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ABSTRACT

The boundaries of the Uranian ǫ, α, and β rings can be fitted by Keplerian

ellipses. The pair of ellipses that outline a given ring share a common line

of apsides. Apse alignment is surprising because the quadrupole moment of

Uranus induces differential precession. We propose that rigid precession is

maintained by a balance of forces due to ring self-gravity, planetary oblateness,

and interparticle collisions. Collisional impulses play an especially dramatic role

near ring edges. Pressure-induced accelerations are maximal near edges because

there (1) velocity dispersions are enhanced by resonant satellite perturbations,

and (2) the surface density declines steeply. Remarkably, collisional forces felt

by material in the last ∼100 m of a ∼10 km wide ring can increase equilibrium

masses up to a factor of ∼100. New ring surface densities are derived which

accord with Voyager radio measurements. In contrast to previous models,

collisionally modified self-gravity appears to allow for both negative and

positive eccentricity gradients; why all narrow planetary rings exhibit positive

eccentricity gradients remains an open question.

Subject headings: celestial mechanics — planets and satellites: individual

(Uranus, rings ǫ, α, and β)

1. INTRODUCTION

Each narrow eccentric ring surrounding Uranus is composed of particles moving on

nested elliptical orbits. The outer and inner edges of a given ring define ellipses having

semi-major axes a±∆a/2 and eccentricities e±∆e/2, where ∆a ≪ a, ∆e ≪ e, and e ≪ 1.

Observed values of a, e, ∆a, and ∆e for the Uranian ǫ, α, and β rings are listed in Table 1.

Remarkably, the set of ellipses describing an individual ring share a common line of

apsides. Apse alignment is surprising because the oblateness of Uranus causes orbits of

particles with different semi-major axes to precess differentially. Timescales for differential
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precession in the absence of other forces are extremely short; in the case of the Uranian ǫ

ring, the inner edge would precess a full revolution relative to the outer edge in 175 years.

Rigid precession of an eccentric planetary ring has remained a problem in ring dynamics for

over 20 years.

Goldreich & Tremaine (1979, hereafter GT) proposed that apse alignment is maintained

by self-gravity. Their theory predicts that the eccentricity gradient across the ring,

qe ≡ a
∂e

∂a
, (1)

must be positive. A positive eccentricity gradient in an apse-aligned ring implies that the

ring is narrowest at periapse and widest at apoapse. Gravitational forces between particles

are therefore greatest near periapse. Material in the inner half of the ring pulls radially

inward on the outer half at periapse, generating a differential precession which exactly

cancels that due to planetary oblateness.

Though the prediction that qe > 0 accords with observations of all known narrow

eccentric rings, the standard self-gravity model (hereafter SSG) predicts Uranian ring

masses that are too low compared to those inferred from Voyager radio occultations. Ring

masses based on observations exceed predictions by factors of at least ∼3 (ǫ ring) to ∼50

(α and β rings) (Tyler et al. 1986; Gresh 1990; see also the reviews by Esposito et al. 1991

and French et al. 1991). Low surface densities are particularly problematic for the α and

β rings. With SSG surface densities, torques exerted by inner shepherd satellites would be

insufficiently strong to confine the α and β rings against drag from the distended exosphere

of Uranus (Goldreich & Porco 1987, hereafter GP). In addition, as discussed by Graps et al.

(1995), shapes of the ǫ ring surface density profiles as derived from occultation light curves

do not accord with SSG predictions.

This paper points the way towards resolving these problems. In §2, a theory of

collisionally modified self-gravity (hereafter CMSG) is qualitatively described. A simple

quantitative model is set forth in §3, in which new surface density profiles are derived for

the ǫ and α rings that are in better agreement with observations. In §4, implications of

our solutions for torque balance, the role of planetary oblateness, and the value of qe are

discussed. Directions for future research are summarized in §5.
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2. QUALITATIVE SOLUTION

For simplicity, consider an apse-aligned eccentric ring having constant, positive qe
across its width. The ring is filled with spherical particles of internal mass density ρ and

radius r, and the ring surface density is given by Σ. Let n and ω̃ be the mean motion and

apsidal angle, respectively, of a ring particle. Subscripts i and b denote quantities evaluated

in the ring interior and near the ring boundary, respectively. Variables subscripted with

p or s are associated with the central planet or shepherd satellite, respectively, and take

their usual meanings. The dimensionless strength of the quadrupole moment of the planet

is given by J2. Numerical estimates in this section are made using parameters appropriate

for the ǫ ring.

A key ingredient missing in the SSG model is an accounting for interparticle collisions.

Since ring optical depths τ measured normal to the orbital plane are typically of order

unity, each particle collides, on average, a few times with its neighbors every orbital period.

Only modest collisional impulses per unit mass and time, of order 0.1 cm s−1 per orbit, are

required to generate differential precession rates comparable to those induced by planetary

oblateness (GT). Velocity dispersions of order ci ∼ 0.1 cm s−1 in the ring interior are not

unreasonable: both the Keplerian shearing velocity across a particle diameter, ∼ 3nr, and

the escape velocity from the particle surface, ∼ r
√
8Gρ, are of that order for the meter-sized

bodies that plausibly compose the ring.

Although a single collision can impart an impulse of dynamically significant magnitude,

multiple collisions experienced by a particle in the ring interior leave its precession rate

largely unaltered. A particle in the ring interior is struck by its inside neighbors about

as frequently and as forcefully as by its outside ones. Differential precession across

the ring induced by smooth internal pressure gradients occurs on timescales of order

2πΣnae/|∇P | ∼ 2πnae∆a/c2i ∼ 106 (0.1 cm s−1/ci)
2 yr, much longer than misalignment

timescales set by planetary oblateness (cf. GT). Here the height-integrated pressure

P ∼ Σc2i is taken to vary over a lengthscale ∆a.

Conditions are dramatically different near ring edges. Pressure-induced accelerations

are maximal there because (1) velocity dispersions are enhanced by resonant satellite

perturbations, and (2) the surface density declines steeply (Borderies, Goldreich, &

Tremaine 1982). The velocity dispersion near the ring boundary could be as high as

cb ∼
√

d

wr
ci ∼ 3

ci
0.1 cm s−1

cm s−1 , (2)

where d ∼ 103 km is the ring-satellite separation, and wr is the width of the annulus perturbed
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by the satellite. To order-of-magnitude, the latter is given by wr ∼ a
√

Ms/Mp ∼ 1 km,

the distance from the resonant edge at which nested periodic orbits cross. Equation (2)

is derived by equating the rate of energy dissipation by collisions in the perturbed zone,

∼ πΣawrc
2
bnτ , to the rate of energy deposition by the satellite, ∼ 3nTd/2a ∼ 9πΣnac2i d/2,

where T is the satellite-induced confining torque whose magnitude equals that of the viscous

torque, ∼ 3πΣc2i a
2, in steady-state.

A particle on the ring edge experiences a radially directed, collisional acceleration

C ∼ −∇P

Σ
∼ ± c2b

λ
r̂ ∼ ± cb n r̂ , (3)

where the upper (lower) sign applies to the outer (inner) ring edge. Here P ∼ Σ c2b is taken

to vary over a radial lengthscale, λ, of order the local ring thickness, cb/n. In a qe > 0 ring,

collision rates are highest near periapse. At the periapsis of a ring boundary, the radial

acceleration, C, generates a differential precession rate, ∆〈dω̃/dt〉C ≈ −C/nae, relative to

the precession rate at the ring midline. This collision-induced rate is greater than the local

differential rate due to planetary oblateness, ∆〈dω̃/dt〉O, by a substantial factor:

∆〈dω̃/dt〉C
∆〈dω̃/dt〉O

∼ ∓cb/ae

∓(21∆a/8a)J2n(Rp/a)2
∼ 40

cb
1 cm s−1

. (4)

Self-gravity maintains apse alignment against differential precession caused by

planetary oblateness and interparticle collisions. For self-gravity to enforce rigid precession

near ring edges, surface densities there must be higher than those predicted by SSG. At

ring boundaries, self-gravitational attraction must balance the extra repulsive acceleration

due to collisions. To estimate the surface density near the edge, Σb, equate the collisional

acceleration, C ∼ c2b/λ, to the gravitational acceleration from a wire of linear mass density

Σbλ located a distance λ away:

c2b/λ ∼ 2GΣb . (5)

Take λ = cb/n ∼ 50m to obtain

Σb ∼ cb n / 2G ∼ 103
cb

1 cm s−1
g cm−2 , (6)

which is greater than corresponding SSG predictions by factors ∼> 40. Equation (6) is

equivalent to the condition that Toomre’s Q be of order unity at the edge.



– 5 –

These endwires of mass ∼ 2πaΣbλ = πc2ba/G constitute new boundary conditions not

found in SSG. Gravitational forces from massive endwires induce substantial differential

precession in the ring interior. For self-gravity to maintain apse alignment in the interior,

surface densities there must also be greater than those predicted by SSG.

3. QUANTITATIVE MODEL

Divide the region occupied by an apse-aligned, constant qe = a∆e/∆a ring into an even

number N of equally spaced intervals. The center of the jth interval contains an elliptical

wire having mass mj , semi-major axis aj = a + [ j − (N + 1)/2 ]∆a/N , and eccentricity

ej = e + [ j − (N + 1)/2 ]∆e/N . Denote by ∆j〈dω̃/dt〉 the precession rate of the jth wire

relative to the precession rate of a test particle at the ring midline. Uniform precession

requires

∆j〈
dω̃

dt
〉 = ∆j(〈

dω̃

dt
〉O + 〈dω̃

dt
〉G + 〈dω̃

dt
〉C) = 0 . (7)

Subscripts O, G, and C denote contributions from planetary oblateness, self-gravity, and

interparticle collisions, respectively. The first two terms are given by

∆j〈
dω̃

dt
〉O = −21

4
J2n

(

Rp

a

)2 aj − a

a
(8)

and

∆j〈
dω̃

dt
〉G =

qeH(q2e)

πe
n

a

Mp

∑

k 6=j

mk

aj − ak
, (9)

where

H(q2e) ≡
1−

√

1− q2e

q2e
√

1− q2e

(cf. GT).

For ∆j〈dω̃/dt〉C , the following simplistic prescription is adopted:
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∆j〈
dω̃

dt
〉C =















+[ qeH(q2e) c
2
b/λnae ] (1− x/λ) if x ≡ (j − 1/2)∆a/N < λ

−[ qeH(q2e) c
2
b/λnae ] (1− y/λ) if y ≡ (N − j + 1/2)∆a/N < λ

0 otherwise.

(10)

Thus, ∆j〈dω̃/dt〉C is non-zero only within intervals δa = λ from each edge; there, its

magnitude rises linearly from 0 to qeH(q2e)c
2
b/λnae. As a crude justification for this

maximum value, approximate the collisional acceleration as

C ≈ −∇P

Σ

≈ ± c2b
λ(1− qe cos f)

r̂ (11)

where the upper (lower) sign applies to the outer (inner) edge. Here the pressure gradient

is taken to vary inversely as the separation between streamlines. Insert C into Gauss’s

perturbation equation for dω̃/dt and average over true anomaly:

〈dω̃
dt

〉 = − 1

πnae

∫ π

0
C cos f df

= ∓ qeH(q2e) c
2
b/λnae . (12)

For the constant qe ring models presented here,

λ = cb/n , (13)

so that the only remaining free parameter is cb. Equation (13) is relaxed for §4.2.2 and

§4.3.2.

Note that this prescription for ∆j〈dω̃/dt〉C ignores the decrease in velocity dispersion

from cb at the ring edge to ci in the ring interior. The decline in velocity dispersion occurs

over a length scale of order wr. This length scale is large compared to cb/n so that the

gradient of velocity dispersion does not give rise to a significant radial acceleration.

For a given value of cb, equations (7), (8), (9), (10), and (13) comprise N equations in
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N unknowns {mj}.1 Solutions for surface density profiles at quadrature for various values

of cb are displayed in Figure 1, for parameters appropriate to the ǫ and α rings; models

for the β ring are nearly identical to those of the α ring. In CMSG models, higher surface

densities near ring edges are evident, as are higher total ring masses.

4. DISCUSSION

4.1. Surface Density Profiles and Torque Balance

Simple CMSG models, while not fully realistic, demonstrate the existence of a new

class of self-gravity solution, that obtained by accounting for the modification of ring

boundary conditions by interparticle collisions. Remarkably, forces felt by material in the

last ∼100 m of a ∼10 km wide ring can increase equilibrium masses by factors up to 100.

Large S-band opacities measured by Voyager, which are incompatible with SSG surface

densities (see, e.g., the review by Esposito et al. 1991), can be reconciled with average

CMSG surface densities of ∼75–100 g cm−2 for the ǫ, α, and β rings. Moreover, CMSG

models predict that surface densities near ring edges are higher than those in the interior.

This behavior is reminiscent of the “double-dip” structure seen in occultation light curves

for the ǫ and α rings (see, e.g., the review by French et al. 1991).

Greater ring masses as implied by CMSG resolve problems associated with exospheric

drag that were pointed out by GP for rings α and β. For the remainder of this subsection,

numerical estimates will be made for the α ring; similar conclusions hold for the β

and ǫ rings. Surface densities are scaled to a typical CMSG value in the ring interior

of Σ = 75 g cm−2. An inner shepherd satellite exerts a repulsive, non-linear torque at

first-order Lindblad resonances of magnitude

TL
nl ≈

10ρsR
3
sΣ

2n2a7

M2
p d

≈ 6× 1017
(

Σ

75 g cm−2

)2 (
Rs

10 km

)3
(

ρs
1.5 g cm−3

)(

500 km

d

)

erg ,

(14)

where the satellite radius, Rs, is scaled to the Voyager upper limit of 10 km (Smith et al.

1986). The shepherding torque exceeds the magnitude of the drag torque exerted by the

Uranian exosphere,

1Reflection symmetry about the ring midline reduces the number of equations necessary to N/2. Typically

N ∼> 2000 wires are needed to converge to within 10% of the solution for N → ∞.
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Fig. 1.— Surface density profiles at quadrature for rings ǫ and α in CMSG (cb 6= 0, solid line)

vs. SSG (cb = 0, dashed line) models. When the total CMSG ring mass, MCMSG, greatly

exceeds the total SSG ring mass, MSSG, it is found empirically that MCMSG ∝ c2b/λ
1/2 ∝ c

3/2
b .
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Td ≈ −4πmHnHvTna
3∆a ≈ −4× 1016

(

nH

103 cm−3

)

erg . (15)

Here nH = 7 × 10−6 e32.4Rp/a cm−3 is the number density of hydrogen atoms of mass mH

in the exosphere, and vT ≈ 1 km s−1 is their thermal speed normal to the orbital plane

(Broadfoot et al. 1986). That TL
nl > |Td| ensures that the inner shepherd prevents ring

particles from spiraling in towards Uranus.

Estimates of viscous torques Tv also require revision. For a ring undergoing Keplerian

shear, with minimum kinematic viscosity n(Σ/ρ)2, the viscous torque is given by

Tv ≈
3πn2Σ3a2

ρ2
≈ 2.5× 1018

(

Σ

75 g cm−2

)3 (

1.5 g cm−3

ρ

)2

erg (16)

(GP). That Tv ≫ |Td| ensures that ring particles on the outer edge press against the inner

Lindblad resonance established by the outer shepherd.

Conclusions drawn from comparisons between TL
nl and Tv are on less sure footing. For

the choice of scaling parameters, the latter exceeds the former, contrary to the requirement

of the standard theory of shepherding that the torques be equal. This might be construed

as evidence that the angular momentum luminosity in the ring interior is reduced below Tv

by the non-Keplerian shear associated with a non-zero qe (Borderies, Goldreich, & Tremaine

1982; GP). However, the numerical estimates for the two torques differ only by a factor of

a few. The shepherding torque should be evaluated using surface densities near the edge,

which CMSG predicts are higher than those in the interior; this would increase the estimate

of TL
nl. Uncertainties in the choice of parameters preclude drawing any conclusion other

than that these torques are of the same order of magnitude.

4.2. Relative Importance of Planetary Oblateness

4.2.1. J2 = 0 vs. J2 6= 0

What does CMSG predict if J2 = 0? Figure 2a displays the answer for the ǫ ring, for

cb = 2 and 3 cm s−1. In contrast to SSG, a non-vanishing equilibrium surface density does

not require a finite planetary oblateness; self-gravity can be balanced entirely by collisional

pressure gradients. For the α and β rings, solutions with and without J2 are practically

indistinguishable for cb ≥ 0.5 cm s−1. The influence of J2 on the equilibrium solution

diminishes as ∆a decreases or as cb increases.
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Fig. 2.— (a) CMSG ǫ ring models for which J2 is reduced from its nominal value of 3.35×10−3

(Elliot & Nicholson 1984) (solid line) to 0 (dotted line). As cb is increased from 2 cm s−1 (lower

two curves) to 3 cm s−1 (upper two curves), the influence of J2 diminishes. For the α and β

rings, CMSG models with and without J2 are practically indistinguishable for cb ≥ 0.5 cm s−1

(data not shown). (b) CMSG ǫ ring models for which qe = ± 0.626. Contrary to SSG models,

a positive qe is not required to obtain an equilibrium solution.
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4.2.2. Empirical Scaling Relations for J2 = 0

For J2 = 0 and fixed ring geometry, the surface density at quadrature near a given edge

scales as

Σb (0 ≤ |x| ∼< λ) =
c2b
Gλ

f(|x|/λ) , (17)

where |x| measures distance from the edge, cb and λ are the same free parameters as in

Equation (10), and f is a dimensionless function of the similarity variable |x|/λ. Well away

from ring edges, the surface density at quadrature scales as

Σi (|x| ≫ λ) =
c2b

G
√
λ∆a

g(|x|/∆a) , (18)

where g is another dimensionless function. The total ring mass scales as

M ∼ c2ba

G

√

∆a/λ . (19)

4.3. Value of qe

4.3.1. Sign of qe

Figure 2b displays a CMSG model for the ǫ ring obtained by reversing the sign of qe.

In contrast to SSG, a positive eccentricity gradient is not necessary in CMSG to obtain

an equilibrium solution. This resurrects the problem of why all known eccentric planetary

rings, including the Titan and Huygens ringlets around Saturn, are narrowest at periapse

and widest at apoapse.

It is possible that equilibria obtained using qe < 0 are unstable. To address this

issue, a preliminary investigation of ring stability for an N = 4 ringlet model has been

undertaken. Forces due to pressure gradients are included only for the first and fourth

ringlets. Collisional accelerations are treated as if they arise from anti-self-gravity forces

(self-gravity with the sign of the acceleration reversed); i.e., collisional shear stresses are

ignored. In this crude approximation, equilibria are found to be stable regardless of the

sign of qe; small deviations from equilibrium masses result in apsidal librations (Borderies,

Goldreich & Tremaine 1983). It remains to be seen whether collisional shear stresses alter

stability properties.
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Another possibility is that initial conditions set the sign of qe. If the ring were initially

uniform in width as a function of azimuth, then planetary oblateness would determine the

initial sense of differential precession within the ring. The resultant narrowing of the ring

width near a true anomaly of f = −π/2 would cause a positive eccentricity gradient to

grow by self-gravity. Under this hypothesis, an N = 2 ringlet model incorporating forces

from self-gravity and planetary oblateness yields the following time evolution for the apse

and eccentricity differences between outer and inner ringlets:

δω̃ = −A sin Ωlibt (20)

δe = Ae(1− cos Ωlibt) (21)

where A > 0 and Ωlib are the amplitude and frequency, respectively, of libration (cf.

Borderies, Goldreich, & Tremaine 1983). Note that the time-average of δe is positive.

Inelastic collisions would damp librations and the ring would eventually settle into an

equilibrium for which qe > 0.

4.3.2. Magnitude of qe Near Ring Boundaries

It has been assumed that the eccentricity gradient, qe, is finite out to the last

λ = cb/n ∼ 50 meters of ring material. A finite qe is necessary to generate a non-zero

azimuthal average of the collisional acceleration [see equation (12)]. The simple quantitative

model of §3 employed the observed value of qe averaged over the entire ring width. The

true value over the last few hundred meters of ring material is unknown.

In the case of the best-studied ǫ ring, Graps et al. (1995) combined Voyager

photopolarimeter and radio occultation measurements to infer the eccentricity gradient as

a function of semi-major axis. They found that qe decreases over the last ∼5 km from its

nearly constant value of ∼0.65 in the interior to ∼0.35 near the edge. The radial resolution

of their study was between 1 and 2 km.

A decrease in qe towards ring boundaries is theoretically plausible. Distortions in

a circular ring can be described by the change in separation, δr, between neighboring

streamlines of the form

δr ∝ cosm(φ− Ωpatt) , (22)

where Ωpat is the pattern speed of the distortion and m is an integer. A constant qe ring
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that precesses rigidly in the quadrupole field of the central planet is equivalent to a distorted

circular ring for which m = 1 and Ωpat = 〈dω̃/dt〉Q. Resonant satellite perturbations, which

enhance velocity dispersions within a distance wr ∼ 1 km of ring edges, are characterized

by much higher values of m = 2a/3d ≫ 1 and Ωpat = Ωs. Satellite-induced disturbances

might therefore reduce the local value of qe. A decrease in qe over a distance wr near ring

boundaries is roughly equivalent to setting λ = wr in equation (10). By the scaling relations

(18) and (19), this would reduce surface densities and total ring masses shown in Figure 1

by a factor of
√

wrn/cb ∼ 4.

5. DIRECTIONS FOR FUTURE RESEARCH

This work is primarily a demonstration that interparticle collisions near ring boundaries

play a crucial role in determining ring masses under the self-gravity hypothesis. The nature

of ring boundary conditions has not been calculated in rigorous detail; instead a prescription

motivated by order-of-magnitude arguments is provided for collision-induced precession

rates. Numerical simulations incorporating shepherd satellites will help to determine the

actual 3-dimensional collisional stress tensor and eccentricity gradient everywhere within

the ring.

Why all narrow eccentric rings surrounding Uranus and Saturn are narrowest at

periapse and widest at apoapse remains to be understood. Stability analyses incorporating

collisional shear stresses may reveal that rings having qe < 0 are unstable. Alternatively,

the sign of qe may be set by initial conditions. Scenarios for ring formation—e.g., the

catastrophic disruption of a small moon—require further elucidation.

Viscous damping gives rise to small differences between apsidal angles of neighboring

streamlines (Borderies, Goldreich, & Tremaine 1983). For a given apsidal shift of δω̃ ≪ 1,

the difference between the azimuth of maximum streamline separation and the azimuth

of apoapse is given by the “pinch angle”, δφ = arctan(eδω̃/δe) ≫ δω̃. The pinch angles

calculated by Borderies et al. (1983) for their N = 2 streamline models of the Uranian

and Saturnian ringlets are suspect, however, because they neglect the boundary effects

highlighted in the present work. A careful calculation of δφ(a) that incorporates viscous

drag and the global effects of resonant forcing by shepherd satellites has yet to be performed.

Upcoming observations of narrow Saturnian ringlets by the Cassini Orbiter might test the

predictions of such a calculation, thereby furnishing a powerful diagnostic of stresses within

ringlets.
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Table 1. Parameters of Eccentric Uranian Ringsa

Ring a(km) ∆a(km) e (×103) ∆e (×103)

ǫ 51149 58.1 7.936 0.711

α 44718 7.15 0.761 0.076

β 45661 8.15 0.442 0.066

aValues taken from Tables I and VII of French et

al. (1991).


