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Observational constraints upon quintessence models arising from moduli fields
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We study observational constraints on cosmological models with a quintessence arising from moduli

fields. The scalar field potential is given by a double exponential potential V = V0 exp(−Ae
√
2κφ).

After reviewing the properties of the solutions, from a dynamical systems phase space analysis, we
consider the constraints on parameter values imposed by luminosity distances from the 60 Type IA
supernovae published by Perlmutter et al., and also from gravitational lensing statistics of distant
quasars. We also update the constraints on models with a single exponential potential V = V0e

−λκφ.

PACS numbers: 98.80.Cq 95.35.+d 98.80.Es

I. INTRODUCTION

A cosmological constant Λ has been considered as the
missing energy of the universe for a long time. Recently, a
varying vacuum energy or “quintessence” [1] has become
popular as an alternative candidate. Since more parame-
ters are involved in such models, they are more flexible in
explaining some of the problems left by the cosmological
constant model. One such problems is the “cosmic coin-
cidence problem” [2]: the missing energy and the matter
energy densities decrease at different rates as the uni-
verse expands, so it seems purely coincident that they
are comparable today with the concordant values from
several observational tests of Ωφ0 ∼ 2

3 and Ωm0∼ 1
3 [3].

Several candidates for quintessence fields have been pro-
posed. Typically quintessence models possess attractor
solutions with common evolutionary properties for a wide
range of initial conditions. For example, in some cases
the scalar field energy maintains constant ratio to the
matter density at late time [4], where as in other models
it tracks the dominant matter component in some other
sense [5–9].
In this paper, I will study quintessences arising from

string moduli. In string or Kaluza-Klein type models the
moduli fields associated with the geometry of the extra
dimensions may have effective potentials which depend
exponentially on the moduli fields, due to the curvature
of the internal spaces, or alternatively through the inter-
action of the moduli with the form fields on the internal
spaces (see, e.g., [7] and references therein). Single expo-
nential potentials of the form

V = V0e
−λκφ (1)

which give rise to a scaling solution have been well-
studied in the literatures (see, e.g., [6–8] and references
therein). In this paper I will concentrate on double ex-
pontial potentials of the form

V = V0 exp(−Ae
√
2κφ) (2)

which typically arise from supersymmetry breaking via
gaugino condensation [10–12]. Furthermore, it has also
recently been argued that if the superpotential of the
moduli field in string theory is T-duality invariant, then it
cannot be approximated by a single exponential function,
but must depend on double exponentials [13].
Binetruy [12], and later de la Macorra [13], have ar-

gued that scalar fields with double exponential poten-
tials cannot act as quintessences for two reasons. Firstly,
such models have a global attractor solution leading to a
matter-dominated universe at late times. Secondly, near
the attractor the equation of state is positive, wφ > 0
and approaching zero as t → ∞. This would appear to
contradict the latest observational results from type IA
supernovae that a quintessence is dominating over mat-
ter and the universe is entering a phase of accelerated ex-
pansion [14,15], similar to inflation. The purpose of this
paper is to show that for parameter values away from
the attractor, there can exist models which are consis-
tent with the observational tests, although some tuning
is required for the universe not to have reached the at-
tractor at present. This paper also updates the obser-
vational constraints on the single exponential potential
model, which have been given by Frieman and Waga [16].
The organization of this paper is as followed: in sec-

tion II, I will present a phase-space analysis of the dou-
ble exponential potential model. In section III, I will
discuss the numerical integration of the evolution equa-
tions for both the single and double exponential potential
models, and obtain values for Ωφ0 and H0t0. In section
IV, I will constrain both models using the light-curve
calibration luminosity distances of type IA supernovae
(see [14,17] and references therein) and the gravitational
lensing statistics of high luminosity quasars by interven-
ing galaxies (see [18,19] and references therein). Similar
constraints on other quintessence models have been pre-
sented in [16,19–21].
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II. PHASE SPACE ANALYSIS FOR DOUBLE

EXPONENTIAL POTENTIAL MODEL

We begin by considering a universe which consists of a
scalar field with the potential (2) and a barotropic fluid
with equation of state Pγ = (γ − 1)ργ , 0 ≤ γ ≤ 2. For a
spatially-flat Friedmann-Robertson-Walker (FRW) uni-
verse, the governing equations are given by

Ḣ = −
κ2

2

(

ργ + Pγ + φ̇2
)

, (3)

ρ̇γ = −3H(ργ + Pγ) , (4)

φ̈ = −3Hφ̇−
dV

dφ
, (5)

subject to the Friedmann constraint

H2 =
κ2

3

(

ργ +
1

2
φ̇2 + V

)

, (6)

where an overdot denotes the ordinary differentiation
with respect to the time t. In the above equations,
κ2 ≡ 8πG, and H ≡ ȧ/a is the Hubble parameter.
We follow the treatment of Copeland, Liddle and

Wands [7] by defining the variables

x =
κφ̇√
6H

, y =
κ
√
V√

3H
, (7)

and introducing a third variable [22]

λ(φ) = −
dV/dφ

κV
=

√
2Ae

√
2κφ . (8)

In the case of the single exponential potential (1), λ(φ)
reduces to a constant. In terms of these variables the
evolution equations (3) – (6) become

x′ = −3x+ λ

√

3

2
y2 +

3

2
x
[

2x2 + γ(1− x2 − y2)
]

, (9)

y′ = −λ

√

3

2
xy +

3

2
y
[

2x2 + γ(1− x2 − y2)
]

, (10)

λ′ = 2
√
3xλ , (11)

where a prime denotes a derivative with respect to the
logarithm of the scale factor, N ≡ ln(a). The system is
bounded by the cylinder x2 + y2 = 1. Assuming that A
is positive, the system is confined to λ ≥ 0. The system
is symmetric under the reflection y → −y.
As many properties of the solutions in the double

exponential potential model can be related to the sin-
gle exponential potential model, let us review the sin-
gle exponential potential model as has been studied in
the literature ( [6–8] and references therein). Depend-
ing on the values λ and γ, there are up to five criti-
cal points in the x – y plane, two of which are related
to late times. For λ2 < 3γ, the late times attractor is
a scalar field dominated solution Ωφ ≡ κ2ρφ/3H

2 → 1

with γφ ≡ (ρφ+Pφ)/ρφ → λ2

3 < γ. For λ2 > 3γ, the late
times attractor is the scaling solution [6] with γφ = γ and

Ωφ → 3γ
λ2 , a constant. Fig. 1 shows the late times attrac-

tors and how they evolve as λ2 increases from zero. As
λ2 increases the attractor evolves from a stable node into
a stable spiral at λ2 = 24γ2

(9γ−2) . The attractor approaches

the origin as λ2 → ∞.

2 =3γ

λ =24γ2 /(9γ−2)2
stable
node

saddle
point

λ2

λ

=6

y

x

stable node

stable spiral

λ=0

FIG. 1. The evolution of the late times attractors of the
single exponential potential model as λ2 increases. The scalar
field dominated solution has x = λ/

√
6, y =

√

1− λ2/6; the

scaling solution has x =
√

3/2γ/λ, y =
√

3(2− γ)γ/2λ2.
The scalar field dominated solution is a saddle point for
λ2 > 3γ.

In the double exponential potential model, we can
identity critical points at finite λ from the evolution
equations (9) – (11). They are three discrete points at
(xc, yc, λc) = (±1, 0, 0), (0, 1, 0), and a 1-parameter fam-
ily at (0, 0, λc) for λc arbitrary. The stability of the criti-
cal points can be obtained by linearizing (9) – (11) about
the these points and solving for the eigenvalues of small
perturbations. The critical points and the eigenvalues
are listed in Table I.

TABLE I. The critical points at finite λ and their eigen-
values for the double exponential potential model.

xc yc λc Eigenvalues

1 0 0 3, 3, 2
√
3

−1 0 0 3, 3, −2
√
3

0 1 0 −3, −3, 0
0 0 0 ≤ λc < ∞ −3/2, 3/2, 0

The scalar field kinetic energy dominated solution
(1, 0, 0) is an unstable node, while (−1, 0, 0) is a sad-
dle point since trajectories are repelled in the x and y
directions and are attracted in the λ direction. The
scalar field dominated solution (0, 1, 0) attracts a two-
dimensional bunch of trajectories but is degenerate in
the λ direction. For the barotropic fluid dominated solu-
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tion (0, 0, λc), 0 ≤ λc < ∞, trajectories are attracted in
the x direction, repelled in the y direction and degenerate
in the λ direction.
To examine the critical points at infinite λ, we use the

Poincaré sphere method by transforming

λ =
1

ǫ
. (12)

On the surface ǫ = 0 we find

dx

dτ
=

√

3

2
y2 (13)

dy

dτ
= −

√

3

2
xy (14)

where τ is a new time coordinate defined by dτ = λdN .
Therefore, there are infinitely many critical points ly-
ing on the ǫ = 0 surface with yc = 0 and arbitrary
xc ∈ [−1, 1]. The eigenvalues for the matrix of pertur-

bations are 0, −
√

3
2xc, 0. Therefore the critical points

are degenerate in both the x and λ direction. They repel
or attract trajectories in the y direction depending on
−1 ≤ xc < 0 or 0 < xc ≤ 1 respectively. For xc = 0 all
the eigenvalues vanish, and higher-order perturbations
show that it is a stable attractor.
We will numerically integrate the evolution equations

(9) – (11) forwards and backwards from some initial
point (xi, yi, λi), in the case of a matter-dominated uni-
verse γ = 1. In Fig. 2 and 3, we project the trajec-
tories onto the x – y plane. When integrating back-
words from the initial points (xi, yi, λi), the trajectories
in Fig. 2 approach the critical point (1, 0, 0), and the tra-
jectories in Fig. 3 approach the critical points (xc, 0, λc),
xc ∈ [−1, 0), λ → ∞.
The scalar field is rolling down the potential at suffi-

ciently late times so φ and hence λ(φ) is increasing with
time. As λ(φ) increases with time, the behaviour of the
solutions effectively approximates that of single exponen-
tial potential models, but with the parameter λ evolving
in the direction shown in Fig. 1. For sufficiently small
λi the scalar field-dominated solution is dynamically im-
portant and the trajectories get very close to the circular
boundary. As λ increases, the solutions approach scaling
solutions (x = y for γ = 1) before spiralling towards the
origin.

III. NUMERICAL INTEGRATION

In order to determine Ωφ0 and H0t0, and the lumi-
nosity distance – redshift relation in the next section,
we ought to integrate the evolution equations (3) – (6)
numerically. In this section, we will discuss the numeri-
cal integration for both the single and double exponen-
tial potential models in a manner similar to a previous
study on the model with a pseudo Nambu-Goldstone bo-
son (PNGB) potential [21].

FIG. 2. The projection of the space trajectories on the
x – y plane for γ = 1. The trajectories are for initial
values (xi, yi, λi): (0.1, 0.1, 0.3), (0.2, 0.2, 0.5), (0.3, 0.3, 1.0),
(0.4, 0.4, 1.5). The dashed line is x = y.

FIG. 3. The projection of the space trajectories on the x
– y plane for γ = 1. The trajectories are for the initial val-
ues (xi, yi, λi): (−0.1, 0.2, 15), (−0.1, 0.4, 10), (−0.1, 0.6, 5),
(−0.1, 0.8, 0.5). The dashed line is x = y.

A. Single exponential potential

Here we update the numerical integration result for the
single exponential potential by Frieman and Waga [16].
We use an alternate set of dimensionless variables:

u =
κφ̇

H0
, v = Ω

1/3
m0 (1 + z) , w = λκφ− ln

κ2V0

H2
0

, (15)

the variables u and v are the same as were used in [21].
In terms of these variables, the field equations become:

u′ = −3
H

H0
u+ λe−w , (16)

v′ = −
H

H0
v , (17)

w′ = λu , (18)

where a prime denotes a derivative with respect to the di-
mensionless time parameter H0t. The Hubble parameter
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is defined implicitly according to

H

H0
≡

(

v3 +
1

6
u2 +

1

3
e−w

)
1

2

. (19)

We shall begin the integration at last-scattering. We
choose H0ti = 0. At this initial stage, H/H0 ≫ 1 and
the field evolution (16) is overdamped by the expansion
of the universe, driving u to zero. We therefore choose

ui = 0. At last-scattering, z∼ 1100 and Ω
1/3
m0 ∼ 1 for

Ωm0 ∼ 1, hence vi = 1100 is a reasonable value. Note
that results of the integration do not change significantly
if H0ti, ui and vi are altered to values within the same
order of magnitude. The remaining parameters are wi

and λ, which are determined by the physical origin of
the model.
The integration proceeds until a value H/H0 = 1 is

reached. In Figs. 4 and 5, the contours of Ωφ0 = 1 − v30
and H0t0 are displayed in the wi – λ parameter space.
In view of recent estimates of the ages of globular clus-
ters [23], a mean value of 12.8 Gyr for the age of the
universe is arrive at. With h ≃ 0.7 this would require
H0t0 ∼ 0.9. A concordant value of Ωφ0 = 0.67 ± 0.05
is given by several observational tests [3]. By comparing
these two contour plots, we see that parameters in the
region of small λ are favoured. This region shall repre-
sent models where the solutions approach the attractor,
either the scalar field dominated solution (λ2 < 3γ) or
the scaling solution (λ2 > 3γ), only recently. Note that
a seperate bound of λ2 > 20 has been obtained from nu-
cleosynthesis by assuming that the late times attractor
is the scaling solution, and the attractor is approched
within a few expansion times of the end of inflation [7,8].

FIG. 4. Contours of constant Ωφ0 in the wi – λ plane for
the single exponential potential model.

Another useful quantity which can be determined from
the numerical integration is the deceleration parameter

q0 =
3

2
v30 +

1

2
u2
0 − 1 . (20)

FIG. 5. Contours of constant H0t0 in the wi – λ plane for
the single exponential potential model.

q0 < 0 corresponds to a universe whose expansion is ac-
celerating at the present epoch.

B. Double exponential potential

With the double exponential potential model, we again
use the variables u and v as defined in (15), and redefine
w as

w =
√
2κφ+ lnA . (21)

In terms of these variables the field equations become

u′ = −3
H

H0
u+

√
2V1e

w exp (−ew) , (22)

v′ = −
H

H0
v , (23)

w′ =
√
2u , (24)

where we have replaced V0 with a dimensionless param-

eter V1 = κ2V0

H2

0

, and the Hubble parameter is

H

H0
≡

[

v3 +
1

6
u2 +

1

3
V1 exp (−ew)

]
1

2

. (25)

We choose the same H0ti, ui, and vi as above. The pa-
rameters wi and V1 determine the phyisical origin of the
model. The contours of Ωφ0 and H0t0 are displayed in
the wi – V1 parameter space in Fig. 7 and 6. By compar-
ing these two contour plots, the interesting region would
seem to be the bottom left-hand corner of the parameter
space. The interesting region corresponds to the scalar
fields being still nearly frozen to their initial states, or
having become dynamical and starting to roll down the
potential slope only recently.
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FIG. 6. Contours of constant Ωφ0 in the wi – V1 plane for
the double exponential potential model.

FIG. 7. Contours of constant H0t0 in the wi – V1 plane
for the double exponential potential model.

IV. OBSERVATIONAL CONSTRAINTS

A constraint on the single exponential potential model
has been obtained by Frieman and Waga [16] using five
type IA supernovae (Sne IA). In this section, we will con-
strain both the single and double exponential potential
models using a larger set of Sne IA, together with a sep-
arate constaint using the gravitational lensing statistics
of high luminosity quasars.
Empirical calibration of the light curve – luminosity re-

lationship of Sne IA provides absolute magnitudes that
can be used as distance indicators. The Supernova Cos-
mology Project leaded by Perlmutter et al. [14] and the
High Redshift Supernovae Search Team leaded by Riess
et al. [15] are two different groups have been working ex-
tensively in searching for high redshift Sne IA. I will use

the larger available data set of the two, namely the 60
Sne IA published by Perlmutter et al. [14]. The lumi-
nosity distance – redshift relation so obtained provides
a good observational constraint on quintessence models
provided that there is no intrinsic evolution of the peak
luminosities of the Sn IA sources. The issue of how the
constraints are altered in the presence of such evolution
has been discussed in [17,21].
Gravitational lensing of distant quasars due to galax-

ies along the line of sight provides another relatively sen-
sitive constraint [18] on the quintessence models. The
statistics of abundances of multiply imaged quasars and
observed separations of the images to the source can be
used to estimate the distances to the quasars. We follow
the calculation as described by Waga and Miceli [19], who
used a total of 862 (z > 1) high luminosity quasars plus
5 lenses from seven major optical survey.
We display the results of both tests as 68.3% and 95.4%

joint credible regions of the parameter spaces described
in the previous section. Figs. 8 and 9 display results for
the parameter spaces of the single and double exponen-
tial potential models respectively. For both models, the
interesting regions that give rise to expected values of
Ωφ0 ∼ 0.67 and H0t0 ∼ 0.9 are well within the 68.3% con-
fident region of both the Sne IA and the gravitational
lensing statistics tests. The regions to the left of the
q0 = 0 contours correspond to models that give rise to
accelerated expansion.

FIG. 8. The 68.3% and 95.4% joint credible regions on
the wi - λ parameter space of the single exponential potential
model, for the Sne IA test (dashed) and the gravitational
lensing statistics test (dotted). Over plots are the contours of
H0t0 = 0.9, Ωφ0 = 0.67, and q0 = 0. The region allowed at
95.4% by both observational tests is shaded.
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FIG. 9. The 68.3% and 95.4% joint credible regions on the
wi – V1 parameter space of the double exponential potential
model, for the Sne IA test (dashed) and the gravitational
lensing statistics test (dotted). Over plots are the contours of
H0t0 = 0.9, Ωφ0 = 0.67, and q0 = 0. The region allowed at
95.4% by both observational tests is shaded.

V. DISCUSSION

We have performed a phase-space analysis on the dou-
ble exponential potential model, its properties can be un-
derstood in terms of a single exponential potential model
with a varying coefficient λ. The analysis shows that un-
like the single exponential potential model which has two
late times attractor depending on λ, the double exponen-
tial potential model has only one global attractor which
leads to a matter dominated universe at late times. How-
ever, it is always possible for the model to be dominated
by the scalar field at present and dominated by matter
in the future. The problem with this model is we need
to fine-tune the parameters in order not to have reached
the attractor at the present epoch, thereby circumvent-
ing the objections of Binetruy [12] and de. la. Macorra
[13]. However, all other quintessence models appear to
also require a degree of fine-tuning [4–9].
We studied the observation constraints for both the

single and double exponential potential models using a
more updated type IA supernovae data and the gravita-
tional lensing statistics. The results show that there are
regions in the parameter spaces for which the models are
consistent with the observations at the same time giving
appropriate values for the scalar field energy density and
the age of the universe at present.
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