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Abstract. Several properties of massive stars with large
effects of rotation and radiation are studied. For stars with
shellular rotation, i.e. stars with a constant angular veloc-
ity Ω on horizontal surfaces (cf. Zahn 1992), we show that
the equation of stellar surface has no significant departures
with respect to the Roche model; high radiation pressure
does not modify this property. Also, we note that con-
trarily to some current expressions, the correct Eddington
factors Γ in a rotating star explicitely depend on rotation.
As a consequence, the maximum possible stellar luminos-
ity is reduced by rotation.

We show that there are 2 roots for the equation giving
the rotational velocities at break–up: 1) The usual solu-
tion, which is shown to apply when the Eddington ratio
Γ of the star is smaller than formally 0.639. 2) Above this
value of Γ, there is a second root, inferior to the first one,
for the break–up velocity. This second solution tends to
zero, when Γ tends towards 1. This second root results
from the interplay of radiation and rotation, and in par-
ticular from the reduction by rotation of the effective mass
in the local Eddington factor. The analysis made here
should hopefully clarify a recent debate between Langer
(1997, 1998) and Glatzel (1998).

The expression for the global mass loss–rates is a func-
tion of both Ω and Γ, and this may give raise to ex-
treme mass loss–rates (ΩΓ–limit). In particular, for O–
type stars, LBV stars, supergiants and Wolf–Rayet stars,
even slow rotation may dramatically enhance the mass loss
rates. Numerical examples in the range of 9 to 120 M⊙ at
various Teff are given.

Mass loss from rotating stars is anisotropic. Polar ejec-
tion is favoured by the higher Teff at the polar caps (geff–
effect), while the ejection of an equatorial ring is favoured
by the opacity effect (κ–effect), if the opacity grows fastly
for decreasing Teff .
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1. Introduction

Recent models of stellar evolution with rotation (Meynet
and Maeder 2000) have shown that rotation heavily mod-
ifies all the model outputs for massive stars. In the course
of the above mentioned work, it was realized that several
basic points in the stellar physics need to be further clar-
ified, since they may have some important consequences
on the evolution. These points concern in particular the
correct expression of the break–up velocities and the de-
pendence of the mass loss rates Ṁ on the observed rota-
tion velocities v. These problems are of great concern for
the most luminous stars close to the Eddington limit, like
OB stars, supergiants, LBV and WR stars.

There is an interesting debate in recent litterature
about what is the correct expression for the critical ve-
locity and what is the dependence of the Ṁ–rates on the
rotation velocities v. The critical rotation velocity of a star
is often written as v2crit =

GM
R (1−Γ), where Γ = L/LEdd is

the ratio of the stellar luminosity to the Eddington lumi-
nosity. With this expression, Langer (1997, 1998) suggests
that “no matter the rotation rate may be, it (the star)
will arrive at critical rotation well before Γ = 1 is actu-
ally reached”. Consequently, Langer introduces the con-
cept that the stars generally reach the break–up limit, i.e.
the Ω–limit, earlier in evolution than the Γ–limit.

This point of view was disputed by Glatzel(1998), who
stressed that the Ω–limit is an artefact based on the disre-
gard of gravity darkening and on the assumption of a uni-
form brightness over the surface of rotating stars. Glatzel
concludes that the Eddington factor has no effect on the
critical rotation. This problem needs to be further exam-
ined and this is what is done here.

Another important issue is the dependence of the mass
loss rates Ṁ on rotation velocities v (cf. Maeder and
Meynet 2000). On one side, Langer (1997, 1998), Heger et
al. (2000), Meynet and Maeder (2000) are using a relation
Ṁ vs. v from Friend and Abbott (1986) which formally
leads to infinite mass loss rates at break–up velocities. On
the other side, Owocki et al. (1996, 1998), Owocki and
Gayley (1997) and Glatzel (1998) show that even at ex-
treme rotation the mass loss rates remain finite and do
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not differ too much from the case of zero–rotation. There
also, some further analysis is needed.

In a rotating star, the total gravity is the sum of the
gravitational, centrifugal and radiative accelerations:

gtot = geff + grad = ggrav + grot + grad. (1.1)

For purpose of clarity, we adopt the following definitions:

– We speak of the Eddington or Γ–limit, when rotation ef-
fects can be neglected and grad+ggrav = 0, which implies
that

Γ =
κL

4πcGM
→ 1. (1.2)

In that case L = LEDD = 4πcGM/κ. The opacity κ con-
sidered here is the total opacity, unless we specify it dif-
ferently (cf. Sect. 4.2).

–The break–up or Ω–limit is reached, for a star with an
angular velocity Ω at the surface, when the effective grav-
ity geff = ggrav+grot = 0 and in addition when radiation
pressure effects can be neglected.

–The ΩΓ–limit is reached when the total gravity gtot = 0,
with significant effects of both rotation and radiation. This
is the general case, that we study here. It should lead to
the two above cases in their respective limits.

In Sect. 2, we examine the surface gravity, the Ed-
dington factors and the limiting luminosity. In Sect. 3,
the expression of the break–up velocities are considered,
while in Sect. 4 we examine the mass loss rates. The equa-
tion of the surface with account of rotation and radiative
acceleration is discussed in an Appendix.

2. Surface gravity, Eddington factors and limiting
luminosity

2.1. The von Zeipel Theorem close to the ΩΓ–limit

The von Zeipel theorem (1924) expresses that the radia-
tive flux F at some colatitude ϑ in a rotating star is pro-
portional to the local effective gravity geff . In a previous
work (Maeder 1999), we have generalized this theorem to
the case of shellular rotation proposed by Zahn (1992).
Shellular rotation results from strong horizontal turbu-
lence which reduces the latitudinal dependence of rotation
and makes the angular velocity Ω constant on an isobar.
Here, we shall consider the case of stars with shellular
rotation, where the ΩΓ–limit may play a role.

As shown by Langer (1997), stars close to the Edding-
ton limit tend to develop convection in the outer layers (cf.
also Maeder 1980). However, in the outer layers the con-
vective flux is generally negligible and the main transport
mechanism is radiative transfer, a point also emphasized
by Glatzel (1998). As a numerical example, in a 60 M⊙

model (Meynet and Maeder 2000) at the end of the MS

phase with log L/L⊙= 5.89 and log Teff =4.34 , the con-
vective flux is negligible down to a fractional radius r/R
of 0.85. In a 120 M⊙ with log L/L⊙ = 6.32 and log Teff

=4.35 at the end of the MS, the convective flux is negligi-
ble down to r/R = 0.63. Thus, the basic condition to apply
the von Zeipel theorem to stars close to the ΩΓ–limit is
fulfilled, since the flux is essentially radiative.

The expression of the flux F (Maeder 1999) for a star
with angular velocity Ω on the isobaric stellar surface (cf.
Appendix) is

F = −
L(P )

4πGM⋆
geff [1 + ζ(ϑ)] with (2.3)

M⋆ = M

(

1−
Ω2

2πGρm

)

and (2.4)

ζ(ϑ) =

[

(

1−
χT

δ

)

Θ+
HT

δ

dΘ

dr

]

P2(cosϑ). (2.5)

There, ρm is the internal average density, χ =
4acT 3/(3κρ) and χT is the partial derivative with respect
to T . The quantity Θ is defined by Θ = ρ̃

ρ̄ , i.e. the ratio of
the horizontal density fluctuation to the average density

on the isobar, which is given by ρ̃
ρ̄ = 1

3
r2

ḡ
dΩ2

dr where ḡ is

the average gravity on an isobar (cf. Zahn 1992). One has
the thermodynamic coefficients δ = −(∂ ln ρ/∂ lnT )P,µ,
HT is the temperature scale height. The term ζ(ϑ), which
expresses the deviations of the von Zeipel theorem due to
the baroclinicity of the star, is generally very small (cf.
Maeder 1999).

Let us emphasize that the flux is proportional to geff
and not to gtot. This results from the fact that the equa-
tion of hydrostatic equilibrium is ∇P

ρ = −geff . The effect
of radiation pressure is already counted in the expression
of P , which is the total pressure. We may call M⋆ the ef-
fective mass, i.e. the mass reduced by the centrifugal force.
This is the complete form of the von Zeipel theorem in a
differentially rotating star with shellular rotation, whether
or not one is close to the Eddington limit.

2.2. Expressions of the gravity and of the local Eddington
factor

Let us express the total gravity at some colatitude ϑ, tak-
ing into account the radiative acceleration

grad =
1

ρ
∇Prad =

κ(ϑ)F

c
, (2.6)

thus one has with Eq. (1.1), (2.3) and (2.4)

gtot = geff

[

1−
κ(ϑ)L(P )[1 + ζ(ϑ)]

4πcGM(1− Ω2

2πGρm
)

]

. (2.7)

The rotation effects appear both in geff and in the term in
brackets. When we write κ(ϑ), we mean that in a rotating
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star, the local Teff and gravity vary with latitude and so
does the opacity.We may also consider the local limiting
flux. The condition gtot = 0 in Eq. (1.1) with Eq. (2.6)
for grad allows us to define a limiting flux,

Flim(ϑ) = −
c

κ(ϑ)
geff (ϑ) . (2.8)

From that we may define the ratio ΓΩ(ϑ) of the actual
flux F (ϑ) to the limiting local flux in a rotating star,

ΓΩ(ϑ) =
F (ϑ)

Flim(ϑ)
=

κ(ϑ) L(P )[1 + ζ(ϑ)]

4πcGM
(

1− Ω2

2πGρm

) . (2.9)

As a matter of fact, ΓΩ(ϑ) is the local Eddington ratio.
For zero rotation ΓΩ(ϑ) = Γ as given by Eq. (1.2). Using
relation (2.9), we may write the Eq. (2.7) for the total
gravity as

gtot = geff [1− ΓΩ(ϑ)] . (2.10)

This shows that the expression for the total acceleration
in a rotating star is similar to the usual one, except that
Γ is replaced by the local value ΓΩ(ϑ). Indeed, contrar-
ily to expressions such as gtot = geff (1− Γ) often found
in literature, we see that the appropriate Eddington fac-
tor (2.9) also depends on the angular velocity Ω on the
isobaric surface.

From (2.9), we note that over the surface of a rotating
star, which has a varying gravity and Teff , ΓΩ(ϑ) is the
highest at the latitude where κ(ϑ) is the largest, (if we
neglect the effects of ζ(ϑ), which is justified in general).
If the opacity increases with decreasing T as in hot stars,
the opacity is the highest at the equator and there the
limit ΓΩ(ϑ) = 1 may be reached first. Thus, it is to be
stressed that if the limit ΓΩ(ϑ) = 1 happens to be met at
the equator, it is not because geff is the lowest there, but
because the opacity is the highest ! Indeed, both depen-
dences in geff have cancelled each other in the ratio given
by Eq. (2.9).

2.3. The luminosity at the ΩΓ–limit

The ΩΓ–limit is reached, when the local Eddington ratio
ΓΩ(ϑ) = 1 at some colatitude ϑ. The condition ΓΩ(ϑ) = 1
allows us to define a limiting luminosity LΩΓ at the ΩΓ–
limit, i.e. when both the effects of radiative acceleration
and rotation are important. From (2.9) we have

LΩΓ =
4πcGM

κ(ϑ) [1 + ζ(ϑ)]

(

1−
Ω2

2πGρm

)

. (2.11)

It means that for a certain angular velocity Ω on the iso-
baric surface, the maximum permitted luminosity of a star
is reduced by rotation, with respect to the usual Edding-
ton limit (cf. Sect. 1). This conclusion was also reached by
Glatzel (1998). In the above relation, κ(ϑ) is the largest

value of the opacity on the surface of the rotating star. For
O–type stars with photospheric opacities dominated by
electron scattering, the opacity κ is the same everywhere
on the star. For the equation of the surface discussed in the

Appendix, the maximum value of Ω2

2πGρm
= 0.361, (with

more digits it is 0.360747).

3. The break–up velocities

We have seen above that rotation may be considered as
reducing the maximum possible luminosity for a star. An
alternative way to consider the problem is to ask the
question: what happens to the break–up velocity for a
star close to the Eddington limit ? Most authors (Langer
1997, 1998, 1999; Lamers et al. 1999; Heger et al. 2000)
write this critical velocity vcrit like

v2crit =
GM

R
(1− Γ) . (3.12)

This relation is true if we assume that the brightness of the
rotating star is uniform over its surface, which is in contra-
diction with von Zeipel’s theorem. Surprisingly, some au-
thors use this relation simultaneously with the von Zeipel
theorem. Eq. (3.12), which we do not support, in agree-
ment with Glatzel (1998), implies that the break–up ve-
locity is reduced by the proximity to the Eddington limit.
The problem needs to be further studied carefully.

The critical velocity is reached when somewhere on the
star one has gtot = 0, i.e. according to (2.10)

geff [1− ΓΩ(ϑ)] = 0. (3.13)

This equation has two roots. The first one vcrit,1 is given
by the usual condition geff = 0, which implies the equality
Ω2R3

eb/(GM) = 1 at the equator (cf. Eq. A2 in Appendix).
This corresponds to an equatorial critical velocity

vcrit,1 = Ω Reb =

(

2

3

GM

Rpb

)
1
2

. (3.14)

Reb and Rpb are respectively the equatorial and polar ra-
dius at the break–up velocity and they obey to the surface
equation. We notice that the critical velocity vcrit,1 is in-
dependent on the Eddington factor. To this extent, this
is in agreement with Glatzel (1998). The basic physical
reason for this independence is quite clear: the radiative
flux decreases at the equator, when the effective gravity
decreases.

Equation (3.13) has a second root, which is given by
the condition ΓΩ(ϑ) = 1. As seen above, this condition
will in general be met at the equator first. We thus have
to search for the corresponding critical velocity vcrit,2 for
a given value of the stellar luminosity. This second root
has to be compared to the first one. For given values of
M and L, the lowest of the two roots vcrit,1 and vcrit,2 is
the significant one, since as soon as it will be reached the
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matter at the surface of the star is no longer bound. The
condition ΓΩ(ϑ) = 1 gives, if we neglect ζ(ϑ),

κ(ϑ)L(P )

4πcGM
= 1−

Ω2

2πGρm
. (3.15)

Let us write

Ω2

2πGρm
=

16

81
ω2V ′(ω) with (3.16)

V ′(ω) =
V (ω)
4
3πR

3
pb

and ω2 =
Ω2R3

eb

GM
. (3.17)

The quantity ω is the fraction of the angular velocity at
the classical break–up given by Eq. (3.14). The density
ρm(ω) = M/V (ω), where the stellar volume V (ω) depends
on rotation. The quantity V ′(ω) is the ratio of the actual
volume of a star with rotation ω to the volume of a sphere
of radius Rpb. V

′(ω) is obtained by the integration of the
solutions of the surface equation (A6) for a given value of
the parameter ω. At break–up velocity vcrit,1 , the value of

V ′(ω) = 1.829, which gives the maximum value of Ω2

2πGρm

= 0.361. If we call Γmax the maximum Eddington ratio
κ(ϑ)L(P )/(4πcGM) over the surface (in general at the
equator), Eq. (3.15) can thus be written

16

81
ω2 V ′(ω) = 1− Γmax . (3.18)

For a given value of Γmax, one must search the value of
ω which satisfies this equation. This is easily obtained by
solving numerically the surface equation. For a given large
enough Γmax (i.e. larger than 0.639), the obtained ω–value
is lower than 1, and this implies a corresponding critical
velocity vcrit,2 given by

v2crit,2 = Ω2R2
e(ω) =

81

16

1− Γmax

V ′(ω)

GM

R3
eb

R2
e(ω) =

9

4
v2crit,1

1− Γmax

V ′(ω)

R2
e(ω)

R2
pb

, (3.19)

where Re(ω) is the equatorial radius for a given value of
the rotation parameter ω. Fig. 1 illustrates the results. We
notice that the second root vcrit,2, expressed as a fraction
of the first root vcrit,1 given by (3.14), tends towards zero
when the Eddington factor Γmax tends towards 1. The
first root defined by (3.14) can still be written, but the
second root defined by the condition ΓΩ(ϑ) = 1 is met
first. This reduction of the critical velocity with respect to
the classical expression only occurs for Eddington factors

larger than 0.639, since the maximum value of Ω2

2πGρm
is

0.361 (cf. Eq. 3.15).
This second root results physically from both effects

of rotation and radiation: for Γmax > 0.639, a zero value
of gtot can be achieved for non–extreme rotations. This

Fig. 1. The critical velocity vcrit,2 expressed as a fraction
of vcrit,1 plotted as a function of the Eddington factor
Γmax, which is the largest value of the Eddington factor
reached where the opacity is the largest over the stellar
surface. We notice that when the Eddington factor tends
towards unity, the critical velocity goes down to zero.

enters through the reduction due to rotation of the effec-
tive mass M⋆, which is the significant mass in the local
Eddington factor ΓΩ(ϑ).

For Γmax < 0.639, Eq. (3.18) has no solution. Physi-
cally this means that when the star is sufficiently far from
the Eddington limit, the reduction of the effective mass
M⋆ by rotation is not sufficient to bring ΓΩ(ϑ) to 1. In
that case, Eq. (3.13) has only one root given by the clas-
sical Eq. (3.14).

We hope that these results clarify the debate between
Glatzel (1998) and Langer(1997). On one hand, we see
that the claim by Langer that stars close to the Eddington
limit have a lower rotation limit is correct, even if the Eq.
(3.12) by Langer is not the right one. On the other side,
Glatzel has claimed that the Eddington factor does not
affect the break–up velocity, we see that this is true in
general for most stars for the reasons given above, however
for Γmax ≥ 0.639 this statement does not apply.

The moment when stars reach their critical velocities
is far from being an academic one, since when this occurs
large mass loss enhancements may result, a point which is
examined below.

4. The mass loss rates as a function of Ω and Γ



A. Maeder and G. Meynet: Stellar Evolution with Rotation 5

4.1. Present context

The effects of rotation on the mass loss rates have been
studied both observationally and theoretically. Observa-
tionally, very large changes of the Ṁ–rates, i.e. up to 2–3
orders of a magnitude, were suggested by Vardya (1985).
However, Nieuwenhuijzen and de Jager (1988) claimed
with reason that the correlation found by Vardya was
largely the reflect of the distribution of the mass loss
rates and rotational velocities over the HR diagram.When
disentangling the various effects, Nieuwenhuijzen and de
Jager found much smaller effects of rotation. However,
they noticed that the Ṁ–rates of the Be–stars are larger
by about a factor 102. Since Be–stars are fast rotating
stars, we may wonder whether the effects of rotation on
the mass loss rates are really so negligible, as these last
authors considered them. Certainly further observational
studies are also required.

On the theoretical side, Pauldrach et al. (1986), Friend
and Abbott (1986) find only a moderate increase of the
Ṁ–rates, of about 30 % for v = 350 km/s. Friend and
Abbott find an increase of the Ṁ–rates which can be fitted
by the relation (Langer 1998; Heger and Langer 1998)

Ṁ(v) = Ṁ(v = 0)

(

1

1− v
vcrit

)ξ

(4.20)

with ξ = 0.43. This expression, often used in evolutionary
models, is based on wind models which do not account for
the von Zeipel theorem. We notice that Eq. (4.20) diverges
at break–up, while as shown by Glatzel (1998) and Owocki
et al. (1996, 1998), the stellar mass loss rates should not
diverge at the Ω–limit, (however see Sect. 4.3).

When a proper account of the gravity darkening is
made, there are two main terms contributing to the
anisotropic mass loss rates from a rotating star (cf. Maeder
1999). 1) The “geff–effect” which favours polar ejection,
since the polar caps of a rotating star are hotter. 2) The
“opacity or κ–effect”, which may favour an equatorial ejec-
tion, when the opacity is large enough at the equator due
to the lower Teff .

In O–type stars, since opacity is due mainly to the
T–independent electron scattering, the geff–effect is likely
to dominate, raising a fast highly ionized polar wind. In
B– and later type stars, the opacity effect may favour a
dense equatorial wind and ring formation, with low ter-
minal velocities and low ionization. Recently Petrenz and
Puls (2000) have constructed 2–D models of line driven
winds for rotating O–type stars. They found that the mass
loss from hot star is essentially polar due to the geff–effect.
Quantitatively their results differ very little from previous
works by Pauldrach et al. (1986).

4.2. Expression of the Ṁ–rates as a function of Ω and Γ

It is worth to further examine the consequences of the
above results on the dependence of the mass loss rates

on rotation. According to the radiative wind theory (cf.
Castor et al. 1975; Pauldrach et al. 1986; Kudritzki et al.
1989; Puls et al. 1996), we may write the mass loss fluxes
∆Ṁ/∆σ by surface elements ∆σ

∆Ṁ(ϑ)

∆σ
≃ (kα)

1/α

(

1− α

α

)

1−α

α

F (ϑ)1/αg
1− 1

α

tot (ϑ) (4.21)

where k and α are the force multiplier parameters. At
some temperatures, the ionisation equilibrium of the stel-
lar wind is changing abruptly and so does the opacity of
the plasma. Consequently, the values of the force multi-
pliers undergo rapid transitions for certain values of Teff ,
particularly at 21 000 K and maybe also at 10 000 K (cf.
Lamers et al. 1995; Lamers 1997). Such fast transitions
of the wind properties are called by Lamers a bi–stability
of the stellar winds, since near the transition limit the
wind can exist in two states. There are both empirical
and theoretical determinations of α, however they lead to
rather different values (cf. Lamers et al. 1995). The em-
pirical ones, based on the values of the observed terminal
velocities, are in general smaller than the theoretical es-
timates. As empirical values, Lamers et al. (1995) obtain,
for example, α = 0.52 for 4.70 ≥ logTeff ≥ 4.35, (type
B1.5 or earlier); α = 0.24, 0.21, 0.17, 0.15 for log Teff =
4.30 (type B2.5), 4.20 (B5), 4.00 (B9.5), 3.90 (A7) respec-
tively. These transitions may produce jumps in the mass
loss rates, with the high rates on the low side of the tran-
sition. As Teff is decreasing from the pole to the equator,
one may thus expect, on the surface of a fast rotating star
of type B or later, the occurence of some bi–stability limits
and the corresponding variations of the force multipliers
and of the mass loss rates. In a star, where a bi–stability
limit is crossed at some latitude, a steep increase of the
mass flux will happen between this latitude and the equa-
tor, possibly leading to a huge equatorial ring.

With the expressions of the flux (2.3) and of gtot
(2.10), we get for the mass flux

∆Ṁ(ϑ)

∆σ
≃ A

[

L(P )

4πGM⋆(P )

]
1
α geff [1 + ζ(ϑ]

1
α

(1− ΓΩ(ϑ))
1
α
−1

with A = (kα)
1
α

(

1− α

α

)
1−α
α

, (4.22)

with M⋆ given by Eq. (2.4). We notice the gravity–effect,
which favours mass loss at the pole, where the total gravity
is higher, and the κ–effect which favours high mass loss
where α is small. The proximity to the Eddington limit
will enhance the mass flux due to the term ΓΩ(ϑ), while
rotation enhances the mass flux through both the terms
M⋆ and ΓΩ(ϑ). In the theory of radiatively driven winds,
the total opacity at a given optical depth is expressed with
the force multipliers in terms of the electron scattering
opacity κes. This means that in Eq. (4.22), ΓΩ(ϑ) is just
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ΓΩ(ϑ) =
κes L(P )[1 + ζ(ϑ)]

4πcGM
(

1− Ω2

2πGρm

) . (4.23)

The dependence on latitude of ΓΩ(ϑ) would only come
through the term ζ(ϑ).

4.3. Dependence of the global mass loss rates on rotation

Let us estimate how the global mass loss rates depend
on the rotation velocities and on the proximity of the ΩΓ
limit. For that we henceforth neglect the small corrective
term ζ(ϑ) in the expression of the flux. We have, if Σ(ω)
is the total surface

Ṁ

Σ(ω)
≃ A

[

L(P )

4πGM⋆

]
1
α
(

geff

(1− ΓΩ)
1
α
−1

)

≃

A

[

L(P )

4πGM⋆

]
1
α geff

(1− ΓΩ)
1
α
−1

, (4.24)

since ΓΩ is independent on ϑ, and with appropriate α–
and A–values. For the average effective gravity, we have

geff =

∫ ∫

geff · dσ

Σ(ω)
=

4πGM⋆

Σ(ω)
, (4.25)

after integration over the stellar surface which is an isobar
(cf. Appendix). This leads to the following expression for
the total mass loss rate from the star

Ṁ ≃
A L(P )

1
α

(4πGM)
1
α
−1
[

1− Ω2

2πGρm

]
1
α
−1

(1− ΓΩ)
1
α
−1

. (4.26)

This relation expresses how the total mass loss rate from
a star depends on mass, luminosity, Eddington factor and
rotation, (see Fig. A1 for a simple expression of the rota-
tion parameter). If we omit rotation, Eq. (4.26) is identical
to the typical relations used in literature (cf. Pauldrach et
al. 1986; Lamers 1997). The amplitude of the effects very
much depends on the opacity and in particular on the
value of the force multiplier α.

Let us consider a rotating star with angular velocity Ω
and a non–rotating star of the same mass M at about the
same location in the HR diagram. The ratio of their mass
loss rates can be written,

Ṁ(Ω)

Ṁ(0)
=

(1− Γ)
1
α
−1

[

1− Ω2

2πGρm

]
1
α
−1

(1− ΓΩ)
1
α
−1

, (4.27)

where Γ is the Eddington ratio corresponding to electron
scattering opacity for the non–rotating star. From Eq.
(4.23), we have the relation

ΓΩ =
Γ

1− Ω2

2πGρm

. (4.28)

Table 1. Values of Γ at the end of the MS for various
initial stellar masses, and of the ratios Ṁ(Ω)/Ṁ(0) of the
mass loss rates for a star at break–up rotation to that
of a non–rotating star of the same mass and luminosity
at logTeff ≥ 4.35, at logTeff = 4.30, 4.00 and 3.90. The
empirical force multipliers α by Lamers et al. (1995) are
used.

Mini Γ Ṁ(Ω)

Ṁ(0)

Ṁ(Ω)

Ṁ(0)

Ṁ(Ω)

Ṁ(0)

Ṁ(Ω)

Ṁ(0)

α = 0.52 α = 0.24 α = 0.17 α = 0.15

120 0.903 ∞ ∞ ∞ ∞

85 0.691 ∞ ∞ ∞ ∞

60 0.527 3.78 96.2 1130 3526
40 0.356 2.14 13.6 55.3 106.0
25 0.214 1.76 7.02 20.1 32.6
20 0.156 1.67 5.87 15.2 23.6
15 0.097 1.60 5.04 12.1 18.1
12 0.063 1.57 4.68 10.8 15.8
9 0.034 1.54 4.41 9.8 14.2

We get finally

Ṁ(Ω)

Ṁ(0)
=

(1− Γ)
1
α
−1

[

1− Ω2

2πGρm
− Γ

]
1
α
−1

. (4.29)

If Ω = 0, this ratio is of course equal to 1. This ratio, which
is the main result of this work, can also be expressed with
the ratio v/vcrit,1 of the rotational velocity v to the critical
velocity given by the usual Eq. (3.14). From Eq. (A7) in

the Appendix, we have Ω2

2πGρm
≃ 4

9
v2

v2
crit,1

over a large range

of values (cf. Fig. A1), thus one can write

Ṁ(Ω)

Ṁ(0)
≃

(1− Γ)
1
α
−1

[

1− 4
9 (

v
vcrit,1

)2 − Γ
]

1
α
−1

. (4.30)

For a star with a small Eddington factor, it simplifies to

Ṁ(Ω)

Ṁ(0)
≃

1
[

1− 4
9 (

v
vcrit,1

)2
]

1
α
−1

. (4.31)

Equation (4.31) shows that the effects of rotation on
the Ṁ–rates remain moderate in general. This is in agree-
ment with the results by Owocki et al. (1996), by Owocki
and Gayley (1997) and by Glatzel (1998), and also with
more elaborate non–LTE 1–D and 2–D models by Paul-
drach et al. (1986), Petrenz and Puls (2000). However, this
is only true for stars far enough from the Eddington limit.
When Γ is significant, rotation may drastically increase
the mass loss rates as shown by (4.29) or (4.30). This is
particularly the case for low values of α, i.e. for stars with
log Teff ≤ 4.30. In the extreme cases where Γ > 0.639,
a moderate rotation may even make the denominator of
(4.29) or (4.30) to vanish, thus leading to extreme mass
loss.
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Table 1 shows some numerical results based on Eq.
(4.29). For different initial stellar masses in the Geneva
models at Z =0.02 (Schaller et al. 1992), the Γ factors at
the end of the Main Sequence (MS) phase are given, as well
as the predicted ratios Ṁ(Ω)/Ṁ(0) of the mass loss rates
for a star at break–up rotation and for a non–rotating star
of the same mass and luminosity. These ratios are given at
logTeff ≥ 4.35 (α = 0.52), at logTeff = 4.30 (α = 0.24), at
logTeff = 4.00 (α = 0.17) and at logTeff = 3.90 (α = 0.15)
for the same value of Γ. This covers the range of the typical
Teff of OB and LBV stars, the differences with Teff result
from the differences in the α–parameter. The indication
∞ in Table 1 means that the bracket term in (4.29) or
(4.30) may vanish at maximum rotation, which leads to
extreme mass outflows.

The ratios Ṁ(Ω)/Ṁ(0) keep quite moderate even at
extreme rotation for MS stars up to 40 M⊙, while for MS
stars above 60 M⊙ they can become very large. These ra-
tios may also be very large for B–type supergiants and
LBV stars. In particular, we notice that for stars close
to the Humphreys–Davidson limit the ratios Ṁ(Ω)/Ṁ(0)
may diverge. Such stars are typically at the ΩΓ–limit. For
log Teff ≤ 4.30, the force multiplier α is also very small,
which favours extreme mass loss. On the whole, it is strik-
ing that the domain where Ṁ(Ω)/Ṁ(0) has the possibility
to diverge so closely corresponds to the observed domain
of LBV stars. The present results will enable us to better
specify the changes of the Ṁ rates in massive star models.

5. Conclusion

We conclude that the concept of an ΩΓ–limit reached dur-
ing the evolution of the most massive stars is not an arte-
fact, but the existence of this limit is confirmed by consis-
tent developments based on the von Zeipel theorem. How-
ever, we emphasize that the expression currently used for
the critical velocity is not correct. We have also clarified
the dependence of the mass loss rates on the rotation ve-
locities in the general case.

We can make the following remarks on the various lim-
its:

–1. The Γ–limit : The mass loss rates grow steeply
as the Eddington limit is approached, even in absence of
rotation. This is a well known result of the classical wind
theory.

–2. The Ω–limit : We see that the case of only rota-
tional effects does not apply for O–type stars and even for
the early B–type stars, since they always have a signifi-
cant Γ–value. Only for spectral types later than B3 on the
MS, the Γ term can be ignored. In the framework of the
radiative wind theory, the growth of the mass loss rates
remains limited.

–3. The ΩΓ–limit : This general case is met for ro-
tating OB stars, LBV stars, supergiants and Wolf–Rayet
stars, because both Γ and rotation are important. The
bracket in (4.29) is reduced by rotation and by the prox-

imity to the Eddington limit. As shown by Table 1, both
effects produce steep enhancements of the mass loss rates,
especially for lower Teff since α is lower. This may explain
the very large mass loss rates for LBV stars, blue and
yellow supergiants (cf. de Jager et al. 1988). If the ratio
Γ = κesL

4πcGM is bigger than 0.639, the break–up limit is
reached for reduced rotation velocities, as illustrated by
Fig. 1. Then, extremely high mass loss rates may occur, a
situation likely corresponding to the case of the LBV stars
and maybe also to some WR stars.

Some words of caution are necessary. The Ṁ–rates
given here are the values predicted in the framework of the
radiative wind theory. It is probable that close to break–up
several other effects not included here may intervene, such
as important horizontal fluxes, formally vanishing T – and
P– gradients, instabilities, etc... Also, we may point out
that if the flux vanishes, the radiative wind theory should
not apply. Thus, for the detailed physics of the break–up,
more complex analyses are certainly needed.

Finally, we note that it was generally believed that in
addition to L and Teff , the mass loss rates only depend
on metallicity Z. We see here another dependence which
is quite significant and may introduce some scatter in the
values of the Ṁ–rates. Thus, we may expect that for a
given initial mass the evolution is very different accord-
ing to rotation, due to both rotational mixing, meridional
circulation (Maeder and Zahn 1998) and to the induced
differences in the mass loss rates.

Appendix A: The equation of the stellar surface
in a rotating star with high
radiation pressure

Shellular rotation, with an angular velocity Ω constant on
horizontal surfaces, was proposed by Zahn (1992). This ro-
tation law results from strong horizontal geostrophic–like
turbulence which homogeneizes rotation on the horizon-
tal surfaces. As noted by Meynet and Maeder (1997), the
isobars for shellular rotation are identical to the equipo-
tentials of the conservative case, which are

Ψ =
GM

r(ϑ)
+

1

2
Ω2r2(ϑ) sin2 ϑ = const (A.1)

The components of the effective gravity are

geff,r =
∂Φ

∂r
+Ω2r sinϑ

geff,ϑ =
1

r

∂Φ

∂ϑ
+Ω2r sinϑ cosϑ (A.2)

where Φ = GM/r. In vectorial form, one can write

∇P = −ρgeff = −ρ(∇Ψ− r2 sin2 ϑ Ω∇Ω) . (A.3)
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Fig.A.1. The rotation parameter Ω2

2πGρm
as a function

of the square of the ratio of the rotational velocity to the

critical velocity (3.14). The maximum value of Ω2

2πGρm
=

0.361, as seen above.

This equation is interesting: it shows that if Ω is constant
on isobars, Ψ is also constant on isobars. Moreover, for a
motion ds, the equation of the surface must satisfy

gtot · ds = 0 . (A.4)

Since we have

gtot = geff [1− ΓΩ] , (A.5)

this implies that the surface is perpendicular to gtot, thus
to geff and to the P—gradient. The surface is an isobar,
also if the radiation pressure is important. The equation
of the surface can therefore be represented by Eq. (A1)
and the procedure to calculate is quite conventional, i.e.

1

x
+

4

27
ω2x2 sin2 ϑ = 1 (A.6)

with x = R
Rp

. At break–up, the equatorial radius Reb

equals 1.5 times the polar radius Rpb.
In the above demonstration, there is no need of the as-

sumption Ω = Ω(r), we just need the assumption that Ω
is constant on horizontal surface, which is less restrictive.
This is true, whether the radiative acceleration is impor-
tant or not.

The critical rotation parameter naturally appearing in

this work was the ratio Ω2

2πGρm
. Account must be given to

the change of the average density of the star with rotation.

We can express this ratio by (3.16) or in term of the ac-
tual rotational velocity v and of the critical velocity vcrit,1
(3.14),

Ω2

2πGρm
=

4

9

v2

v2crit,1
V ′(ω)

R2
pb

R2
e(ω)

. (A.7)

The relation between Ω2

2πGρm
and the ratio v2

v2
crit,1

is illus-

trated in Fig. A1. The product V ′(ω)
R2

pb

R2
e(ω) has a limited

range of variation, being equal to 1 for zero rotation and
to 0.813 at break–up velocity. This means that for a crude
estimate at low or moderate velocities, one may just ignore
this product in Eq. (A7).
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