematically from the

small but nonzero value of order αt/h towards e = 1.” (BJ-paper, section 5) is incorrect

(see also section 4 of our paper).

4.2. Oscillating eccentricity

Pseudo-circular orbit discussed in BJ-paper is only a very special case of possible pseudo-

circular orbits. We complete the case by all the other possibilities, where also zero value

of eccentricity is possible.

Let us consider a situation when meteoroid is ejected from comet at cometary aphelion

with zero ejection velocity. If the comet’s orbital elements are a0, e0 and meteoroid’s β

is given by the condition β = e0, then Eqs. (30) and (31) in Klačka (1992c) and Eq. (17)

in Klačka (1993e; Eq. (17) must contain µ0 (1 − β) instead of µ, now) yield

ein = 0 ,

ain = a0 (1 + e0) ,

Hin =
√

µ0 a0 (1 − e20) . (8)

(If meteoroid is ejected with nonzero velocity, one can use equations of Gajdoš́ık and

Klačka (1999).) Then, we have

rin ≡ r0 = a0 (1 + e0) ,

ṙin ≡ ṙ0 = 0 . (9)

If we set ϑ0 = 0, αt = β µ0 / c, equations of sections 2, 3 and 4 of BJ-paper yield

h =
√

µ0 a0 (1 − e20) ,

xin ≡ x0 = h α−1
t = (c / e0)

√

µ0 (1 − e20) / a0 ,

yin ≡ y0 = {µ0 (1 − β) rin x0}−1 α2
t = x−3

0 . (10)

Eq. (2) yields for ṙin = 0: y′ = − y / x, and, thus

y′in ≡ y′0 = − y0 / x0 = − x−4
0 . (11)
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This case should correspond to the case of Klačka and Kaufmannová (1992, 1993). We

do not treat it here, since general pseudo-circular orbit will be discussed in the following

section.

5. General pseudo-circular orbit

In order of generalizing of Eqs. (10) and (11), we use Eqs. (5) of BJ-paper:

xin ≡ x0 =
c

β µ0

√

µ0 (1 − β) ain (1 − e2in) ,

yin ≡ y0 =
β2 µ0

c2 (1 − β) x0

1 + ein cos fin
ain (1 − e2in)

=
1 + ein cos fin

x3
0

≈ 1

x3
0

(12)

for pseudo-circular orbits. Eq. (3) yields

y′0 ≈
{√

1 − β

β

c
√

µ0/rin
ein sin fin − 1

}

x−4
in ≡ − k

x4
0

(13)

for pseudo-circular orbits; y′0 = − 1 / x4
0 for ṙin = 0 (Eq. (11)), y′0 = − 3 / x4

0 + ...

for A = B = 0 (Eq. (4)).

The second of Eqs. (12) and Eq. (13) yield

A ≈ −
√

π / 2 x
−7/2
0 (3 − k) sin(x0 − 3 π / 4) +

+
√

π / 2 x
−7/2
0

55 + 3 k

8 x0
cos(x0 − 3 π / 4) ,

B ≈ +
√

π / 2 x
−7/2
0 (3 − k) cos(x0 − 3 π / 4) +

+
√

π / 2 x
−7/2
0

55 + 3 k

8 x0
sin(x0 − 3 π / 4) . (14)

If x = h α−1
t − ϑ, then

Z1(x) = A J1(x) + B Y1(x) ≈ x
−7/2
0 x−1/2 (3 − k) sin(x − x0) +

x
−7/2
0 x−1/2

{

9 − 3 k

8 x
+

55 + 3 k

8 x0

}

cos(x − x0) ,

Ŝ1(x) ≈ x−3 − 8 x−5 ,

Z0(x) = A J0(x) + B Y0(x) ≈ x
−7/2
0 x−1/2 (3 − k) cos(x − x0) +

x
−7/2
0 x−1/2

{

3 − k

8 x
− 55 + 3 k

8 x0

}

sin(x − x0) ,

Ŝ′

1(x) ≈ − 3 x−4 + 40 x−6 . (15)

One obtains, then

e cos f = x3 (Z1(x) + Ŝ1(x)) − 1 ≈

≈ (3 − k) x
−7/2
0 x5/2 sin(x − x0) − 8 x−2 + cos(x − x0)×

{

9 − 3 k

8
x
−7/2
0 x3/2 +

55 + 3 k

8
x
−9/2
0 x5/2

}

,



6

e sin f = x3 (Z0(x) + x−1 Ŝ1(x) + Ŝ′

1(x)) ≈

≈ (3 − k) x
−7/2
0 x5/2 cos(x − x0) − 2 x−1 + sin(x − x0)×

{

3 − k

8
x
−7/2
0 x3/2 − 55 + 3 k

8
x
−9/2
0 x5/2

}

,

e2 ≈ 4 x−2 + (3 − k)2 x−7
0 x5 − 4 (3 − k) x

−7/2
0 x3/2 cos(x − x0)

+ x
−7/2
0 x1/2 sin(x − x0) ×

{

− 33 (3 − k)

2
− 55 + 3 k

2
x−1
0 x + (3 − k) cos(x − x0)×

[

15 − 5 k

4

(

x−1
0 x

)7/2 − 55 + 3 k

4

(

x−1
0 x

)9/2
]}

. (16)

The equation for e2 represents general type of evolution of eccentricity for pseudo-circular

orbit in comparison with Eq. (28) in BJ-paper and papers by Klačka and Kaufmannová

(1992, 1993).

5.1. Time evolution of eccentricity and true anomaly

Eqs. (16) enable us to investigate time evolution of osculating eccentricity and true

anomaly. We must bear in mind that the term ‘increasing time’ corresponds to the term

‘decreasing x’.

5.1.1. Extremes of eccentricity

The local extremes of eccentricity as a function of time are given by condition (very large

values of x0 are considered, theoretically x0 → ∞; k 6= 3)

de2

dx
= 0 ⇐⇒ sin(x − x0) ≈ 0 . (17)

As for the second derivative, we have

d2e2

dx2
≈ 4 (3 − k) x

−7/2
0 x3/2 cos(x − x0) . (18)

The case k = 3 yields no local extreme for the leading terms. Eqs. (16) yield for

evolution of true anomaly f : 3 π / 2 → π and the value π never occurs.

The case k = 1 cannot be treated analytically, as it will be shown later on.

5.1.2. x = x0

Putting x = x0 into Eqs. (16), (17) and (18), one obtains that the point x = x0 corre-

sponds to: i) local minimum for the case k < 3, ii) local maximum for the case k > 3, for

the function e(t), or, e(x).
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If we want to find time evolution of true anomaly, we have to use Eqs. (16). The time

t = t0 + ∆t, for small positive ∆t, corresponds to x = x0 − ∆x, where ∆x is a small

positive quantity (in radians). Eqs. (16) yield, then

e cos f ≈ − (3 − k)
∆x

x0
, e sin f ≈ 1 − k

x0
. (19)

Eqs. (19) imply, on the basis of e > 0 and |e sin f | ≫ |e cos f |:

lim
x→x−

0

f = π / 2 , k < 1 ,

lim
x→x−

0

f = 3 π / 2 , k > 1 . (20)

As for the value of eccentricity, the last of Eqs. (16) yields

e2(x = x0) ≈ (1 − k)2 x−2
0 . (21)

5.1.3. x = x0 − π

Putting x = x0 − π into Eqs. (16), (17) and (18), one obtains that the point x = x0 − π

corresponds to: i) local maximum for the case k < 3, ii) local minimum for the case k >

3, for the function e(t), or, e(x). The value of the osculating eccentricity is

e2(x = x0 − π) ≈ (5 − k)2 x−2
0 + π (5 k − 11) (5 − k) x−3

0 . (22)

If we want to find time evolution of true anomaly, we have to use Eqs. (16).

The situation shortly before the extreme corresponds to x = x0 − π + ∆x, where

∆x is a small positive quantity (in radians) shortly before the extreme, and, ∆x is a small

negative quantity (in radians) shortly after the extreme. Eqs. (16) yield, then

e cos f ≈ − (3 − k)
∆x

x0
, e sin f ≈ − 5 − k

x0
. (23)

Eqs. (23) imply

lim
x→x0 − π

f = 3 π / 2 , k < 5 ,

lim
x→x0 − π

f = π / 2 , k > 5 . (24)

Eqs.(24) yield that true anomaly is a continuous function at x = x0 − π – at the

first local maximum of osculating eccentricity.

5.1.4. x = x0 − 2 π

Putting x = x0 − 2 π into Eqs. (16), (17) and (18), one obtains that the point x =

x0 − 2 π corresponds to: i) local minimum for the case k < 3, ii) local maximum for the

case k > 3, for the function e(t), or, e(x). As for the value of eccentricity, the last of Eqs.

(16) yields
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e2(x = x0 − 2 π) ≈ (1 − k)2 x−2
0 + 2 π (5 k − 11) (5 − k) x−3

0 . (25)

Comparison of Eqs. (21) and (25) leads to the conclusion

e(x0) = e(x0 − 2 π) , k = 11/5, 5

e(x0) < e(x0 − 2 π) , 11/5 < k < 5

e(x0) > e(x0 − 2 π) , k < 1, 1 < k < 11/5, 5 < k (26)

Eq. (25) shows that the case k = 1 leads to inconsistencies: e(x = x0 − 2 π) = 0 – only

the leading term can be considered.

If we want to find time evolution of true anomaly, we have to use Eqs. (16).

The situation near extreme corresponds to x = x0 − 2 π + ∆x, where ∆x is a small

positive quantity (in radians) shortly before the extreme, and, ∆x is a small negative

quantity (in radians) shortly after the extreme. Eqs. (16) yield, then

e cos f ≈ (3 − k)
∆x

x0
, e sin f ≈ 1 − k

x0
. (27)

Eqs. (27) imply, on the basis of e > 0 and |e sin f | ≫ |e cos f |:

lim
x→x0 − 2 π

f = π / 2 , k < 1 ,

lim
x→x0 − 2 π

f = 3 π / 2 , k > 1 . (28)

5.1.5. x = x0 − 3 π

Putting x = x0 − 3 π into the last of Eqs. (16) one obtains that the point x = x0 − 3 π

corresponds to: i) local maximum for the case k < 3, ii) local minimum for the case k >

3, for the function e(t), or, e(x). The value of the osculating eccentricity is

e2(x = x0 − 3 π) ≈ (5 − k)2 x−2
0 + 3 π (5 k − 11) (5 − k) x−3

0 . (29)

Comparison of Eqs. (22) and (29) leads to the conclusion

e(x0 − π) = e(x0 − 3 π) , k = 11/5, 5

e(x0 − π) < e(x0 − 3 π) , 11/5 < k < 5

e(x0 − π) > e(x0 − 3 π) , k ∈ (11/5, 5)′ . (30)

As for time evolution of true anomaly, the results are analogous to Eqs. (23) – (24).

5.1.6. Discussion

The values of eccentricities are collected in Eqs. (26) and (30). The consequence of these

equations is that mean values of eccentricity during the corresponding periods exhibit
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similar properties. The cases k = 11 /5, k = 5 yield the constant values of mean eccen-

tricities during a long time evolution.

The case k = 1 was treated in detail in Klačka and Kaufmannová (1992). The main

results are presented in Figs. 1, 3 and 8 in Klačka and Kaufmannová (1992).

We can collect the results for the cases k = 1 and k = 5 in the statement that true

anomaly is a discontinuous function: i) at x = x0 − 2 π m, m ∈ N for k = 1, i) at

x = x0 − π (2 m − 1), m ∈ N for k = 5. We collect the results:

k = 1 : lim
x→x−

0

f = π , lim
x→(x0 − π)

f = 3 π / 2 ,

k = 1 : lim
x→(x0 − 2 π)+

f = 2 π , lim
x→(x0 − 2 π)−

f = π , (31)

k = 5 : lim
x→x−

0

f = 3 π / 2 , lim
x→(x0 − π)+

f = 2 π ,

k = 5 : lim
x→(x0 − π)−

f = π , lim
x→(x0 − 2 π)

f = 3 π / 2 . (32)

6. Terminal values of osculating elements

As for the terminal values of osculating elements presented in BJ-paper, the results may

be collected in two important statements:

lim
x→0+

f = π ; lim
x→0+

e = 1 . (33)

Let us calculate other important quantities. The results are:

lim
x→0+

r = 0 ; lim
x→0+

a = 0 ,

lim
x→0+

vT = 0 ; lim
x→0+

vR = − c

2

1 − β

β
,

lim
x→0+

H = 0 ; lim
x→0+

E = − ∞ , (34)

where r is particle’s distance from the central point mass, a – semimajor axis, vT –

transversal component of the velocity vector, vR ≡ ṙ – radial component of the velocity

vector, H – angular momentum, E – total energy of the particle with respect to the

central point mass.

The obtained results presented by Eqs. (33) and (34) yield important inconsistencies.

The osculating trajectory is parabola (e = 1), the particle is situated at apocenter (f = π)

and the total energy is E = − ∞. Normal result is that E = 0 for the case e = 1. So,

there is something wrong with the results, it seems.

The results given by Eqs. (33) and (34) are correct as for mathematical point of view

– mathematical solutions of the discussed limits, based on the mathematical solution
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presented in BJ-paper. However, we are not interested in mathematics as the main theme.

We are interested in physics. Thus, the important inconsistencies presented by Eqs. (33)

and (34) should show that physics is not completely correct. Really, physics is incorrect.

It is a physical nonsense when a particle losses an unlimited energy within a finite time.

The results presented by Eqs. (33) and (34) correspond to this nonphysical situation. A

particle spirals toward r = 0 in a finite time and its potential energy decreases in an

unlimited value.

Eqs. (34) yield a hint how to put the discussed inconsistencies into a correct physics.

Since

lim
x→0+

vR = − c

2

1 − β

β
< − c , (35)

for 0 < β < 1/3, we have to use complete form of the P-R effect – relativistic effect

(Klačka 1992a, Eq. (140)).

Eq. (35) yields that the form of the equation of motion containing only first order of

v/c could be acceptable only for 0 ≤ 1 − β ≪ 1 – only in this case the requirement

v ≪ c holds. However, the third Kepler’s law yields T 2 = 4 π2 a3 {µβ=0 (1 − β)}−1

and limβ→1− T = ∞. Thus, the situation 0 ≤ 1 − β ≪ 1 is not physically interesting.

This situation is evident also from Eq. (30) in Klačka (1992c): limβ→1− ein > 1 – no

inspiralling toward the center occurs.

The conclusion of this section states that the physics used in BJ-paper is not compe-

tent to say something about the terminal values of osculating elements. Any comparison of

the statements for various initial conditions can be done only for rfinal ≫ rg ≡ 2GM/c2,

v ≪ c. (We refer also to Klačka 1994c.) As an example we may mention the time of

inspiralling toward the point mass center, based on approximations in first order in v/c

– the ‘,time of inspiralling” corresponds to rfinal ≥ 200 km for the mass of the Sun. As

for the averaged equations for osculating elements, the condition (104) in Klačka 1992d

must be fulfilled).

7. Conclusions

We have completed analytical formulae (expansions) for pseudo-circular orbits for the

Poynting-Robertson effect.

The statement ‘The zero values of our arbitrary constants do not imply that the

osculating e = 0, but they match the case of the zero mean eccentricity ...’ (Breiter and

Jackson 1998, section 5 on page 240) is incorect – it is not possible that any continuous

non-negative quantity has zero mean value, unless it is identical zero.
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Analytical results for more general pseudo-circular orbits than those discussed in

(Breiter and Jackson 1998), were obtained in this paper.

We have shown that terminal values of osculating elements lead to serious inconsis-

tencies caused by the fact that relativistic equations of motion only in first order in v/c

were used in Breiter and Jackson (1998).

Finally, we have to stress several facts for elliptical orbits for the P-R effect containing

only first order in v/c and in the zone of its applicability in two-body problem.

At first, the evident result is that osculating semi-major axis is still a decreasing function

of time – energy decreases (see Eq. (22) in Klačka 1992c).

As for osculating eccentricity, it:

i) may be an increasing function of time for an initial long-time interval if Eqs. (3) and

(4) are fulfiled;

ii) still alternates in an increasing and a decreasing functions on short-time intervals.

As for mean eccentricity, it may be:

i) an increasing function of time (for a suitable initial conditions: see Fig. 3 in Klačka and

Kaufmannová (1992), or, Eqs. (3) and (4) – k ∈ (11 / 5, 5) for pseudocircular orbits);

ii) a constant function of time (see Fig. 4 in Klačka and Kaufmannová (1992); moreover,

the cases k = 11 / 5, k = 5 for pseudo-circular orbits);

iii) a decreasing function of time for some initial time interval followed by an increasing

function of time (Klačka and Kaufmannová (1992) – k ∈ (11 / 5, 5)′ for pseudo-circular

orbits);

iv) a decreasing function of time (Wyatt and Whipple 1950 – without derivation; correct

derivation Klačka 1992c) for a long-time interval.

(One must be careful which type of osculating elements is used. The case ii) in mean

eccentricity may corresponds to osculating elements defined by value µ0 – osculating

elements I in Klačka 1992c, or osculating elements in Klačka and Kaufmannová (1992).

The cases i), iii), iv) and pseudo-circular orbits ii) in mean eccentricity correspond to

osculating elements defined by value µ0 (1 − β) – osculating elements II in Klačka

1992c, or, ‘non-osculating’ elements in Klačka and Kaufmannová (1992).)
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