
ar
X

iv
:a

st
ro

-p
h/

00
08

30
2v

2 
 2

9 
Se

p 
20

00
Accepted by ApJ Letters, 18 August 2000

Preprint typeset using LATEX style emulateapj v. 04/03/99

A NEW LOOK AT SIMPLE INHOMOGENEOUS CHEMICAL EVOLUTION

M. S. Oey1

Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; oey@stsci.edu

Accepted by ApJ Letters, 18 August 2000

ABSTRACT

A rudimentary, one-zone, closed-box model for inhomogeneous chemical evolution is offered as an alter-
native reference than the Simple model in the limit of no mixing. The metallicity distribution functions
(MDFs) of Galactic halo and bulge stars can be matched by varying a single evolutionary parameter,
nQ. Q is the filling factor of contaminating regions and n is the number of star-forming generations.
Therefore, Q and n have equivalent roles, and combinations of n and Q yield systems with different
metallicities at any given age. The model also revises interpretation of observed MDFs. Unevolved
systems probe the parent distribution of metal production f(z), for example, the high-metallicity tail of
the halo distribution agrees with a power-law f(z).

Subject headings: galaxies: abundances — galaxies: evolution — Galaxy: abundances — ISM:
kinematics and dynamics — solar neighborhood — stars: abundances

1. INTRODUCTION

The relation between galactic star formation history and
the interstellar medium (ISM) is recorded in the distri-
bution of elements we observe today. The principal sig-
natures are: (A) Time-integrated metallicity distribution
functions (MDFs), as exhibited by long-lived stars; (B)
instantaneous MDFs at a given time, for example, the
present-day dispersion in the inhomogeneous ISM; (C)
abundance ratios of elements with varying origin and his-
tories; and (D) age-metallicity relations. A unified un-
derstanding of these tracers is fundamental to solving the
puzzle of galaxy assembly and evolution.
Over the 30 years of work on chemical evolution mod-

eling, the constraints offered by (B), the instantaneous
MDF, have been relatively neglected. However, Tinsley
(1975) showed early on that chemical inhomogeneity sig-
nificantly affects the other chemical signatures. Edmunds
(1975) also argued that simplistic inhomogeneous evolu-
tion of overlapping supernova remnants, with no mix-
ing, yields a present-day ISM that is orders of magnitude
smoother than what is presently observed. This issue is
only rarely discussed (e.g., Roy & Kunth 1995). But re-
cently, the significance of dispersions in the chemical sig-
natures has been reemphasized (e.g., Wyse 1995; van den
Hoek & de Jong 1997). We are therefore overdue to reex-
amine inhomogeneous chemical evolution.
Picking up threads from the early work, I present here

an analytic model that predicts the metallicity dispersion
from first principles in the limiting case of no mixing.
As a reference, we return to the standard, Simple model
(e.g., Tinsley 1980; Pagel & Patchett 1975; Schmidt 1963),
which assumes: (1) a closed system, (2) initially metal-
free, (3) constant stellar initial mass function (IMF), and
(4) chemical homogeneity at all times. Most previous an-
alytic investigations of inhomogeneous evolution were tied
to the Simple model, and assumed a given dispersion in
metal production: Tinsley (1975) adopted a fixed metal-
licity dispersion and propagated this through the Simple

model; while Searle (1977) and Malinie et al. (1993) con-
sidered an ensemble of regions that individually follow the
Simple model such that they yield a given dispersion.

2. A FRESH APPROACH

A different, perhaps simpler, approach, returns to the
concept of overlapping regions of contamination, as dis-
cussed qualitatively by, e.g, Edmunds (1975). We adopt
the tenets, except for (4), of the Simple model. Consider
an initially metal-free ISM, in which a first generation of
star forming regions is randomly distributed, occupying a
volume filling factor Q. We assume that these individual
regions have a distribution of metal production f(z), which
is the probability density function for obtaining metallic-
ity z at any point affected by star formation. Note that
it is not necessary to assume anything specific about the
sizes of the individual regions, but only the relative total
volumes of contaminated to primordial gas, given by Q.
We now consider n subsequent generations of star for-

mation. The individual regions also fall randomly in the
ISM, but for each generation, occupy the same filling fac-
tor Q as the first. The role of this last assumption will
become apparent in §4 below. The probability that any
given point in the ISM is occupied by j overlapping re-
gions is given by the binomial distribution in n and Q:

Pj =

(

n

j

)

Qj (1−Q)n−j , 1 ≤ j ≤ n ; (1)

and the probability of a point retaining primordial metal-
licity is,

P0 = (1 −Q)n . (2)

For our purposes, we define the metallicity z to be the mass
of metals per unit volume; the coexisting mass density of
H is assumed to be spatially uniform. In accordance with
our assumption of no mixing, we assume that the metal-
licity at any given point is the sum of those contributed
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2 Inhomogeneous chemical evolution

by the individual overlapping regions zi:

z =

j
∑

i=1

zi . (3)

To obtain the instantaneous MDF after n generations,
we sum the distributions Nj(z) for individual sets of re-
gions occupied by j objects, weighted by their Pj :

Nins(z) =

n
∑

j=1

Pj Nj(z) . (4)

To derive the total MDF of all objects ever created over
n generations, we must reduce the total gas mass after
each generation k by a factor Dk = 1− kδ, to account for
the conversion of gas into stars. We assume the reduction
increment δ to be constant, so that the present-day gas
fraction µ1 = 1 − nδ. The total, time-integrated MDF is
then:

Ntot(z) =
1

n

n
∑

k=1

Dk−1 Nins,k(z) =
1

n

n
∑

j=1

n
∑

k=j

Dk−1 Pj,k Nj(z) ,

(5)
where Pj,k is Pj for a given generation k. Note that this
treatment for gas consumption assumes that Pj,k remain
unaffected by the reduction of gas.
We now assume that f(z) remains the same for all gen-

erations. For large j, the Central Limit Theorem applies,
which predicts that the summed MDF approximates a nor-
mal distribution with mean and variance given by j times
the mean a and variance σ2 of f(z). Thus, Nins(z) is given
simply by:

Nins(z) =

n
∑

j=1

Pj (2πjσ2)−1/2 e
−(z−ja)2

2jσ2 , (6)

where Pj is given by equation 1. Likewise, to estimate
Ntot(z) for large k, the binomial distribution approximates
a normal distribution with mean and variance given by

ab = kQ

σ2
b = kQ(1−Q) . (7)

Thus equation 5 may be written:

Ntot(z) =
1

n

n
∑

j=1

n
∑

k=j

Dk−1

j1/2 2πσbσ
e

−(j−ab)2

2σ2
b

+
−(z−ja)2

2jσ2
.

(8)
For small n, equations 6 and 8 break down unless f(z)
describes a normal distribution.

3. THE FORM OF F (Z)

Several considerations suggest that f(z) should be given
by a power-law. As a rough estimate, we consider the vol-
ume affected by a star-forming region to be that of the
superbubble generated by its N∗ core-collapse supernovae
(SNe). Following Oey & Clarke (1997; hereafter OC97),
the mechanical power L = N∗ESN/te, where te = 40
Myr is the life expectancy of L for OB associations, and

ESN = 1051 erg is the individual SN energy. The mechan-
ical luminosity function of L is assumed to be a power-law
with index −β (OC97, eq. 1). If the superbubbles grow
until they are confined by the ambient pressure, the stan-
dard, adiabatic shell evolution implies that their final radii
will be related to L as R ∝ L1/2 (OC97, eq. 29). The total
affected volume is therefore,

Vs ∝ R3 ∝ L3/2 . (9)

In contrast, the total mass of metals produced by N∗ SNe
is given by,

Mz = my (te/ESN) L , (10)

where my is the mean yield of metals per SN.

Taking z = Mz/Vs, we find that z ∝ L−1/2 for the
superbubble population, showing that the largest super-
bubbles generate the lowest metallicities, owing to dilution
into larger volume. The MDF for superbubbles is,

Ns(z) dz ∝ Ns(R) dR
dz

dR
∝ z−3+2βdz ∝ z dz , (11)

where Ns(R) ∝ R1−2β is the size distribution for objects
at their final radii (OC97, eq. 41). The final relation is ob-
tained for β = 2, a value typical, perhaps, for all galaxies
(Oey & Clarke 1998). Here we see that there are larger
numbers of metal-rich objects owing to the larger numbers
of smaller superbubbles. Finally, the probability density
for z at any given point in the ISM is:

f(z) ∝
4

3
πR3 Ns(z) ∝ z−6+2β . (12)

For β = 2, we obtain,

f(z) dz = Cz−2 dz , zmin < z < zmax . (13)

Since f(z) is a probability density function, its integral
must be unity, and C gives the appropriate normaliza-
tion. Thus, for a given generation of star formation, f(z)
is weighted toward low-metallicity regions because of their
large sizes. The limiting values zmin and zmax are deter-
mined by the corresponding Rmax and Rmin.
For a Salpeter (1955) IMF of slope –2.35 and SN progen-

itor masses between 8 and 120 M⊙, we use my = 10 M⊙,
based roughly on models by Woosley & Weaver (1995).
We take Rmax = 1300 pc, a rather arbitrary value cor-
responding to the characteristic parameter Re of OC97;
and Rmin = 25 pc, corresponding to individual SN rem-
nants. These yield log zmin = −4.7 and log zmax = −3.0,
or, taking O as a tracer of primary elements, minimum
and maximum [O/H] of –3.0 and –1.3 relative to solar.
The adopted yield of my = 10M⊙ may be somewhat high
(e.g., Woosley & Weaver 1995), but the mean f(z) may be
somewhat modified depending on zmin and zmax.

4. RESULTS

We can now construct Monte Carlo models of the MDF
for small n. We generate the components Nj(z) by draw-
ing from f(z) (equation 13) j times and summing the
drawn zi (equation 3). This is repeated 5000 times to ob-
tain distributions for Nj(z). Equations 4 and 5 then pro-
vide the instantaneous and total MDFs. The histograms in
Figures 1a and c show these models of Nins(z) and Ntot(z)
for n = 2 and Q = 0.72, and panels b and d show the same



M. S. Oey 3

for n = 4 generations. The hatched bar in panels a and b
shows the fraction of primordial gas remaining, as deter-
mined by Q. The analytic curves show the corresponding
results from equations 6 and 8. After 2 generations at
Q = 0.72, we can still see the component power-law dis-
tributions in the Monte Carlo models, and there is gross
deviation from the analytic approximation. However, at
only n = 4, we can already see how the stochastic model
is approaching the analytic version. In panel e at n = 24,
the models are in close agreement.
In contrast to this rapid evolution, Figure 1f demon-

strates the effect of a small Q. The model for n = 24, Q =
0.12 is similar to that in panel d for n = 4, Q = 0.72. Al-
though these are not identical, we can see that it is the
product nQ that characterizes the evolutionary state, as
a result of equation 7. Thus, the relative filling factor
of contamination has the same importance as the number
of contaminating generations. While this statement may
seem intuitively obvious, it is worth emphasizing, since the
implications are profound.
Figure 2 shows data for the outer Galactic halo MDF

(Laird et al. 1988; dash-dot line), with [Fe/H] converted
to [O/H] following Pagel (1989). The solid histogram
shows an inhomogeneous Monte Carlo model for nQ = 6.4.
There is remarkable similarity between the observations
and our rudimentary model, especially in the qualitative
shape, having a metal-rich tail and large (∼ 1.0 dex) dis-
persion. The data also agree well, coincidentally, with the
Simple model (dotted line; e.g., Tinsley 1980, equation 4.3)
for present-day metallicity log z1/Z⊙ = −0.2. Both mod-
els take µ1 = 0.
However, it is essential to note that the shapes of the two

models result from entirely different processes. The high-
metallicity turnover in the Simple model results purely
from consumption of gas into stars. Figure 3 shows the
Galactic bulge, a relatively evolved system, with data from
Ibata & Gilmore (1995). A Simple model having z1 = Z⊙

requires µ1 ∼ 0.25 to resemble the data (dotted line). The
dashed line shows a similar homogeneous model with no
gas consumption, i.e., a linear relation with equal num-
bers of stars created at all metallicities (µ1 = 1). The
difference between these two homogeneous models is thus
entirely due to the depletion of gas into stars, which also
applies to the Simple model for the halo (Figure 2).
In contrast, the high-metallicity tail of the inhomoge-

neous halo model represents the vestige of the f(z) power-
law; while the low-metallicity turnover results from the
Central Limit Theorem, as the component distributions
progress toward gaussians (cf. Figure 1). This offers
an alternative interpretation of the MDF vs. the Sim-
ple Model. In addition, it reveals the importance of the
high-metallicity tail in relatively unevolved systems, for
probing the parent distribution f(z).
An evolved inhomogeneous model like the Galactic bulge

should approach the same limit as the homogeneous Sim-
ple model, since the metallicities contributed by f(z) con-
stitute a progressively smaller fraction of the current z̄ of
the ISM (Edmunds 1975). Figure 3 indeed shows that all
the models essentially coincide in the low-metallicity tail.
However, at the high-metallicity end, the form of the in-
homogeneous model mainly reflects σb for the most recent
contaminating generations. These become progressively
narrower (equation 7), but do not truncate like the Simple

model.
The inhomogeneous model matches the observed bulge

MDF for µ1 = 0, z1 = Z⊙; while the Simple model would
require z1 to be 10 times larger for µ1 = 0, with almost
half the distribution at 0 < [O/H] ∼< 1. Thus, it is es-
pecially noteworthy that the inhomogeneous model agrees
with both the Galactic halo and bulge MDFs by varying
only the single parameter, nQ. The predicted shape, dis-
persion, and mean z̄ are linked, thus the simultaneous
agreement for these features is highly encouraging. It
is also clear that the supersolar MDF is a vital discrimi-
nant between the models. Malinie et al. (1993) emphasize
the importance of reproducing not only the low-metallicity
tail, but also the high-metallicity drop-off of the MDF.
Figure 4 shows histograms of the empirical Galactic disk

G-dwarf MDF for stars in solar neighborhood, with [Fe/H]
converted to [O/H] as before. The solid curve shows the
analytic inhomogeneous model for nQ = 32, my = 10M⊙;
the dashed line shows a model with a lower yield my =
1M⊙, which is thereby 10 times more evolved for the given
mean metallicity. Finally, the dotted line shows the Simple
model for z1 = Z⊙. All models take µ1 = 0.25.
The Simple model deviates most strongly from the data,

illustrating the “G-dwarf Problem.” Although the inho-
mogeneous models do not solve the Problem, their MDFs
are slightly more peaked, thus more similar to the data.
Note also that Rocha-Pinto & Maciel (1996) truncated
their derived distribution below an effective [O/H] < −0.6.
The predicted [O/H] FWHM dispersions in the present-
day, instantaneous MDF are 0.27 and 0.08 dex for the
models with nQ = 32 and 320, respectively. These values
can be compared to the present-day observed dispersion
in the solar neighborhood evidenced, for example, by the
well-known –0.3 dex deviation of the Orion nebula from
solar metallicity.
In summary, I present a rudimentary, one-zone model

which considers overlapping areas of contamination with
no mixing. This model thus represents a limiting case
opposite to the homogeneous Simple model. An under-
appreciated point is that the filling factor Q of contami-
nation is as important as the number of star-forming gen-
erations n. The product nQ therefore constitutes a single
parameter that describes a system’s evolutionary state. Q
and n may be independent, and are roughly associated
with the global star formation efficiency and age, respec-
tively. Thus a system with low Q can result in a present-
day metal-poor ISM, but having old stars (e.g., I Zw 18);
and a high Q can yield an old, and simultaneously, metal-
rich population (e.g., the Galactic bulge). By varying only
the parameter nQ, the model can remarkably match both
the Galactic halo and bulge metallicity distributions, and
slightly improve the disk G-dwarf Problem. As expected,
relatively unevolved systems are sensitive to the parent
f(z). For example, the high-metallicity tail of the Galactic
halo MDF is consistent with a power-law f(z). However,
evolved systems are independent of f(z) and show pro-
gressively decreasing dispersions. Further development of
this inhomogeneous model, and investigation of additional
empirical constraints, are currently underway.

I am grateful to Cathie Clarke, Mike Fall, and Rosie
Wyse for detailed discussions and suggestions, and also to
Annette Ferguson for early conversations. I also enjoyed
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Fig. 1.— Histograms show Monte Carlo models for MDFs, and analytic curves show results from equations 6 and 8, with n and Q indicated.
The hatched bars in panels a and b show the proportion of metal-free gas, placed arbitrarily in log z.

Fig. 2.— MDF for Galactic halo stars from Laird et al. (1988; dash-dot line), overplotted with a Monte Carlo inhomogeneous model for
n = 8, Q = 0.8 (solid histogram). The dotted line shows the Simple Model for log z1/Z⊙ = −0.2. All models use µ1 = 0.
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Fig. 3.— Galactic bulge empirical F/G-dwarf MDF from Ibata & Gilmore (1995, dot-dashed line); they truncate data at [O/H]> 0, due to
uncertainties. The solid line shows an analytic, inhomogeneous model for n = 55, Q = 0.8, µ1 = 0 (solid line). Simple models are shown for
µ1 = 0.25, z1 = Z⊙ (dotted line) and a non-consuming model, µ1 = 1, z1 = Z⊙ (dashed line).

Fig. 4.— MDF of Galactic disk F/G-dwarfs from Wyse & Gilmore (1995) and Rocha-Pinto & Maciel (1996). Analytic, inhomogeneous
models are shown for n = 40, Q = 0.8, my = 10M⊙ (solid line) and n = 400, Q = 0.8, my = 1M⊙ (dashed line). The dotted curve shows
the Simple Model for z1 = Z⊙. All models use µ1 = 0.25.
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discussions with many people during recent conferences.
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