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Abstract

The classical formulation of ”Olbers’ Paradox” consists in looking for

an explanation of the fact that the sky at night is dark. We use the exper-

imental datum of the nocturnal darkness in order to put constraints on a

newtonian cosmological model. We infer then that the Stellar System in

such a model should have had an origin at a finite time in the past.

PACS 98.80 - Cosmology.

1 Introduction

The observation that the sky at night is dark seems to be in conflict with the
idea of an infinite Universe. If the Universe is infinite and contains an unlimited
number of stars, our line of sight should meet a star in every direction we
observe. Therefore, there should be no apparent gaps between stars on the
celestial sphere. Moreover, repeating an argument originally attributed to de
Cheseaux (1718-1751) [1], we note that, in an infinitely populated Universe, the
number of stars contained in a spherical shell of radius r is 4πnr2dr, where n is
the number of stars per unit volume. If L is the absolute luminosity of a star,
the intensity of light at a distance r is I = L/4πr2. Hence the generic shell
produces a lighting (in the centre of the shell) equal to nLdr. Since there is an
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infinite number of shells, the lighting, in every point of the Universe, should be
infinite!

But the sky at night is dark. This apparent contradiction has been named
Olbers’ Paradox, following the publication in 1823 of H. W. Olbers’ paper ”On
the Transparency of Space” [2]. However, the first assertions about the conflict
between the dimensions of the Universe and the nocturnal darkness can be
traced back to Digges (1576), Kepler (1610) and Halley (1721) [3].

Many explanations were given during the centuries in attempts to resolve the
paradox. Olbers suggested the presence of interstellar dust obscuring the far-
thest stars, but simple thermodynamical considerations by J. Herschel (1848) [4]
soon ruled out this explanation. Others invoked hypotheses that required a hi-
erarchic distribution of stars [5]. In 1917 Shapley suggested the idea of an
”island-universe”, that is a limited spatial extension of the stellar system, as a
resolution of the paradox. After the discovery of the expansion of the Universe,
the redshift was proposed as the fundamental mechanism necessary to ”cut”
the radiation coming from the farthest galaxies, hence assuring the darkness of
night.

Harrison [6] suggested that the paradox does not exist even in the context
of a classical Universe, in the framework of which it was conceived, because
there are too few stars and their lifetimes are too short. In other words the
Universe does not contain enough energy to produce a bright sky. Nevertheless,
in current literature there are still many misunderstandings about the paradox.
It is often explained using the redshift, which, on the contrary, does not have
a relevant role [7]. In fact detailed calculations show that in our Universe the
luminosity of the sky is determined to order of magnitude by the lifetime of the
galaxies, and only affected by a factor of two by the expansion of the Universe
(see [8], which also gives a survey of the recent literature on the subject).

The classical formulation of Olbers’ Paradox tries to explain the fact that
the night is dark. In contrast, in the present paper, we use this observed fact to
put some constraints on a simple euclidean-newtonian cosmological model. We
then draw several necessary conclusions about the origin of the Universe (i.e.
the Stellar System) at a finite time in the past.

2 The cosmological model

The model of space-time used here is the classical euclidean-newtonian one. The
Universe is a euclidean manifold ℜ × ℜ3, with a euclidean metric on ℜ3. The
time we use is the absolute time of Newton. The generic event is singled out
by orthogonal cartesian coordinates (t, ~x) ∈ ℜ × ℜ3 . Therefore space has an
infinite extension and is isotropic, homogeneous and flat in every region and
so it coincides with Newton’s absolute space. The simultaneity we refer to is
the newtonian absolute simultaneity. The light signals propagate on euclidean
straight lines and the speed of light is finite and equal to c.

In this model, all matter is in the form of stars. They are distributed in
a homogeneous and isotropic way in the regions they fill. Therefore, there
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are no bunches of stars, such as clusters, galaxies, etc. The number of stars
per unit volume does not change with time. This hypothesis is equivalent to
assuming that the lifetime of a ”virtual star” is, a priori, unlimited. From
an astrophysical point of view, it means that a star does not have chemical,
nuclear or gravitational evolution. Of course, based on current knowledge of
stellar evolution, this is not true. Yet, from the cosmological point of view, this
idea is reasonable if we admit an uninterrupted sequence of stellar generations.
For every star that dies, a new one comes up, so the density of ”active” stars
does not change over time. As we will see, the comparison of the model with the
experimental evidence of the dark at night will allow us to decide between the
hypothesis of an ”eternal” stellar system (i.e. an infinite number of generations)
or the hypothesis of a stellar system born at a finite time in the past.

Of course, the adopted model does not describe any of the main properties
of the contemporary models (such as expansion, curvature, red shift, etc.). Yet,
we have chosen this model for two reasons. The first is its metric simplicity,
which will let us introduce the concept of ”lookout limit” without mathematical
complexity. The second reason is that this model coincides with the model of
classical newtonian space-time, historically adopted by Halley, Olbers, Shapley,
until the Einstein paper on cosmology (1917) [9]. Finally, we want to note
that the closer the global curvature is to zero, the more the euclidean model
approximates the curved space-time.

3 Lookout limit and background radiation en-

ergy density

Let us think of the stars as uniformly distributed in space. We then suppose that
each star occupies an average volume V . Furthermore, each star has a section
of area σ. Thus, the probability that our line of sight meets a star surface is

p =
σ

V 2/3
. (1)

Our line of sight is certain to meet a star, if we observe a numberN of elementary
volumes V , lined up in sequence, equal to

N =
V 2/3

σ
. (2)

This is true, of course, if the stars are distributed completely at random in their
respective volumes.
The distance reached by the line of sight before meeting a star surface is therefore

δ = V 1/3V
2/3

σ
=

V

σ
. (3)
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We call this distance lookout limit, after Harrison. It is well known that this
quantity coincides with the mean free path λ of a photon [10]; in fact V = 1/n,
where n is the number of stars per unit volume and

λ :=
1

σn
=

V

σ
= δ. (4)

Following Harrison and Kelvin [11], we will derive an expression for the frac-
tion of sky covered by stellar discs, and then a formula for the radiation energy
density (at the point of the observer) due to the whole stellar system.

Let us consider a spherical shell of radius r and thickness dr. Let Ω(r) be
the solid angle free of stellar discs up to the shell r. Let ∆Ω(r) be the solid
angle intercepted by the stars present on the shell r. The fraction of solid angle
intercepted by stars on the shell r is [10]

∆Ω

Ω
=

total stellar area

total shell area
=

−nσ4πr2dr

4πr2
= −nσdr. (5)

After integration, we obtain an expression for the solid angle still free of stellar

discs after a radial path r

Ω(r) = Ω0 e
−nσr (6)

where Ω0 ≡ 4π.
The solid angle intercepted by the stellar surfaces after a path r is therefore

Ω0 − Ω(r) = Ω0(1− e−nσr). (7)

Hence the fraction of intercepted solid angle is

α =
Ω0 − Ω(r)

Ω0

= 1− e−nσr. (8)

α is the fraction of sky covered by stellar discs out to the radius r. We note
that if the stellar distribution is spatially unlimited, we can push r → ∞, and
then α → 1, i.e. the whole sky is covered by stars.
Also important is the relation

u(r) = 4u∗(1− e−nσr), (9)

where u(r) is the radiation energy density at the centre of a sphere of radius
r, due to all the stars contained in the sphere, and u∗ is the radiation energy
density at the surface of a star.
This relation can be derived as follows.
In a time dt a star emits an energy dE = Ldt, where L is the star’s luminosity.
This energy spreads (in the time dt) on a volume 4σcdt, where 4σ is the surface
area of a star with a section of area σ. Therefore we can write dE = 4u∗σcdt,
where u∗ = L/(4σc) is the radiation energy density at the surface of the star.
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The radiated energy dE travels until it reaches a distance r from the star. Then,
in the same time dt as before, it spreads on a volume 4πr2cdt. Therefore the
radiation energy density at a distance r from the source is

u =
dE

4πr2cdt
=

Ldt

4πr2cdt
=

u∗σ

πr2
. (10)

Now, the number of stars on a shell of radius r is

4πr2ndr, (11)

and the fraction of free sky, i.e. not covered by stellar discs at a distance r from
the observer, is (see eqs. (6), (8))

Ω(r)

Ω0

= e−nσr. (12)

Therefore the number of stars not obscured by other stars, i.e. visible at the
centre of the shell, is

4πr2ndre−nσr , (13)

and the contribution to the radiation energy density at the centre of the shell
due to the stars on the shell is

du = 4πr2ndre−nσr u
∗σ

πr2
= 4u∗σne−nσrdr. (14)

Integrating this relation between 0 and r, we obtain formula (9).
Hence u represents the energy density of the background sky, or what is today
called extragalactic background light. We note that u = 4u∗ in every star dis-
tribution extending to r ≫ λ = 1/nσ. For an infinite spatial extension of the
stellar system, the background sky energy density must be of the same order of
that on the surface of a star.
The experimental condition of dark sky can be expressed in this context as

u ≪ u∗. (15)

We note that the presence of the factor e−nσr (which accounts for the mutual
absorption of light by stars in the Universe) produces a lowering of lighting at
any point in space from ∞ to 4u∗.

4 Study of the model

We are now able to examine all the cases suggested by the proposed model us-
ing the concept of lookout limit, having adopted absolute newtonian space and
time, and having supposed that they both have an infinite extension.
For the stellar system, we have the two following possibilities:
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I) The distribution of the stellar system is spatially infinite.

II) The distribution of the stellar system is spatially finite. We suppose then
that it has a spherical symmetry with a radius R.

In case I) we can distinguish two subcases:

Ia) The stellar system has existed from an infinite time in the past.

Ib) The stellar system was ”turned on” (all the stars together and simultane-
ously) at a time t0 = −T in the past (T > 0)(we take t = 0 as the present time).

In case Ia) it is evident that the sky at night must be luminous. In fact ev-
ery line of sight should necessarily intercept, sooner or later, a star surface
(α = 1). Therefore the celestial sphere must appear luminous, completely filled
up by stellar discs, without dark spaces among stellar discs (u = 4u∗). Case Ia),
a spatially infinite Universe, is the model adopted by Halley and Olbers, on the
grounds of newtonian considerations. It is in evident conflict with observation,
a conflict historically known as Olbers’ Paradox.

In case Ib), only the radiation of stars contained in a sphere of radius h = cT
(cosmological horizon) can reach us. The radius of this sphere must be compared
with the value of the lookout limit λ. We can distinguish the following subcases.

Ib1) If λ > cT then the night sky could turn out to be ”dark”, that is

u(cT ) < u(λ) = 4(1−
1

e
)u∗. (16)

In fact, the lines of sight can extend outward to a distance of r = λ, beyond
the ”border” r = cT of the stellar system. This situation is consistent with the
observed evidence.

Ib2) If λ < cT then the sky at night must be ”luminous”, that is

u(cT ) > 4(1−
1

e
)u∗. (17)

Of course this possibility is excluded by the experimental evidence.

Let us now study case II). We have two sub-cases here as well:

IIa) The stellar system has existed from an infinite time in the past (t0 = −∞);

IIb) The stellar system was ”turned on” at a time t0 = −T in the past.

In case IIa) we can compare λ with the radius R of the stellar system:
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IIa1) If λ > R then the night sky could be ”dark”, i.e. u(R) < 4(1− 1/e)u∗.

IIa2) If λ < R then the night sky should be ”luminous”, i.e. u(R) > 4(1−1/e)u∗.

The first case is in apparent agreement with the empirical evidence. Yet we
observe that the assumptions ”R finite” and ”t0 = −∞” create problems in
the dynamical stability of the system. From the point of view of newtonian
mechanics, a homogeneous sphere, with a finite radius and a negligible angular
momentum, made of particles interacting only by gravity, has to collapse in-
wards upon its geometrical centre in a finite time. For such dynamical reasons
case IIa1) offers little of physical interest and can be ruled out.

In case IIb), stars were born at a time t0 = −T in the past. The quantities
to be compared are now the lookout limit λ, the radius R of the stellar system,
and the horizon h = cT of the observable spherical region of the stellar system.
We have therefore 6 (= 3!) different cases. Their analysis is summarized by the
following table.

IIb1) cT < λ < R ⇒ (dark sky: u(cT ) < 4(1− 1/e)u∗)

IIb2) λ < cT < R ⇒ (luminous sky: u(cT ) > 4(1− 1/e)u∗)

IIb3) λ < R < cT ⇒ (luminous sky: u(R) > 4(1− 1/e)u∗)

IIb4) R < λ < cT ⇒ (dark sky: u(R) < 4(1− 1/e)u∗)

IIb5) cT < R < λ ⇒ (dark sky: u(cT ) < 4(1− 1/e)u∗)

IIb6) R < cT < λ ⇒ (dark sky: u(R) < 4(1− 1/e)u∗).

We should point out that in cases IIb) also, with R < ∞, t0 = −T , there
could be problems of dynamical instability. We can say that the collapse of
the spherical stellar system is unavoidable; nevertheless we can think that the
collapse is not observable if we suppose that it is very slow compared with the
cosmic time scale (T) (speed of collapse ≪ c).
It is interesting to note that Newton himself investigated the problem of the
dynamical stability of a finite spherical system of stars. He knew that such
a system should have collapsed after a finite time inwards upon its centre of
mass. But, strangely enough, he avoided calculating the time for gravitational
collapse. Only in 1902, did Lord Kelvin complete the first cosmological calculus
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on the collapse time of the whole stellar system [11]. He found that the collapse
time does not depend on the initial size of the system. Instead, it depends only
on its initial density

tk =

(

3π

32Gρ0

)1/2

. (18)

Assuming an average interstellar distance of 1 pc and a mean mass of 1 solar
mass, Kelvin obtained a time for the collapse equal to 20 × 106 years. Yet,
Kelvin used classical arguments: he ignored the relativistic limit of the speed
of light and therefore he obtained such a short collapse time that it was not
realistic if compared with the cosmic time scale. If we take into account the
limiting speed of light c, then the collapse time cannot be less than the radius
of the universe divided by c, because the various regions will collapse, at the
fastest, with a speed equal to c.

5 Conclusions

The comparison of the cases presented in the above section with the experi-
mental evidence of the dark sky at night, allows us to eliminate cases Ia, Ib2,
IIa2, IIb2, IIb3. They produce a luminous sky at night. Only cases Ib1, IIb1,
IIb4, IIb5, IIb6 are physically admissible, because they are consistent with the
experimental evidence. What property do they share?

The main consideration is that all these cases imply the birth of the Stellar

System at a finite time in the past. We note that our model, together with the
evidence of the dark sky, is not able to discriminate between a Universe with a
finite radius and one with an infinite radius.

Therefore the conclusion that can be drawn from our model is that the
experimental evidence of the dark sky implies that the Stellar System was born

at a finite time in the past. This important observation was not formulated by
Olbers or others (Halley, Kelvin, etc.). Olbers would have been able to infer,
from the observed fact of a dark night sky, the birth of the cosmos at a finite
time in the past. This could happen because the cosmological model adopted
by Olbers (and more or less explicitly by all the scientists until Einstein) is the
newtonian one described in section 2. The lookout limit introduced by Harrison
is a useful concept which has allowed us to obtain a deeper and more effective
understanding of the model.

We want to emphasize that other authors have focused particularly on the
luminous lifetime of single stars. But this has prevented them from reaching
the relevant conclusions about the lifetime of the whole stellar system, i.e. the
Universe. The main hypothesis that allowed us to obtain information about the
lifetime of the Universe (the Stellar System) is the one of the ”virtual star”, i.e.
a fictitious luminous source that, in principle, has an infinite life. Successive
generations of real stars can be modelled as a single virtual star without an
a priori fixed lifetime. The check with the observational evidence (u ≪ u∗)
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determines, at this point, the lifetime of the virtual star, i.e. of the whole
Stellar System. In other words, we could say that classical physics (without
hypotheses on nuclear reactions and expansion of the Universe) is able to explain
the nocturnal darkness of the sky only by requiring a finite lifetime of the Stellar
System.

Finally we want to observe that several authors (e.g. Weinberg) state that
in a Big Bang cosmology there is no paradox because the contribution of the
various stellar generations is cut at a finite time in the past [12]. This is not
always true from our point of view, because we have seen that we can have a
”Big Bang cosmology” (in the newtonian sense, namely that the stellar system
was ”turned on” in the past), which nonetheless produces a luminous sky (cases
Ib2, IIb2, IIb3). In conclusion, Olbers would not have been able to infer the
expansion of the Universe from the observation of the dark sky at night, as sev-
eral authors [13] seem to suggest. On the contrary, Olbers and other authors
(from the 18th to the early 20th centuries) would have been able to assert that
the Universe has had a temporal origin in the past.
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