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ABSTRACT

This paper argues that the Milky Way galaxy is probably the largest member of the
Local Group. The evidence comes from estimates of the total mass of the Andromeda
galaxy (M31) derived from the three dimensional positions and radial velocities of
its satellite galaxies, as well as the projected positions and radial velocities of its
distant globular clusters and planetary nebulae. The available dataset comprises ten
satellite galaxies, seventeen distant globular clusters and nine halo planetary nebulae
with radial velocities. We find the halo of Andromeda has a mass of ∼ 12.3+18

−6 ×

1011M⊙, together with a scalelength of∼ 90 kpc and a predominantly isotropic velocity
distribution. For comparison, our earlier estimate for the Milky Way halo is 19+36

−17 ×

1011M⊙. Though the error bars are admittedly large, this suggests that the total mass
of M31 is probably less than that of the Milky Way. We verify the robustness of our
results to changes in the modelling assumptions and to errors caused by the small size
and incompleteness of the dataset.

Our surprising claim can be checked in several ways in the near future. The num-
bers of satellites galaxies, planetary nebulae and globular clusters with radial velocities
can be increased by ground-based spectroscopy, while the proper motions of the com-
panion galaxies and the unresolved cores of the globular clusters can be measured using
the astrometric satellites Space Interferometry Mission (SIM) and Global Astrometric
Interferometer for Astrophysics (GAIA). Using 100 globular clusters at projected radii
20

∼
< R

∼
< 50 kpc with both radial velocities and proper motions, it will be possible

to estimate the mass within 50 kpc to an accuracy of ∼ 20%. Measuring the proper
motions of the companion galaxies with SIM and GAIA will reduce the uncertainty
in the total mass caused by the small dataset to ∼ 22%.

Key words: galaxies: individual: M31 – celestial mechanics, stellar dynamics – galax-
ies: kinematics and dynamics – galaxies: Local Group

1 INTRODUCTION

The aim of this paper is to obtain an accurate estimate of
the total mass of the halo of the Andromeda galaxy (M31).
The best probes of the mass distribution at large distances
are the satellite galaxies and the distant globular clusters.
The gas rotation curve can only be tracked out to ∼ 30 kpc
(e.g., Roberts & Whitehurst 1975, Hodge 1992), and so – as
is the case for the Milky Way – the most substantial clues
as to the large-scale mass distribution come from statistical
analyses of the satellite kinematics.

The Local Group has two prominent subgroups of satel-
lites centered on its two largest members, the Milky Way
and the Andromeda galaxies (e.g. van den Bergh 1999a).
A number of authors have already studied the problem of
estimating the mass of the Milky Way from its satellite sub-
group (e.g., Little & Tremaine 1987; Kulessa & Lynden-Bell
1992; Kochanek 1996). The most recent estimate by Wilkin-
son & Evans (1999, hereafter WE99) found a total mass of
∼ 1.9×1012M⊙ and an extent of ∼ 170 kpc. By contrast, un-
til recently, the companion problem of estimating the mass

of the Andromeda galaxy from its satellite subgroup has re-
ceived hardly any attention. Hodge (1992) lists a number
of determinations of the mass of M31, but almost all use
either the optical and radio rotation curves (e.g., Rubin &
Ford 1970) or the inner globular clusters (e.g., Hartwick &
Sargent 1974; van den Bergh 1981) and so are really mea-
surements of the mass within ∼ 30 kpc. Recently Courteau
& van den Bergh (1999) estimated the mass of the M31 halo
using only seven satellite galaxies. An analysis of all avail-
able data on objects outside ∼ 20 kpc has not been carried
out to date.

It is especially timely to look at the problem of de-
termining the mass and the extent of the Andromeda halo
now. First, the last few years have seen the discovery of a
number of faint dwarf spheroidal companions of Andromeda
(see e.g. Armandroff & Da Costa 1999) as a result of two on-
going surveys of the sky around Andromeda. To date, one
of these surveys (Armandroff & Da Costa 1999) has cov-
ered 1550 square degrees while the second (Karachentsev &
Karachentseva 1999) has scanned a circular area of radius
22 degrees centred on M31. The quantitative completeness

http://arxiv.org/abs/astro-ph/0004187v1
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limits of these surveys are not yet available. Armandroff &
Da Costa (1999) claim that their detection of And V with
absoluteMV ∼ −10.2 is highly significant and maintain that
they have the sensitivity to detect still fainter objects, such
as dwarf spheroidals withMV ∼ −8.5. Complementing these
programmes are the ongoing radial velocity surveys of M31
globular clusters (Perrett et al. 1999) and halo planetary
nebulae (Ford et al. 1989). The dataset is likely to increase
substantially in richness over the next few years, suggesting
that more detailed models of the dynamics of the outer parts
of M31 are warranted. Second, a number of groups are con-
ducting pixel lensing experiments towards Andromeda (e.g.,
Crotts & Tomaney 1996; Kerins et al. 2000). The lenses may
lie in the halos of the Milky Way and M31, as well as the
disk of the Milky Way and the bulge and disk of M31. For-
tunately, there is a possible diagnostic of microlensing by
M31’s halo. As the galaxy is highly inclined, lines of sight to
the far side pass through more of the M31 halo than those
to the near side (Crotts 1992; Kerins et al. 2000). However,
the amplitude of this near-far disk asymmetry depends on
how extensive and massive the halo of Andromeda really is
(Evans & Wilkinson 2000).

In Section 2, we outline the properties of our halo model,
deriving both projected properties and simple distribution
functions (DFs). Section 3 describes our models for the satel-
lite galaxies, the globular clusters and the planetary nebulae,
as well as the available dataset. In Section 4, the mass es-
timator algorithm of Little & Tremaine (1987) is adapted
to the case when only projected data are available. For the
satellite galaxies, the three dimensional position with re-
spect to Andromeda’s centre and the line of sight velocities
are known. For the globular clusters and halo planetary neb-
ulae, only the projected positions and line of sight velocities
are available. The next two sections present our analysis of
the data and estimates of the mass and extent of the An-
dromeda galaxy halo, together with the errors caused by
incompleteness and small number statistics. In Section 7,
we summarise our conclusions and describe the prospects
for the future.

2 A MODEL OF THE ANDROMEDA HALO

2.1 The Density and Projected Mass

A simple representation of the Andromeda halo has a
roughly flat rotation curve out to an unknown cut-off. The
TF (or truncated, flat rotation curve) model examined in
detail by WE99 has exactly these properties, as well as the
virtue of analytical simplicity. The potential-density pair is

ρ(r) =
M

4π

a2

r2(r2 + a2)3/2
,

ψ(r) =v20 log
(

√
r2 + a2 + a

r

)

,

(1)

where M is the total mass of the halo and a is a mea-
sure of the extent. The rotation curve is flat with amplitude
v0 =

√

GM/a in the inner parts. In modelling the halo of
Andromeda, we assume v0 = 240 kms−1. This gives a circu-
lar velocity of 235 kms−1 at a radius of 30 kpc which is in
agreement with Hodge (1992, chapter 7).

As we observe M31 in projection, it is helpful to have
available the projected properties of our halo model. Mateo

(1998), following Karachentsev & Makarov (1996), estimates
the distance D of M31 as 770 kpc, although there is still
some uncertainty as to this value (c.f. Feast 1999). For an
observer at finite distance D, the projected surface density
Σ is

Σ(R) =

[

2

∫ D

R

dr +

∫

∞

D

dr

]

r√
r2 −R2

ρ(r), (2)

from which we obtain

Σ(R) =
M

4πa

[

1

R

(

atan
(

a

R

√

1−R2/D2

√

1 + a2/D2

)

+ atan
(

a

R

))

− a

(R2 + a2)

(

1 +

√

1−R2/D2

√

1 + a2/D2

)]

.

(3)

The usefulness of our model (1) derives from the fact that
the density can be written in terms of the potential as

ρ(ψ) =
M

4πa3
sinh5(ψ/v20)

cosh3(ψ/v20)
. (4)

This is the crucial formula for obtaining distribution func-
tions (DFs) which are analytically tractable. This is the
problem to which we now turn.

2.2 The Velocity Distributions

As we wish to be certain of the robustness of our results, we
will analyse the dataset with two different kinds of velocity
distributions. A first possibility is to use the ansatz (e.g.,
Hénon 1973, WE99)

F (ε, l) = l−2βf(ε), (5)

where

f(ε) =
2β−3/2

π3/2Γ[m− 1/2 + β]Γ[1− β]

× d

dε

[

∫ ε

o

dψ
dmr2βρ

dψm
(ε− ψ)β−3/2+m

]

.

(6)

Here, m is an integer whose value is chosen such that the
integral in (6) converges. For such a DF, the velocity disper-
sions 〈v2φ〉 and 〈v2θ〉 are equal, and there is a constant orbital
anisotropy β = 1 − 〈v2θ〉/〈v2r〉. The properties of these DFs
are discussed fully in WE99.

A second possibility is to assume that the DFs depend
on the binding energy ε and the angular momentum per unit
mass l through the ansatz (Osipkov 1979; Merritt 1985)

F (ε, l) = f(Q), Q = ε− l2

2r2a
, (7)

where ra is the anisotropy length-scale. These DFs have the
property that for r < ra, the velocity distribution is isotropic
while for r > ra it tends towards radial anisotropy. For any
population with density ρ, the Osipkov-Merritt DF is given
by

f(Q) =
1

2
√
2π2

∫ Q

0

dψ√
Q− ψ

d2

dψ2

[(

1 +
r2

r2a

)

ρ(r)

]

. (8)
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Inserting (4) into (8), we obtain

f(Q) =
M

2
√
2π3a3v30

∫ Q/v2
0

0

dφ
√

Q/v20 − φ

×
[

tanhφ sinh2 φ+

(

1− 3a2

2r2a

)

tanh3 φ

+ 3

(

1− a2

r2a

)

tanh3 φ sech2φ+
3a2

2r2a
tanhφ

]

.

(9)

The integral can be easily evaluated using Gaussian quadra-
ture and Fig. 1 presents examples of these DFs for several
values of the anisotropy radius ra. The DF is everywhere
positive provided that ra ≥ 0.092a.

The radial velocity dispersion 〈v2r〉 is given by

〈v2r 〉 =
v20(r

2 + a2)1/2

2a5(1 + r2/r2a)

(

2a2r2 + a4
(

1− r2

r2a

)

+ r2(a2 + r2)

(

a2

r2a
− 2

)

log

[

1 +
a2

r2

]

)

.

(10)

As r → ∞, 〈v2r 〉 → 0 and as r → 0, 〈v2r 〉 → v20/2. The
anisotropy parameter β = 1 − 〈v2θ〉/〈v2r 〉, which is a mea-
sure of the anisotropy of the velocity ellipsoid at radius r, is
related to ra via

β(r) =
r2

r2a + r2
. (11)

This result (11) holds true for any DFs of the Osipkov-
Merritt form.

3 THE DATA

In this section, we present the observational data which we
use to estimate the total mass. Data are available for three
halo tracer populations, namely the dwarf satellite galaxies,
the outer globular clusters and the halo planetary nebulae.
Each of these populations has different kinematics and so
requires a different DF.

3.1 The Satellites

Table 1 presents the available data on the satellite galaxies
of M31 which have published radial velocity measurements.
A number of recent papers have contained similar tables
(Mateo 1998; Lynden-Bell 1999; Courteau & van den Bergh
1999; van den Bergh 1999b). These authors all agree that
the first eight satellites in our table are definite members
of the M31 subgroup of Local Group galaxies. We follow
Courteau & van den Bergh (1999) in omitting both WLM
(included by Lynden-Bell) and EGB0247+63 (included by
both Mateo and Lynden-Bell) from our list. These exclusions
are made on the basis of distance estimates – the current dis-
tance estimate for WLM (Lee, Freedman & Madore 1993)
locates it more than 800 kpc from M31, while the current dis-
tance estimate of 2.2 Mpc for EGB0247+63 (Karachentsev,
Tikhonov & Sazonova 1994) places it well outside the Local
Group. Since Pegasus and IC 1613 both lie closer to M31
than they do to the Milky Way, we have included them in
our sample, following Mateo (1998) and Lynden-Bell (1999).
This is also suggested by the three-dimensional diagram of

0 1 2 3

-5

0

Q

Figure 1. Osipkov-Merritt type DFs for a TF model potential.
A range of values of ra are plotted. Units with G = M = a = 1.

20 25 30 35
0

10

R (kpc)

Figure 2. Cumulative number plot for the satellite galaxies. Also
shown is a dotted curve representing the distribution from the
assumed model, namely eq. (12) with as = 250 kpc.

the Local Group provided by Grebel (1999). However, van
den Bergh (1999a) excludes both these satellites from his
list of the M31 subgroup. One other possible uncertainty in
the dataset is the fact that the galaxies NGC 147 and NGC
185 may form a binary system (van den Bergh 1998). The
data presented recently in the literature are in good agree-
ment with each other, except for the distance estimates for
the satellites. For this reason, we have included in Table 1
the distances from Mateo (1998) and Courteau & van den
Bergh (1999) to give an indication of the true uncertainties.

To model the data in Table 1, let us assume that the
satellite distribution is spherically symmetric about the cen-
tre of M31 and that the density ρs is a TF profile with scale-
length as

ρs ∝ a2s
r2(r2 + a2s )3/2

. (12)

Fig. 2 shows how the cumulative number of satellites varies
with distance from M31. The figure also shows the profile
corresponding to a TF density model with as = 250 kpc
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Table 1. Data on the radial velocities of M31 and its dwarf satellites. Listed are Galactic coordinates
(ℓ, b) and heliocentric distances (s and sM) in kpc, as given by Courteau & van den Bergh (1999)
and by Mateo (1999), respectively. Also given are the observed heliocentric radial velocities (v⊙) in
kms−1 together with actual and projected distances from the centre of M31 (r and R) in kpc (using the
distances of Courteau & van den Bergh 1999), corrected heliocentric radial velocities (vr⊙) in kms−1(in
which the solar motion within the Milky Way and the radial motion of the Milky Way towards M31
is removed) and object type. See Section 5.1 for a discussion of the velocity corrections. For M31, the
distance is taken from Karachentsev & Makarov (1996), while the radial velocity is from Courteau &
van den Bergh (1999). For the satellites, all data in columns 3, 4, 5 and 7 are from Courteau & van den
Bergh (1999) with the exception of the radial velocity of And II which is given by Côté et al. (1999).

Name Alias ℓ b s sM v⊙ r R vr⊙ Type

M31 NGC 224 121.2 -21.6 770 - -301 - - - SbI-II

M32 NGC 221 121.2 -22.0 760 805 ± 35 -205 ± 3 11 5 95 E2

NGC 205 M110 120.7 -21.1 760 815 ± 35 -244 ± 3 13 8 58 dSph

NGC 147 UGC 326 119.8 -14.3 660 725 ± 45 -193 ± 3 144 100 118 dSph/dE5

NGC 185 UGC 396 120.8 -14.5 660 620 ± 25 -202 ± 7 141 95 107 dSph/dE3

M33 NGC 598 133.6 -31.5 790 840 -181 203 198 72 ScII-III

IC 10 UGC 192 119.0 -3.3 660 825 ± 50 -344 ± 5 253 243 -29 dIrr

And II - 128.9 -29.2 700 660 ± 100 -188 ± 3 149 138 82 dSph

LGS3 Pisces 126.8 -40.9 810 810 ± 60 -286 ± 4 276 262 -38 dIrr/dSph

Pegasus DDO 210 94.8 -43.5 760 955 ± 50 -182 ± 2 409 399 86 dIrr/dSph

IC 1613 DDO 8 129.7 -60.6 720 700 ± 35 -232 ± 5 505 489 -58 IrrV

(dashed curve) which we adopt as our standard model of
the satellite number density profile. We show later that our
mass estimates are not overly sensitive to the choice of this
scale-length. DFs for the satellites can be constructed both
of constant anisotropy (6) and of Osipkov-Merritt form (8).

3.2 The Globular Clusters

M31 has approximately 300-400 globular clusters (Hodge
1992, Fusi Pecci et al. 1993). The system comprises a ro-
tating disk of metal-rich clusters surrounded by a spheri-
cally symmetric, slowly rotating distribution of metal-poor
clusters (Elson & Walterbos 1988). The latter are of most
interest to us here, as they probe the gravity field at large
distances. Table 2 presents the published data on the seven-
teen globular clusters which lie at distances exceeding ∼ 20
kpc in projection from the centre of M31 and for which ra-
dial velocities are available.

To model the globular cluster data, let us extend the
idea of isothermal populations (e.g., Binney & Tremaine
1987; Evans 1993) to the TF galaxy model. Let us consider
a DF of the form

f(Q) = ρ0

(

n

2πv20

)3/2

exp

(

nQ

v20

)

, (13)

where ρ0 is a normalisation factor and n is chosen to fit the
number density profile. Crampton et al. (1985) analysed a
large sample of M31 globular clusters and argued that the
radial profile is similar to that of the Milky Way and so
declines like r−3.5 at large radii (e.g., Djorgovski & Mey-
lan 1994; Ashman & Zepf 1998). Pursuing this analogy, we
choose the parameter n, which controls the radial fall-off, to
be 3.5.

As it stands, the DF (13) describes a population with
no net rotation. The outer globular cluster system of M31
rotates with a velocity of ∼ 80 kms−1 (Huchra, Stauffer &
van Speybroeck 1982). So, we build a rotating DF by

fgc(Q) = Tgcfeven(Q) + (1− Tgc)fodd(Q), (14)

where Tgc is a parameter that controls the streaming. The
even and odd parts of the DF are given by

feven(Q) = f(Q), (15)

and

fodd(Q) =
{

2f(Q), if vφ ≥ 0,
0, otherwise.

(16)

Here, vφ is the azimuthal streaming velocity, where the ro-
tation axis is taken as perpendicular to the disk of M31. The
inclination of the disk of M31 is 77.5◦ (Hodge 1992). Choos-
ing Tgc = 0.3 gives the required degree of rotation (∼ 80
kms−1) of the system at the radii at which we possess data
(R ∼ 20− 30 kpc).

If we assume a TF model for the halo, the expressions
for the density law ρgc and velocity dispersions 〈v2r 〉 corre-
sponding to the DF (13) are quite complicated (see Wilkin-
son 1999). However, they can be greatly simplified when
r < ra and r < a. This is the relevant limit, as the globular
cluster data are confined to the inner parts of the halo. In
this case, the density profile reduces to a simple power-law
with index n, namely

ρgc(r) ∼ ρ0

(

2a

r

)n

, (17)

while the radial velocity dispersion is just

〈v2r〉 ∼
v20
n
. (18)
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Table 2. Data on the radial velocities of the outer
globular clusters of M31. Listed are Galactic coor-
dinates (ℓ, b), observed heliocentric radial velocities
(v⊙) in kms−1 together with projected distances R
from the centre of M31 in kpc and corrected helio-
centric radial velocities (vr⊙) in kms−1(in which the
solar motion within the Milky Way and the radial
motion of the Milky Way towards M31 is removed).
See Section 5.1 for a discussion of the velocity cor-
rections. Sources: (a) Federici et al. (1993) (b) Kent,
Huchra & Stauffer (1989) (c) Perrett et al. (private
communication) (d) Barmby et al. (2000). Note: The
designation S refers to the catalogue of Sargent et al.
(1977)

Name ℓ b v⊙ R vr⊙

S219d 121.2 -23.0 -315 ± 2 19.5 -17

S352b 122.7 -21.2 -325 ± 20 19.5 -27

S9d 119.9 -20.7 -215 ± 26 19.6 89

S14c 119.9 -22.5 -423 ± 12 19.7 -121

S22c 120.2 -22.7 -374 ± 12 19.7 -73

S343c 122.3 -20.4 -253 ± 12 20.4 47

S13b 120.0 -20.5 47 ± 38 20.4 351

S268d 121.5 -20.1 -321 ± 26 20.6 -19

BA311c 122.4 -20.5 -97 ± 12 21.3 202

S327c 122.0 -20.1 -258.5 ± 12 22.3 42.2

S3a 119.4 -20.7 -87 ± 30 24.8 218

S353a 122.7 -20.3 -296 ± 30 26.0 3

EX8d 123.3 -21.3 -154 ± 40 26.7 142

S339a 122.2 -19.7 33 ± 30 28.3 333

S355a 123.0 -22.9 -60 ± 30 28.6 235

S2d 119.2 -23.2 -340 ± 22 33.2 -38

S1d 119.0 -23.2 -332 ± 3 34.1 -29

The reason for the elegant limits is that the inner parts of
the TF model look like an isothermal sphere, and so the DF
(13) generates a population with a power-law density profile
and a constant velocity dispersion. Fig. 3 shows the density
profile and projected line of sight velocity dispersions for this
model for a range of values of ra, from which the isothermal
limit can be distinguished.

3.3 The Planetary Nebulae

Planetary nebulae are luminous enough to be detected in
external galaxies, and they have been increasingly exploited
in recent years to estimate enclosed masses (e.g., Bridges
1999; Arnaboldi, Napolitano & Capaccioli 2000). Over 500
planetary nebulae have been detected in M31, although the
total population may exceed ∼ 104 (Hodge 1992). Many of
these reside in the inner bulge and disk. For the outer disk
and halo, the largest currently available dataset is that of
Nolthenius & Ford (1987). They obtained radial velocities
of 34 planetary nebulae and classified them into halo and
disk objects. This classification is not straightforward as it

Table 3. Data on the radial velocities of the halo
planetary nebulae of M31. Listed are Galactic coor-
dinates (ℓ, b), observed heliocentric radial velocities
(v⊙) in kms−1 together with projected distances R
from the centre of M31 in kpc and corrected helio-
centric radial velocities (vr⊙) in kms−1. See Sec-
tion 5.1 for a discussion of the velocity corrections.
Source: Nolthenius & Ford (1987)

Name ℓ b v⊙ R vr⊙

SW3/A1 120.9 -22.9 -407 ± 10 18.4 -108

SW3/A2 120.7 -22.9 -444 ± 10 18.4 -144

NE6/8 121.8 -20.2 -79 ± 10 19.7 222

SW4/6 119.8 -22.3 -263 ± 10 19.8 40

SW4/5 119.7 -22.3 -511 ± 10 20.0 -208

SW3/1 120.8 -23.4 -263 ± 10 24.4 36

SW4/2 119.3 -22.3 -349 ± 10 24.9 -46

NE6/6 122.0 -19.9 -452 ± 10 25.4 -151

NE1-2/2 123.0 -19.8 -117 ± 10 33.3 182

depends on the details of the adopted warped disk model.
Nonetheless, approximately 9 of the planetary nebulae are
residents of the halo and they are listed in Table 3. The
planetary nebulae system rotates with a velocity of 92± 43
kms−1 in the same sense as the rotation of the disk (Nolthe-
nius & Ford 1987).

We model the system in a similar way to the globular
clusters. We assume a DF of the form

fpn(Q) = Tpnfeven(Q) + (1− Tpn)fodd(Q), (19)

implying a density law (17). In order to fit the number den-
sity of the planetary nebulae, we choose n = 4.8 in the den-
sity law, as suggested by Nolthenius & Ford’s (1987) fit. We
pick Tpn = 0.065 to ensure that streaming velocity 〈vφ〉 ∼ 92
kms−1. Let us note that the value of T is quite different to
that obtained for the globular clusters, although the rota-
tion velocities are comparable. The reason for this is that T
depends on the choice of asymptotic fall-off n in the density
law.

4 THE ALGORITHM

We derive our probability formulae using only the assump-
tion that the halo potential of Andromeda is spherically
symmetric. We seek to maximise the likelihood of a parame-
terised model with respect to the data P (model|data). This
is given by Bayes’ theorem as (see Little & Tremaine 1987;
WE99):

P (model|data)P (data) = P (model)P (data|model). (20)

Here, P (model) describes our prior beliefs as to the likeli-
hood of the model parameters, while P (data|model) is the
probability of the data given the model. For each of the S
satellites of M31, the data consist of their three-dimensional
positions ri (i = 1 . . . S) with respect to the centre of An-
dromeda, together with their heliocentric line of sight veloci-
ties v⊙,i. For the globular clusters and planetary nebulae, the
three-dimensional positions are unknown. So, for each of the
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Figure 3.(a) Radial profile for the globular clusters correspond-
ing to a density law of the form (17) with n = 3.5. Also shown is
the slope of a simple power-law density of index 3.5. (b) Projected
line of sight velocity dispersions for the same model profiles. Units
with G = M = a = 1.

G globular clusters and N planetary nebulae, the data are
the two-dimensional projected positions Ri (i = 1 . . . G+N)
with respect to the centre of Andromeda, together with their
line of sight velocities v⊙,i.

4.1 Probabilities for the Satellites

Let vr⊙,i be the line of sight velocity corrected for the solar
motion and the radial motion of M31. Then, the probability
of finding a satellite at position ri moving with line of sight
velocity vr⊙,i is simply

P (ri, vr⊙,i|model) =
1

ρs

∫

d3v f(ε, l)δ(vr⊙ − vr⊙,i), (21)
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Figure 4. This figure shows a satellite at true position ri and
projected position Ri with respect to the centre of the spherical
halo of the Andromeda galaxy. The angles θi and αi are defined.
The index i labels the number of satellites.

where ρs is the density distribution of the satellites and
f(ε, l) is the DF. As some of the satellites of Andromeda lie
at large angular separations from its centre, it is important
to carry out the integration over the velocities perpendicular
to the line of sight from the perspective of an observer at a
finite distance D = 770 kpc and not at infinity. Let the com-
ponents of the satellite’s velocity with respect to a spherical
polar coordinate system oriented at Andromeda’s centre be
(vr, vθ, vφ). Along any line of sight, let (vt, η) be polar co-
ordinates in the plane of projection and vr⊙ the component
along the line of sight and perpendicular to the plane of pro-
jection. Fig. 4 shows a satellite galaxy at a spherical polar
distance ri and a projected distance Ri. The line of sight
subtends an angle αi from the axis joining the observer to
the centre of Andromeda, while the radius vector subtends
an angle θi. It is straightforward to see:

sin(αi + θi) = Ri/ri, sinαi = Ri/D. (22)

The angles αi and θi are fixed for the ith satellite galaxy
since we know its distance along the line of sight. The re-
lations between the observed velocity and the velocity com-
ponents in spherical coordinates centred on M31 are

vr =vt cos η sin(θi + αi)− vr⊙,i cos(θi + αi),

v2θ + v2φ =[vr⊙,i sin(θi + αi) + vt cos η cos(θi + αi)]
2

+ v2t sin η
2.

(23)

Thus the required probability is given by

P (ri, vr⊙,i|model) =
1

ρs(ri)

∫

√

2ψ(ri)−v
2

r⊙,i

0

dvt vt

×
∫ 2π

0

dη f(ε, l)

(24)
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Note that the transformations (23) are used to rewrite the
binding energy ε and angular momentum per unit mass l in
terms of the integration variables. This formula is valid for
any spherically symmetric density distribution of satellite
galaxies ρs. If the observer is infinitely far away from the
galaxy, then all the above formulae hold good with αi = 0.

4.2 Probabilities for the Globular Clusters and

Planetary Nebulae

The probability of finding a globular cluster at projected
radius Ri moving with line of sight velocity vr⊙,i is more
cumbersome as we must integrate along the line of sight.
As a result, the angle θ is no longer fixed for each object
but is a function of the distance along the line of sight z.
The probability of drawing the data pair (Ri, vr⊙,i) from the
projected distributions is

P (Ri, vr⊙,i|model) =
1

Σ(Ri)

∫

∞

−∞

dz

∫

d3v f(ε, l)

× δ(vr⊙ − vr⊙,i).

(25)

For an observer at finite distance D, we then obtain

P (Ri, vr⊙,i|model) =
Ri

Σ(Ri)

∫ θmax

θmin

dθ cosec2(αi + θ)

×
∫

√

2ψ(θ)−v2
r⊙,i

0

dvt vt

∫ 2π

0

dηf(ε, l),

(26)

where

θmin =
{

acos(Ri/D) − acos(Ri/rmax), if rmax < D,
0, if rmax > D,

(27)

and

θmax = acos(Ri/D) + acos(Ri/rmax). (28)

In all the above formulae, rmax is the solution of the equation
ψ(rmax) =

1
2
v2r⊙,i, namely

rmax = acsch
(v2r⊙,i

2v20

)

.

Physically, rmax is the greatest radius at which the globular
cluster or planetary nebula could have the line of sight veloc-
ity vr⊙,i and still remain bound to the Andromeda galaxy.

We note that for an observer who is infinitely far away,
all the above formulae hold good with

θmin = π/2− acos(Ri/rmax), (29)

and

θmax = π/2 + acos(Ri/rmax). (30)

It is often possible to carry out the velocity integration in
(26) analytically leaving only a double integral to be per-
formed numerically.

4.3 Prior Probabilities and Error Convolution

In any Bayesian analysis, it is necessary to specify the prior
probabilities of the model parameters. We have meagre in-
formation about the anisotropy of the velocity distribu-
tion. When using constant anisotropy DFs (5), we choose
P (β) ∝ 1/(3 − 2β)2, as this ensures that the ratio of radial

Figure 5. Likelihood contours for the total mass M (in units of
1011M⊙) and the anisotropy parameter β, assuming a DF of the
form (6). Contours are at heights of 0.32, 0.1, 0.045 and 0.01 of
peak height. Data on the satellite galaxies only have been used.

kinetic energy to total kinetic energy is uniform. When using
DFs of Osipkov-Merritt form (8), we choose a prior of 1/ra
for the anisotropy radius. This is the recommended choice
of an unbiased prior for a parameter which can vary in the
range (0,∞) (see e.g., Kendall & Stuart 1977). In our earlier
analysis of the mass of the Milky Way (WE99), we exper-
imented with a prior on M of 1/M2 and found it yielded
good results. This has some advantages over 1/M , as it re-
duces the probability of unrealistically large halos. Since it is
important to verify that our results are not overly sensitive
to the choice of priors, Section 5 also presents results using
a number of alternatives.

The projected positions of the globular clusters and
planetary nebulae are known to good accuracy, as are the
radial velocities of all the objects in our tracer populations.
However, the distances to the satellite galaxies are uncer-
tain. We take this into account with an error convolution
function to obtain the probabilities of the observations from
our theoretical probabilities. As there is no reason to assume
that the observational errors are Gaussian, we use hat-box
functions. These have the form

B(d; dmin, dmax) =







1

dmax − dmin
, dmin < d < dmax,

0, otherwise.

(31)

Our error convolution aims to take account of two factors.
First, there is the quoted error estimate associated with each
distance given in Table 1. Second, there is a small, but dis-
tinct, probability ǫ that some of the published distance esti-
mates are seriously in error due to systematic uncertainties.
Therefore, we choose our convolution function E to have the
form (c.f., Schmoldt & Saha 1998)

E(z; i) = (1− ǫ)B(z; si −∆si, si +∆si)

+ ǫB(z; smin, smax),
(32)

where si is the published distance estimate of the ith satellite
with error ∆si and smin and smax are the minimum and
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maximum of all the published distance estimates listed in
Table 1. In what follows, we assume that the probability
of a rogue distance ǫ is 0.1. Section 5 presents results both
for the case in which ∆si is taken to be the quoted error
on the distance measurement given in Table 1 and for the
worst case in which the distance errors are assumed to be
25%. This value is chosen based on the magnitudes of recent
revisions of the distance estimates (see columns 5 and 6 of
Table 1).

5 MASS ESTIMATES

In this section, we apply the algorithm to the observational
data. Section 5.1 considers only the satellite galaxies. Then,
in Section 5.2, each of our three tracer populations is anal-
ysed separately before they are combined to form a single
sample. The robustness of our estimates is examined in Sec-
tion 5.3

5.1 Satellite Galaxies Only

First, we must convert the observed heliocentric line of sight
velocities v⊙ into velocities in the rest frame of Andromeda
vr⊙. This entails removing the contributions from both the
solar motion within the Galaxy and the Galactic motion to-
wards M31. To do this, we assume a circular speed of 220
kms−1 at the Galactocentric radius of the sun (R⊙ = 8.0
kpc) and a solar peculiar velocity of (U, V,W ) = (-9,12,7),
where U is directed outward from the Galactic Centre, V is
positive in the direction of Galactic rotation at the position
of the sun, and W is positive towards the North Galactic
Pole. The line of sight velocity of M31, corrected for the
motion of the sun, is vr,M31 = −123 kms−1, based on the
uncorrected value of v⊙,M31 = −301 kms−1 (Courteau &
van den Bergh 1999). Some of the satellites are located at
large angular distances from the centre of M31. This means
that the unknown tangential velocity of M31 contaminates
the observed heliocentric radial velocity. In the absence of
any measurement, we assume that this unknown tangen-
tial velocity is zero. This is very reasonable, as there are no
other large galaxies in the Local Group to generate angu-
lar momentum through tidal torques, and so – as Kahn &
Woltjer (1959) originally argued – we are probably falling
directly towards Andromeda. In order to correct for the mo-
tion towards M31, we therefore subtract the component of
vr,M31 along the line of sight to each satellite. As pointed
out by Bahcall & Tremaine (1981), the large angular sepa-
rations from M31 of both IC 1613 and Pegasus mean that
the determination of their velocities relative to M31 depends
sensitively on any tangential velocity component of M31.

As a first calculation, we analyse the satellite dataset
using the constant anisotropy family of DFs of the form (6).
Due to the singularity in the DF that can occur at the radial
orbits (l = 0), some care is needed when carrying out the
integration in (24) over the transverse velocities – the rele-
vant substitutions are given in Appendix A. Fig. 5 presents
likelihood contours in theM -β plane for the satellite dataset
only. The best estimate for the total mass is 8.1× 1011M⊙.
The most likely value of β is −0.9, indicating a somewhat
tangential velocity distribution. We note that the likelihood
contours are elongated in the direction of the β-axis, indi-
cating that the anisotropy is more poorly constrained than

the mass. For comparison, our earlier estimate for the Milky
Way halo (WE99) was 19×1011M⊙. We reach the surprising
conclusion that the total mass of M31 may be less than that

of the Milky Way.
There is a second piece of evidence worth bringing for-

ward. For an isotropic tracer population falling off like r−3

in a galaxy with a flat rotation curve of amplitude v0, there
is the simple result (e.g., Evans, Häfner & de Zeeuw 1997)

v20 = 3〈v2r 〉. (33)

Here, 〈v2r 〉 is the mean square radial velocity of the sam-
ple (in the rest frame of the galaxy). Applying this formula
to the dataset of the Milky Way satellites gives v0 ∼ 220
kms−1. This is in excellent agreement with estimates of the
local circular speed, from which we conclude that the Milky
Way’s halo is roughly isothermal out to the distances probed
by the satellites. The dataset on the Andromeda satellites
gives v0 ∼ 140 kms−1, which is substantially less than ampli-
tude of the HI rotation curve (∼ 240 kms−1). This suggests
that the isothermal region of the Andromeda halo is less
than the volume sampled by the satellite galaxies.

5.2 All Data

We now proceed to subject our hypothesis to serious scrutiny
by modelling the data not just on the satellite galaxies, but
also the planetary nebulae and the globular clusters as well.
For all the samples, we adopt the alternative family of DFs,
namely those of Osipkov-Merritt form (8), as a precaution-
ary check for robustness.

Fig. 6(a) shows likelihood contours in the plane of the
total mass M and the anisotropy radius ra for the plan-
etary nebulae. This dataset implies a low halo mass of
∼ 3.7×1011M⊙ and an anisotropy radius of ∼ 66 kpc. Given
that the planetary nebulae are all located at projected radii
between 18 and 34 kpc, this mass estimate must be taken
as a constraint only on the mass inside a three dimensional
radius of ∼ 31 kpc. This figure is obtained by taking the
median projected radius and converting to a three dimen-
sional radius by multiplying by a deprojection factor of π/2.
It is worth noting that the available data on the planetary
nebulae are not uniformly distributed over the halo of M31,
but are concentrated in two regions near the optical disk.
A total mass of 3.7 × 1011M⊙ implies that the mass within
∼ 31 kpc is 2.8× 1011M⊙.

Fig. 6(b) shows the likelihood contours obtained from
the globular cluster dataset. In this case, the mass estimate
is ∼ 9.2 × 1011M⊙ with an anisotropy radius of ∼ 86 kpc.
The globular cluster data probe a range of projected radii
between 19 and 34 kpc. They are more uniformly distributed
than the planetary nebulae making this estimate more ro-
bust. A total halo mass of 9.2×1011M⊙ implies a mass inside
40 kpc of 4.7 × 1011M⊙. We note that the globular clus-
ters are effectively probing a volume which is approximately
double that probed by the planetary nebulae. The globu-
lar cluster data imply a mass inside 31 kpc of 3.8×1011M⊙,
which is somewhat larger than that implied by the planetary
nebulae.

Fig. 6(c) presents the results obtained using the data
on the satellite galaxies. In this case, the best mass estimate
is ∼ 10.8 × 1011M⊙ with an anisotropy radius of ∼ 610
kpc. The large value of the anisotropy radius suggests that
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Figure 6. Likelihood contours for the total mass M (in units of 1011M⊙) and the anisotropy radius ra (in kpc). Contours are at heights
of 0.32, 0.1, 0.045 and 0.01 of peak height. Data used: (a) Planetary nebulae only, (b) Globular clusters only, (c) Satellite galaxies only,
(d) All data combined.

the velocity distribution is isotropic over the entire region
probed by the satellites. Given that the satellites probe radii
from ∼ 10 kpc to ∼ 500 kpc, this is an estimate of the total
mass of the M31 halo. In Fig. 6(d), all the data from our
three populations are combined into a single dataset. The
mass estimate is ∼ 12.3×1011M⊙ with an anisotropy radius
of ∼ 551 kpc. This corresponds to a halo scalelength a ∼ 91
kpc. The value of the total mass implies masses interior to
31 kpc and 40 kpc of ∼ 4.0× 1011M⊙ and ∼ 4.9× 1011M⊙,
respectively. These values are in good agreement with the
results obtained from the globular cluster data. The mass
inside 31 kpc is greater than that implied by the planetary
nebulae data – the non-uniform distribution of the planetary
nebulae is the most likely cause of this discrepancy. Our final
calculation assumes that all three populations have the same
anisotropy radius; this seems reasonable as the individual

calculations in Fig. 6(a)-(c) all yield values of ra greater than
the outermost datapoints, implying the respective velocity
distributions are all largely isotropic.

Table 4 summarises the results described above and il-
lustrates the effects of varying the prior probabilities. For
the planetary nebulae data, changing the priors has some
effect on the mass estimates obtained. Changing the prior
on M to 1/M allows larger values of M and the mass esti-
mate rises by ∼ 50%. A uniform prior on ra naturally allows
larger values of ra, but changes the mass by only ∼ 16%. For
the globular cluster data, the situation is somewhat better,
with the largest change being a 24% increase in the mass
estimate when the prior on M is changed to 1/M . For the
complete dataset, allowing larger halos produces an increase
in the mass estimate of ∼ 26%, which is a reasonably small
change. Indeed, if we simultaneously relax both the M and
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Table 4. Most likely values of M (in units of 1011M⊙) and ra (in kpc) obtained
from the contour plots of Fig. 6. The corresponding values of a (in kpc) and the
mass inside 30 kpc are given. The effects of changing the prior on ra and M are
illustrated.

Data M prior ra prior Most likely Most likely Most likely M ( < 30 )
ra M a

PN 1/M2 1/ra 66 3.7 26 2.8

PN 1/M 1/ra 35 5.6 41 3.3

PN 1/M2 1 500 3.1 21 2.5

GC 1/M2 1/ra 86 9.2 68 3.7

GC 1/M 1/ra 75 11.4 85 3.8

GC 1/M2 1 599 7.9 58 3.6

Sat 1/M2 1/ra 610 10.8 80 3.8

Sat 1/M 1/ra 482 13.7 102 3.9

Sat 1/M2 1 1000 9.7 72 3.7

All 1/M2 1/ra 551 12.3 91 3.8

All 1/M 1/ra 439 15.5 115 3.9

All 1/M2 1 1000 10.6 79 3.8

All 1/M 1 1000 12.6 95 3.9

ra priors, the mass estimate changes by only ∼ 2%. Given
the other uncertainties in the problem (see Section 6), sen-
sitivity to the priors is not a serious worry.

We remark that all the results in Table 4 support the
hypothesis that the mass of the Andromeda halo is probably
less than that of the Milky Way halo (see Table 5 of WE99
as a comparison).

5.3 Robustness

We now look at the effects of altering some of the assump-
tions made in the modelling. The calculations are sum-
marised in Table 5.

First, it is important to assess whether the mass esti-
mate is strongly sensitive to any one of the datapoints, in a
manner analogous to the effect of Leo I on mass estimates
of the Milky Way. We remove each of the satellites in turn
and apply the algorithm to the reduced dataset. The only
satellite which significantly alters the answer is Pegasus – re-
moving Pegasus from the dataset, reduces the mass estimate
based only on the satellites by ∼ 23%. Removing any of the
other satellites affects the mass estimate by less than 10%.
The dataset used by Courteau & van den Bergh (1999) ex-
cludes both Pegasus and IC 1613. With this subsample, we
obtain a low mass estimate of 7.2×1011M⊙ (using our stan-
dard 1/M2 and 1/ra priors). For comparison, Courteau &
van den Bergh (1999) obtained 13.3±1.8×1011M⊙ based on
the projected mass estimator of Heisler, Tremaine & Bahcall
(1985).

Up to this point, we have used the distances to the
satellites in Courteau & van den Bergh (1999). If instead,
we take the distances from Mateo (1998), we find that our

mass estimate based on the entire dataset increases by ∼ 7%
to 13.2×1011M⊙. Mateo’s distances imply larger separations
from M31 for 7 of the satellites – for example, the distance
of And II from M31 is increased by 81% to 270 kpc. Posi-
tioning more of the satellites at larger radii requires a larger,
more massive halo to bind them. Recently, Feast (1999) has
claimed that even the distance to M31 may be in serious
error. He suggested that the distance modulus for M31 is
24.75 based upon a critical comparison of several distance
estimates obtained using a variety of standard candles. This
distance modulus implies a distance to M31 of ∼ 900 kpc.
If this is the case, our mass estimate using the standard pri-
ors rises by 28% to 15.7 × 1011M⊙. This is caused by the
increased separation of the satellites from M31 enforced by
the greater distance. It is the most substantial of all the
changes recorded in Table 5. Given the size of recent revi-
sions of the distances to the satellites, it seems likely that
the error bars quoted in Table 1 are rather optimistic. We
therefore re-analyse the data assuming error bars of 25% on
all satellite distances in our error convolution. This has a
negligible effect on the mass estimate.

Next, we examine the effect of changing our assumed
models for the globular cluster and satellite number density
laws. As discussed in Section 3.1, choosing as = 250 kpc
provides a good fit to the present satellite dataset, and leaves
some room for more satellites to be hiding within 250 kpc
of M31. Since we do not really know how incomplete the
satellite dataset is, our choice of as may be incorrect. We
therefore re-analyse the dataset with as = 150 kpc. Table 5
shows that the mass estimate changes by only 6%. Similarly,
choosing a larger value of n for the globular cluster number
density law gives a better fit to the data at large radii, while
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Table 5. Table illustrating the effects of changing some of the assumed model parameters.
The parameter which has been changed is given in the third column. The prior on M is
1/M2, the prior on ra is 1/ra. Most likely values of M (in units of 1011M⊙) and ra (in kpc)
are given together with the corresponding values of a (in kpc) and the mass inside 30 kpc.
Sources for data: 1. Courteau & van den Bergh (1999) 2. Mateo (1998)

Data Source Comment Most likely Most likely Most likely M ( < 30 )
ra M a

Sat 1 DF ∼ l−2βf(ε) β = −0.9 8.1 60 3.6

Sat 1 Pegasus & IC 1613 128 7.2 53 3.6
omitted

All 1 Pegasus & IC 1613 114 9.4 69 3.7
omitted

All 2 Sat. distances 607 13.2 98 3.9
altered

All 1 D = 900 kpc 615 15.7 117 3.9

All 1 ∆s = 25% 535 12.6 94 3.8

All 1 as = 150 kpc 551 13.0 97 3.9

All 1 ngc = 5 619 10.8 80 3.8

All 1 Tgc = 1 537 12.6 94 3.8

All 1 vc = 270kms−1 613 11.2 65 4.7
vc = 200kms−1 539 12.6 135 2.7

overestimating the numbers at small radii. If we choose n =
5, we find that the mass estimate changes by ∼ 12%. It
is thus clear that our choice of parameters for the number
densities of the tracer populations has little effect on the
estimate obtained. There is also some uncertainty as to the
rotation velocity of the outer globular cluster system (Elson
& Walterbos 1988; Huchra, Kent & Brodie 1991), but we
have verified that our results are robust to changes in this
parameter.

We must also consider the possibility that our assump-
tion regarding the normalisation of the halo potential is in-
correct. Up to now, we have assumed that the halo normali-
sation vc ∼ 240 kms−1 . If we instead take vc ∼ 270 kms−1,
the mass estimate is reduced by ∼ 9%, while if we reduce
vc to 200 kms−1 the mass is slightly increased by ∼ 2%.
The small size of the changes confirms that this is not a real
source of uncertainty.

Table 6 summarises previous studies of the mass of M31
to allow comparison with our results (c.f. Hodge 1992, chap.
8). All the mass estimates have been corrected to a stan-
dard value of distance to M31 of 770 kpc. As in the case of
the Milky Way (see Fig. 13 of WE99), the inferred mass of
M31 has tended to increase during the past 30 years. Our
estimate actually agrees well, both with the most recent es-
timate of the total mass (Courteau & van den Bergh 1999)
and estimates of the mass of the inner 20− 30 kpc (e.g. van
den Bergh 1981). The agreement is partly fortuitous, as van
den Bergh omits some satellite galaxies we have included.
It is interesting to compare the results obtained using our
algorithm with those which would be obtained using, for ex-
ample, the projected mass estimator of Bahcall & Tremaine
(1981). Using this estimator with the recommended multi-

plicative factor for an isotropic velocity distribution yields a
mass estimate of 11.5× 1011M⊙, which agrees well with our
results. If we instead use the factor which is recommended
for use in the absence of information on the velocity distribu-
tions, we obtain the somewhat larger mass of 17.2×1011M⊙.

6 ERROR ANALYSIS

This section examines the main sources of error in our esti-
mate. The dominant problems are caused by the small size
and possible incompleteness of the dataset. The errors in the
radial velocities are mostly insignificant, the distances to the
satellite galaxies being the only quantities in the problem
with large uncertainties.

6.1 The Size of the Dataset

In order to investigate this problem, we generate 1000 syn-
thetic datasets of 10 satellites each, drawn from a TF model
density distribution with a DF of the form given in eq. (8).
The anisotropy scale ra is taken as 166 kpc (which is the
mean of the prior probability distribution over the allowed
range of 2.5 and 1000 kpc). In carrying out this procedure,
we use a Gaussian approximation to the actual DF taking
the velocity dispersions as the widths of the Gaussians. This
approximation can very occasionally lead to the generation
of satellites which are not bound – these are rejected from
our datasets. Each dataset is analysed using the algorithm
described in Section 4 and the most likely value of the total
mass of the halo is noted.

The solid histogram in Fig. 7(a) shows the number of
datasets which yield a given percentage error in the mass
estimate. There is a tendency to underestimate the mass
with ∼ 50% of estimates more than a factor of two smaller
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Table 6. Other mass estimates for M31 (out to a radius rmax). All estimates have been corrected to put
M31 at a distance of 770 kpc by applying the simple correction ∆M/M ∼ ∆D/D where ∆M and ∆D are
the changes in the mass estimate M and the distance D to M31, respectively.

Author Data Mass (1011M⊙) rmax (kpc)

Rubin & Ford (1970) Hα Rotation Curve 2.0 27

Einasto & Rümmel (1970) Optical & Radio data 2.2 25

Gottesman & Davies (1970) 21cm Rotation Curve 2.5 34

Hartwick & Sargent (1970) Globular Clusters 3.8 19

Deharveng & Pellet (1975) Hα Rotation Curve 1.8 22

Roberts & Whitehurst (1975) 21cm Rotation Curve 4.1 33

Gunn (1975) Local Group Timing 22 –

Hodge (1975) Tidal cut-off of companions 67 Total

Rood (1979) Virial Mass of M31 subgroup 2.9 To IC 1613

van den Bergh (1981) Satellites 8.7 To LGS3 (∼ 260)
Globular Clusters 2.8 22

Braun (1991) 21cm Rotation Curve 2.2 31

Courteau & van den Bergh (1999) Satellites 13.5 To LGS3 (∼ 260)

This Paper Planetary Nebulae 2.8 ∼ 31
Globular Clusters 4.7 ∼ 40

All Satellites 12.3 Total

than the true value. Only ∼ 14% of estimates are within
20% of the correct value. There is also a large spread in mass
estimates – the average absolute deviation of the estimates
about the mean is 49%. It is reasonable to hope that the
number of satellite galaxies could rise to perhaps 20 in the
near future, given the successes of the ongoing surveys of
the sky around Andromeda (Armandroff & Da Costa 1999;
Karachentsev & Karachentseva 1999). The dotted histogram
of Fig. 7(a) shows the effect of this increase – the systematic
underestimate is still present although it is somewhat less
than that for the 10 satellite case. We conclude that there is
a systematic tendency to underestimate the mass by a factor
of two due solely to the size of the dataset. This is coupled
with a spread of order ∼ 50%.

As the number of datapoints becomes large, our prior
probabilities become unimportant. With small datasets, our
choice for priors can lead to systematic biases. WE99 sug-
gested that this effect was significant for the Milky Way,
as the customary priors tend to be biased towards radial
anisotropy, while the dataset, at least judging from the avail-
able proper motions, is not. For the case of the simulations
reported in Fig. 7(a), the mean of the mass prior 1/M2 is
less than the true mass, which partly accounts for the effect.
However, this circumstance is only slightly improved if we
switch to a mass prior of 1/M , whose mean does correspond
to the true mass. There is clearly scope for more work on
the possible causes of bias of mass estimators with small
datasets. Both underestimates and overestimates have been
reported by others using virial mass estimators (e.g., Haller
& Melia 1996, Aceves & Perea 1999). It seems likely that
Bayesian estimators can also yield biased results of either
sign, depending on the details of the potential, distribution
function and priors. However, for our models, small datasets

of radial velocities typically lead to underestimates.

6.2 Incompleteness

In order to study the effects of incompleteness, we generate
datasets of 20 satellites in which the positions are chosen
according to a TF profile with as = 150 kpc, while the ve-
locities are chosen assuming a value of as = 300 kpc in the
number density profile. When analysing the data, a value
of as = 150 kpc is assumed. This is analogous to the ob-
servational situation in which the observed number density
distribution may not correspond to the true distribution if
the sample is incomplete. The measured velocities are how-
ever governed by the true velocity distribution.

Fig. 7(b) presents the results of performing 1000 such
simulations. Comparing this histogram with the dotted his-
togram of Fig. 7(a), we see that the incompleteness has not
degraded our ability to estimate the mass in any signifi-
cant way. We therefore conclude that the (unknown) incom-
pleteness of our satellite sample should not bias our mass
estimate, provided that the incompleteness is unrelated to
the kinematics of the satellites. However, one can imagine
cases in which this could happen – for example, if there is
a systematic tendency for the fainter satellites to move on
different types of orbits than the brighter satellites. In this
case, the magnitude limit enforces a kinematic bias which
is difficult to model, but could have a deleterious effect on
the resulting mass estimates. However, if the only incom-
pleteness is due to magnitude limits in our surveys and is
kinematically unbiased, then Fig. 7(b) shows us that the
major worry is the small number of satellites and not the
incompleteness of the sample.
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Figure 7 (a) Histogram showing the spread in mass estimates
based on satellite datasets containing 10 objects (solid line) and

20 objects (broken line) at radii 20 kpc < r < 500 kpc from M31.
Each histogram shows the number of datasets out of 1000 which
yielded a given percentage error in the total mass M . (b) His-
togram illustrating the effects of incompleteness in the satellite
sample. Datasets of 20 satellites with different values of as used
in the generation of the data and the analysis. See text for discus-
sion. (c) Histogram showing the spread in mass estimates based
on globular cluster datasets containing 30 objects (solid line) and
100 objects (dotted line) at projected radii 20 kpc < R < 50 kpc.
The histogram shows the number of datasets out of 1000 which
yielded a given percentage error in the mass within 50 kpc. (d)
Histogram illustrating the reduced bias in mass estimates based
on globular cluster datasets containing 100 objects at projected
radii 20 kpc < R < 50 kpc for which proper motions have been
obtained using GAIA.

6.3 Globular Cluster Datasets

We now examine the uncertainties in our mass estimates
for the inner region of the M31 halo based on the globular
clusters and planetary nebulae. Bearing in mind the ongoing
searches (Perrett et al. 1999), our main motivation is to
discover how many radial velocities are needed for reliable
results. The solid histogram of Fig. 7(c) shows the results
of estimates of the mass inside 50 kpc based on simulated
datasets of 30 globular clusters with projected radii 20 kpc

∼< R ∼< 50 kpc drawn from a rotating DF of the form (14). As
in the case of the satellites, there is a systematic bias towards
underestimates of the mass, although this is less pronounced
than the factor of two bias observed in the satellite case.
The spread in mass estimates is also reassuringly small (∼
15%). The dotted histogram in Fig. 7(c) shows the results of
simulations of datasets consisting of 100 globular clusters at
projected radii out to 50 kpc. This histogram demonstrates
the value of searching for globular clusters orbiting M31 at
larger radii. The systematic bias in the mass estimate is
greatly reduced and ∼ 90% of the estimates lie within 10% of
the true value. The mass within 30 kpc can also be recovered
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Figure 8 (a) Histogram showing the spread in mass estimates
based on satellite datasets containing 10 objects at radii 20 kpc
< r < 500 kpc whose proper motions have been measured using
SIM and GAIA. The histogram shows the number of datasets out
of 1000 which yielded a given percentage error in the total mass
M . (b) As in (a), but for datasets of 20 satellites.

to excellent accuracy (∼ 93% of estimates lie within 10% of
the true answer).

7 CONCLUSIONS AND PROSPECTS

Our best estimate for the mass of the M31 halo based on the
motions of satellite galaxies, planetary nebulae and globular
clusters is 12.3 × 1011M⊙. There is at least a factor of two
uncertainty in this value due to the small sizes of the three
tracer datasets. Using Monte Carlo simulations of datasets
of 10 satellites we have shown that there is a tendency to
underestimate the mass with this algorithm when the data
are very sparse – we find that 50% of mass estimates un-
derestimate the mass by more than a factor of two. There
is also a spread in mass estimates of order 50%. Incorporat-
ing these into error bars on our mass estimate, we obtain
12.3+18

−6 × 1011M⊙. For comparison, our earlier estimate for
the Milky Way halo (WE99) was 19+36

−17 × 1011M⊙. Though
the error bars are large, we reach the surprising conclusion
that the total mass of M31 may well be less than that of the

Milky Way.
This is contrary to current opinion. Almost all recent

authors have argued that M31 is the most massive member
of the Local Group (e.g., Peebles 1989; Hodge 1992; Mateo
1998; Courteau & van den Bergh 1999). These authors ad-
duce a number of pieces of evidence to support their view-
point. The asymptotic value of the rotation curve of M31
seems to be ∼ 10% higher than that of the Milky Way (Ru-
bin & Ford 1970). The number of globular clusters in M31
is more than double that in the Milky Way (Fusi Pecci et
al. 1993). The scalelength of the M31 disk exceeds that of
the Milky Way (Walterbos & Kennicutt 1988). The face-on
B-band absolute magnitude of M31 is MB = −21.1 ± 0.4,
whereas that of the Milky Way is MB = −20.5±0.5 (Hodge
1992). On the other hand, the infrared luminosity of the
Milky Way is much higher than that of M31 (Walterbos &
Schwering 1987). The mass in hydrogen gas in the Milky
Way also exceeds that of M31 (Hodge 1992).

The difficulty in all this is judging whether any of these
statements are properly comparing like with like. M31 has
Hubble type Sb, whereas the Hubble type of the Milky Way
is certainly later, perhaps Sbc or Sc (e.g., Gilmore, King &
van der Kruit 1989). On such grounds alone, it is natural
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to expect that M31 has a larger bulge than the Milky Way.
Late-type spirals are gas-rich and so it is also natural to
expect the mass in gas in the Milky Way to exceed that
of M31. The relative number of globular clusters is a poor
argument, as it is only weakly correlated with total mass
(e.g., Ashman & Zepf 1998). There is also no correlation
between the satellite velocity dispersion in the outer halo
of a galaxy and the rotation velocity of its disk (Zaritsky,
Smith, Frenk & White 1997). Thus, a higher disk rotation
velocity does not necessarily imply a more massive halo.

We believe that the mass within ∼ 30 kpc is greater for
Andromeda than for the Milky Way, though probably only
by about 20%. The best guide to total mass is provided by
the kinematics of distant tracers like the satellite galaxies.
Our analysis of both galaxies is the most complete and so-
phisticated to date, and it suggests that the total mass of
the M31 halo is probably less than that of the Milky Way.
Beyond ∼ 30 kpc, the mass to light ratio of M31 seems to
increase more slowly than in the Milky Way.

There is a pressing need for more data on objects in the
halo of M31, if we are to consolidate this result. There are
a number of lines of attack. First, there are five satellites
of M31 whose radial velocities have not yet been measured,
namely And I, And III, And V, Pegasus II (And VI) and
Cassiopeia (And VII). The measurement of the radial veloc-
ities of these galaxies is being carried out at present (Grebel
2000, private communication). This will increase by 50 per-
cent the number of tracer objects at large radii and it will
be interesting to see how the mass estimate changes. There
is even cause for optimism that the dataset will increase
in size. The current rate of discovery of dwarf spheroidals
of M31 (And V, And VI and And VII were discovered in
1998) emphasises the number of satellites which have thus
far been missed. Karachentsev & Karachentseva (1999) state
that the North-South asymmetry in the distribution of satel-
lites about M31 could imply that 3-5 satellites of M31 have
escaped detection due to galactic extinction and the ex-
tended cirrus fields in the vicinity of M31. A second line
of attack is the discovery and exploitation of halo globular
clusters and planetary nebulae (Bridges 1999; Perrett et al.
1999). Based on a comparison with the Milky Way glob-
ular cluster system, Fusi Pecci et al. (1993) estimate that
outside 20 kpc, there are likely to be ∼ 30 globular clus-
ters brighter than V=18. Identifying these distant bright
clusters and measuring their radial velocities is an impor-
tant target for constraining the total mass. The surveys in
progress are concentrated in the central regions and con-
tain only a handful of objects outside ∼ 20 kpc (Perrett
1999, private communication). These are primarily useful
for measuring the mass distribution in the inner parts – for
example, a dataset of 100 globular clusters with radial ve-
locities would allow us to determine the mass within 30 kpc
to within 10% (see Fig. 7(c)). The number of planetary neb-
ulae in M31 is known to be of the order of 104 (Nolthenius
& Ford 1987). Many hundreds of planetary nebulae lie in
the halo and are invaluable as probes of the potential in
regions where no other tracers have been found. Nowadays,
these can be identified relatively easily with wide-field imag-
ing using OIII and continuum filters and their velocities can
be found with multi-object spectroscopy. So, there are real
prospects that much larger datasets will be available soon.

Within the decade, astrometric satellites will allow the

determination of the proper motions of some of the globular
clusters of M31. While this is beyond the reach of current
ground based instruments, the proposed Global Astrometric

Interferometer for Astrophysics (GAIA) satellite will scan
the whole sky and will perform astrometry on all objects
brighter than V = 20. The apparent magnitudes of the un-
resolved cores of M31’s bright globular clusters are typically
around V ≈ 16 − 17. Fig. 7(d) shows how the mass esti-
mate within 50 kpc is affected by the addition of proper
motion measurements for a dataset of 100 globular clusters
with 20 < R < 50 kpc. The systematic bias visible in the
solid histogram of Fig. 7(c) when only radial velocities are
used is entirely absent when proper motion data are avail-
able and 96% of mass estimates lie within ±20% of the true
mass. The mass inside 30 kpc is recovered with even greater
confidence, as 96% of estimates lie within 10% of the true
mass.

It will also be possible to obtain proper motions for
some or all of the M31 dwarf galaaxy satellites. In this case,
the proposed Space Interferometry Mission (SIM) satellite
is perhaps the most appropriate instrument to use. SIM is a
pointing instrument. It will study fewer objects than GAIA,
but with greater accuracy. SIM is planned to have an astro-
metric precision of 2µas yr−1 for objects with V=20. Almost
all the Local Group members have at least some stars with
magnitudes brighter than V = 20, making proper motion
determinations feasible. The brighter objects, like M32 and
M33, have ∼ 104 stars with V < 20, while even the fainter
ones, like IC 10 and NGC 147, have ∼ 10. At the distance
of M31, a proper motion uncertainty of 2µas yr−1 corre-
sponds to an error in the velocity transverse to the line of
sight of ∼ 7kms−1. Fig. 8(a) shows how the systematic un-
derestimate is removed even if we only measure the proper
motions of the 10 satellites which currently have radial ve-
locities. The spread in mass estimates is still large (the av-
erage absolute deviation about the mean is ∼ 27% of the
true mass estimate), as there are still only 10 datapoints.
In the optimistic case in which the satellite dataset swells
to 20 and a combination of SIM and GAIA obtain all the
proper motions, Fig. 8(b) shows that the mass estimates are
much more strongly peaked around the true answer and the
spread is reduced to ∼ 22% of the true mass.

The masses of the Milky Way and the Andromeda
galaxies are fundamental parameters that we need to know
to understand the Local Group. Although our investigations
have convinced us that the masses are rather imperfectly
known at present, there are excellent prospects for improve-
ment in the very near future.
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APPENDIX A: A REGULARISING

TRANSFORMATION

As noted earlier, DFs of the form l−2βf(ε) present a difficulty
when calculating the probabilities (24) or (26) since, for β > 0,
they possess a singularity at l = 0. This singularity, however,
is integrable for all β < 1. Van der Marel et al. (2000) refer
to this problem and use the substitution s = ln tan η to remove
the singularity. (We recall from Section 4.1 that (vt, η) are polar
coordinates in the plane of projection). This substitution solves
the problem for 0 < β < 1, but only in the case of the projected
probability distributions (26).

For the unprojected probability distributions (24), van der
Marel et al.’s (2000) substitution regularises the integral for β <
1/2. In order to calculate the probability (24) numerically for
1/2 < β < 1, we have to make the additional transformation in
velocity space (vt, η) → (λ, µ), where

λ = [vt cos(θi + αi) + vr⊙,i sin(θi + αi)]
2−2β

µ = arctan

(

ηvt

vt cos(θi + αi) + vr⊙,i sin(θi + αi)

)

(A1)
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in the region of the singularity.
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