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Abstract

Measurements of fluctuations in the Cosmic Microwave Background Radiation (CMBR)

is one of the most promising methods for measuring the fundamental cosmological
parameters. However, in order to infer parameters from precision measurements it
is necessary to calculate the theoretical fluctuation spectrum to at least the mea-
surement accuracy. Standard treatments assume that electrons, ions and neutral
hydrogen are very tightly coupled during the entire recombination history, and that
the baryon-photon plasma can be treated as a two-fluid system consisting of baryons
and photons interacting via Thomson scattering. We investigate the validity of this
approximation by explicitly writing down and solving the full set of Boltzmann
equations for electrons, ions, neutral hydrogen and photons. The main correction
to the standard treatment is from including Rayleigh scattering between photons
and neutral hydrogen, a change of less than 0.1% in the CMBR power spectrum.
Our conclusion is thus that the standard treatment of the baryon-photon system is
a very good approximation, better than any possible measurement accuracy.

Key words: Cosmology: Cosmic microwave background, early universe
PACS: 98.70.Vc, 95.30.Gv, 98.80.-k

1 introduction

Anisotropies in the Cosmic Microwave Background Radiation (CMBR) were
first detected in 1992 by the COBE satellite (Smoot et al. 1992). The am-
plitude and distribution of these temperature fluctuations are closely related
to the underlying cosmological model. Thus, a precision measurement of the
CMBR fluctuations can in principle yield very precise information about the
values of the fundamental cosmological parameters, €2, Q, €y, Hy etc. (see
for instance Bond et al. 1994, Jungman et al. 1996a,b, Bond, Efstathiou &
Tegmark 1997, Eisenstein, Hu & Tegmark 1999). Normally the fluctuations
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are parametrized in terms of spherical harmonics as

EL0.0) = X 0 in0.0). 0
im

where the a;,,, coefficients are related to the power spectrum by C; = (a, aim )m-
For purely Gaussian fluctuations the power spectrum contains all statistical
information about the fluctuations. The data from COBE are not sufficiently
accurate for a useful determination of the cosmological parameters. However, a
new generation of high-precision experiments will be able to do this. Two bal-
loon experiments, BOOMERANG (de Bernardis et al. 2000) and MAXIMA
(Hanany et al. 2000), have already measured the first and second acoustic
peaks in the power spectrum (up to [ < 800). In the next few years there
will be data of even better quality available from the MAP and PLANCK
satellite experiments [1]. However, extracting precise information about the
cosmological parameters means that we should be able to reliably calculate
the theoretical fluctuation spectrum to at least as high precision as that of the
best measurement.

Calculating the CMBR power spectrum is a very complicated issue. It in-
volves solving the coupled Boltzmann equations for all different particle species
present. This framework has been described in great detail in many papers (see
e.g. Ma & Bertschinger 1995), and Hu, Scott, Sugiyama & White (1995) for
instance have discussed the influence of various physical assumptions on the
final CMBR spectrum.

Since photons exchange momentum and energy with the baryons, a core issue
of any CMBR calculation is the treatment of the photon-baryon system. The
photons mainly exchange energy with the baryons via Thomson scattering
on free electrons. The number of free electrons can be calculated by solving
the recombination equations. These equations were first formulated by Peebles
(1968) and independently by Zeldovich, Kurt & Sunyaev (1969). Until recently
this treatment was used in all calculations of CMBR anisotropies, but it is only
accurate to a few percent. Recently Seager, Sasselov & Scott (1999a,b) have
provided a much more accurate method for calculating recombination.

However, one assumption which has been made consistently in all treatments
is that electrons, protons and neutral hydrogen atoms are very tightly coupled
and can exchange energy and momentum much faster than any other relevant
timescale (see e.g. Ma & Bertschinger 1995). This means that the photon-
baryon system can be treated in a two-fluid approximation, where photons
exchange energy with a baryon-fluid which is assumed to have infinitely strong

I For information on these missions see the internet pages for MAP
(http://map.gsfc.nasa.gov]) and PLANCK (http://astro.estec.esa.nl/Planck/]).
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self-interaction.

In the present paper we calculate interaction and energy-momentum exchange
rates for the entire baryon-photon system, and write down the full set of Boltz-
mann equations for the system of electron, ions, neutrals and photons. Solv-
ing this system of equations we find that the assumption of a tightly coupled
baryon fluid interacting with photons only through Thomson scattering is a
very good approximation, valid at the 1073 level.

In section 2 we calculate the relevant rates for different processes, in section 3
we derive the Boltzmann equations for a multi-fluid baryon plasma, and in sec-
tion 4 we describe numerical results of solving this extended set of equations.
Finally, section 5 contains a discussion of our results.

2 Reaction rates in the photon-baryon plasma
2.1 Photons

Electrons — The main energy exchange mechanism between photons and elec-
trons is Thomson scattering. The scattering rate per photon is given by

I' = n.(opv) = 1.7 x 107% Qh%2 T3 s, (2)
where o7 = 87a?/3m? is the Thomson scattering cross-section. Relativistic

corrections to the standard cross section are important at the O(T /m,) ~ 1075
level (Hu, Scott, Sugiyama & White 1995).

The other main photon-electron processes are bremsstrahlung and double
Compton scattering. The rates for these two processes are given roughly by
(Hu & Silk 1993a,b, Lightman 1981)

Tps = 3 x 107 T3222(Q,h%)? 571 (3)

and

Ipe =2 x 1072 T2, (Qph?) s (4)

Ions — Photons scatter on ions in exactly the same way as they do on elec-
trons. However, because of the mass difference the cross section is much smaller

2
o= op <m—> ~ 3% 1077 op. (5)

mp



Neutrals — Photon scattering on neutrals (Rayleigh scattering) is charac-
terised by the cross section (Jackson 1962, Lightman 1979, Peebles & Yu
1970)

or = or(w,/wy)’, wy=13.6 eV, (6)

if w < wy. This cross-section is energy dependent, but the thermal average of
the cross section leads to a scattering rate of

FR =2 X 10_10 Qbh2(1 - xe)Te’YV S_17 (7)

for T,y < 1 eV. However, close to the epoch of recombination, the photons
are not in scattering equilibrium (Hu & Silk 1993a,b) and the different photon
modes do not exchange energy. Therefore the energy dependence of Rayleigh
scattering can have different effects in different wavelength bands. We will
return to this question in section 5.

2.2 Electrons

Photons — Thomson scattering gives a rate per electron of

[ =n,{opv) ~ 1.70 T, s (8)

Ions — Coulomb scattering on ions is characterized by the cross section

3
oc — ﬁO’T hlA, (9)
where A is the Coulomb logarithm
3 T8 2
A==|—F+—"— . (10)
2 \man.(1+ z.)
The scattering rate is then given by
3 . 3/2
' =ne{ocv) ~ 30T In A (?—T) : (11)
and inserting numbers gives a rate of
I =1.8 log A Qh’z, 727 s~ (12)



In addition to Coulomb scattering electrons and ions can recombine to neutral
hydrogen. The rate for this process is given roughly by (Lightman 1979, Ma
& Bertschinger 1995)

I'=1.7x10"" Qh2x. T s, (13)

[¢]

which is entirely negligible as a means of momentum transfer.

Neutrals — Electron scattering on hydrogen atoms at low energy is primarily
s-wave, so the cross-section is given by (Mott & Massey 1965)

4 & 4
ON — ]{?_7;- Z(Ql + 1) Sin2 6l =~ ]{7_7;- sin2 5l:0 (14)
=0

The s-wave phase shift has been calculated for instance by Schwartz (1961).
To a reasonable approximation we may put 0 ~ 7 for F < wy. In that case

the rate is
4t (2B N2
T = np{owv) = nn <2meEe ( - ) > (15)

Inserting numbers into the above equation yields the rate

I'=0.16 Qh*(1 — 2)T20% s~ (16)

e

2.8 lIons

We have already seen that Thomson scattering is negligible for protons. The
Coulomb scattering rate is the same as for electrons. Scattering on neutrals
is very inefficient because of the much higher mass of protons compared with
electrons. Finally, the recombination rate is the same for protons as it is for
electrons.

2.4 Neutral hydrogen

We shall in the present paper assume that all neutral hydrogen is in the ground
state, an approximation which is very good for our purposes.

Photons — The Rayleigh scattering rate has been calculated above to be

g =n,{opgv) ~ 6.4 x 107°T%, s7! (17)



Photo-ionization of neutral hydrogen could in principle also be important. The
rate for this process is given by (Ma & Bertschinger 1995)

r— %mgmtﬁ’/%‘* (T) o), (18)

where B is the binding energy of the given level and ¢(7") = 0.4481n(B/T).
For ionization from the ground state this is approximately

['=9.1x 10 Tye 1B6/Tev g1 (19)

Finally, neutral hydrogen can also absorb momentum from the photon gas via
photo-excitation. During recombination the Ly-« line is densely populated
by resonance photons (Peebles 1968). This effective non-thermal distribution
function across the line we denote with f,,. In terms of this the photo-excitation
rate from the ground state is

I'=21x10°f,7"% s (20)

From the recombination calculation we find f, and thus I'. The system of
equations we use is that provided by Peebles (Peebles 1968). Although it is not
as accurate as that of Seager, Sasselov & Scott (1999a,b), it is adequate for our
purpose. Note that photo-excitation does not in itself transfer any momentum
between hydrogen and the other species. Almost all photons in the line are
resonance photons and not thermal background photons. However, hydrogen
in excited states is ionized almost completely and so the above rate can be
seen effectively as the rate for converting hydrogen and ep.

Electrons — Scattering on electrons is by far the most important means of
exchanging momentum with other species. The rate is roughly given by (c.f.

Eq. (16))

T = n.(oyv) ~ 0.16 Qh22 07 s~ (21)

Ions — Scattering on ions is by s-wave scattering exactly as for electrons.
However, the cross section is much smaller because of the much higher mass
of protons.

2.5 Ion-electron fluid

The Coulomb interaction between electrons and ions is already the domi-
nant reaction rate in the plasma. However, as soon as there is any motion of



electrons relative to ions, an electric field quickly builds up and acts in the
direction opposite to the motion (Hogan 2000). Thus, electrons and ions are
even more tightly coupled than the Coulomb scattering suggests and effec-
tively this means that electrons and protons can be treated as one tightly
coupled species.

2.6 Comparison of rates

From the above equations we can compare the different rates and identify the
dominant ones for momentum exchange between the different species. How-
ever, the above equations describe the scattering rates, not the rates for mo-
mentum transfer between different species. These two quantities are to a good
approximation equivalent, except in the case where photons scatter on mas-
sive particles. Because photons have very low momenta compared with massive
particles, they are inefficient at transferring momentum to these particles. In
each scattering, the photon on average loses a large fraction of its momentum,
whereas the massive particle only loses a fraction ~ T'/m of its momentum.
This effect is only important for the processes described in Egs. (8) and (17).
Both these equations should be multiplied by a factor 7'/m,, to find the rate
of momentum transfer. When this is done, all rates are momentum transfer
rates and can be directly compared.

Fig. 1 shows the different rates as a function of time. From the figure it is
clear which processes we need to include, they are:

1) Thomson scattering which couples photons with the ion-electron plasma
2) Rayleigh scattering which couples photons with neutral hydrogen

3) s-wave scattering which couples the ion-electron fluid with neutral hydrogen
(this process is dominant for z < 2000).

3 Boltzmann equations for a multi-fluid baryon-photon plasma

The evolution of different particle species can be described via the Boltzmann
equation. In deriving the equations below we shall work in synchronous gauge
because the numerical code for calculating CMBR power spectra, CMBFAST
(Seljak & Zaldarriaga 1996), is written in this gauge. As the time variable
we use conformal time dr = dt/a(t), where a(t) is the scale factor. Finally,
instead of using physical momentum, p;, we work with comoving momentum,
q; = apj, because it is a conserved quantity in the expanding universe. Finally,
we parametrize it as ¢; = gn;, where ¢ is the magnitude and n; is a 3-vector
describing its direction. Generically, the Boltzmann equation can always be
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Fig. 1. Momentum transfer rates for the different species present during CMBR
formation: (a) photons, (b) ion-electron fluid, (c¢) neutrals. In each case, the labeling
is as follows: (a) Full line is Thomson scattering, dotted is bremsstrahlung, dashed
is double Compton scattering and dot-dashed is Rayleigh scattering. (b) Full line
is Thomson scattering, dotted is scattering on neutrals. (¢) Full line is Rayleigh
scattering, dotted is photo-ionization, dashed is photo-excitation and dot-dashed is
scattering on electrons. All rates were calculated assuming a standard flat CDM
model with Q,, = 1,Q, = 0.05, Hy = 50 km s~ Mpc~!.

written as

_Df _

LIf) = 5= = Clf), (22

where L[f] is the Liouville operator. The collision operator on the right-hand
side describes any possible collisional interactions.

We then write the distribution function as

f(xi>qanj’7_) = fO(Q)[1+\D($i’Q>nJ>T)]> (23)



where fy(q) is the unperturbed distribution function. fy can be found by solv-
ing the unperturbed Boltzmann equation (Kaplinghat et al. 1999)

dfo

L~ cip) (24

The perturbed part of the Boltzmann equation can be written as an evolution
equation for ¥ in k-space (Ma & Bertschinger 1995)

e = el e

where p = n/ l%j. h and n are the metric perturbations, defined from the per-
turbed space-time metric in synchronous gauge (Ma & Bertschinger 1995)

ds® = a*(1)[—d7r* + (04 + hij)da'da?], (26)

Y .1 .
hy= [ dhe (k;ikjh(k; )+ (ke — 5(52-]-)67;(&7)). (27)

Collisionless Boltzmann equation — At first we assume that f—loC[f] = 0. We
then expand the perturbation as

¥ = S (<i)' (20 + )W P(). (28)

One can then write the collisionless Boltzmann equation as a moment hierar-
chy for the ¥; by performing the angular integration of L[f]

q 1.dlIn fy
Uy =—kdw 2
0 ke ! 6hdl nq (29)
¥, :k;gi(% — 20, (30)
by = kil (20, - 305) - (E“S ) T (31)
U=k—L (0, — (1 +1)T,) , 1>3 (32)

(20 +1)e

It should be noted here that the first two hierarchy equations are directly
related to the energy-momentum conservation equation. This can be seen in
the following way. Let us define the density and pressure perturbations of the
dark matter fluid as (Ma & Bertschinger 1995)



d=0dp/p (33)

0=ik;0T}/(p+ P) (34)
~ A 1 . .
o=—(kik; — géij)(T” — §9TF/3). (35)

Then energy and momentum conservation implies that (Ma & Bertschinger
1995)

5:—(1+w)<9+g>—39(5—P—w>5 (36)

a\ op
o . s
o0 s — 2 gy SOPpas e (37)
a 1+w 1+w

By integrating Eq. (29) over ¢%*edq, one gets Eq. (36) and by integrating
Eq. (30) equation over ¢*dq one retrieves Eq. (37).

Collisional Boltzmann equation — The baryon-photon system is coupled by
interactions, so C[f] # 0. In the standard treatment, where all baryons are
assumed to be infinitely tightly coupled to each other, there are only two
Boltzmann equations, one for the photons and one for the baryons (Ma &
Bertschinger 1995). The baryons are highly non-relativistic and we need only
consider the first two terms in the Boltzmann hierarchy, corresponding to en-
ergy and momentum. For photons many more terms need to be incorporated.
However, in the present treatment we suppress writing out explicitly these
higher order terms. The collision term for the system has been calculated
many times in the literature and the collisional Boltzmann equations are (Ma
& Bertschinger 1995)

Baryons:

o=— (9 + @> (38)

2

.G, oP 4p

0= —59 — 5—pl{325 + 3—pZaneaT(94, - ‘9(,) (39)
Photons:

.4 h

5_—5 <9+§> (40)

0=1k*(6,/4 — 0,) + ancor (6, — 0,) (41)

+ higher order terms (42)
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The full hierarchy can be found for instance in Ma and Bertschinger (1995).

In our case, instead of an infinitely tightly coupled baryon-electron fluid we
have three interacting “species”: electrons (e), ions (¢) and neutrals (n). This
means that 4 different Boltzmann hierarchies have to be solved simultaneously.
As discussed in section 3, the electrons and ions can be considered as infinitely
tightly coupled because of charge neutrality. This ion-electron fluid we denote
by the subscript ©+ — e. The Boltzmann hierarchy is now

lon-electron fluid:

§=— (9 + g) + p: (6 — Gi_e) (43)

o= —ge _ i—im + %anm(@ C0,) + any (on0) (B — Bi). (44)
Neutrals:

o=— (9 + g) + p—Z((SZ-_e —5,) (45)

0= —g@ + (z—];kzé + %ann(aﬁ(é’y —0,) + an;_{onv)(0i—. — 6,). (46)
Photons:

f— 2 <9+é> (47)

3 2
0=1k*(6,/4 — 0,) + ancor(8;_. — 6,) + ang(or) (6, — 6,) (48)
+ higher order terms (49)

Here (o) denotes the thermally averaged Rayleigh cross section. In the equa-
tions for 0 for neutrals and ions, there is a new term appearing because ions
and neutrals can interconvert. p can be found from solving the unperturbed
Boltzmann equation (Kaplinghat et al. 1999), which in the present case is the
recombination equation.

11



4 Numerical results

Solving the above system of equations is quite complicated, but we can easily
estimate the importance of the different terms. The first important term is the
interaction between neutrals and electrons/ions. We can estimate the relative
velocity difference between these two components as

4py
Hn — Gi_e ~ 3pi_e NeOT

0, ne{oNv)

~1x 10777 (50)

Thus, the relative velocity building up between neutrals and electrons/ions
is at most of O(1077). This correction is exceedingly small and we can to a
very good approximation treat neutrals and electrons-ions as infinitely tightly
coupled. In that case the above system of equations almost reduces to that in
the standard treatment

Baryons:
: h
d=— (9 + —) (51)
2
. a oP 4p
0=—0— —Kk5+ —"_a(n. n 0, —0). 52
" " +3(pi—e+pn)a(n or +np(or))(0y —0) (52)
Photons
.4 h
o) -
0="k*(6,/4 — o) + a(neop + nn(or)) (6 — 6,) (54)
+ higher order terms (55)

Except for the fact that Rayleigh scattering is now included this form is iden-
tical to the standard treatment. Note that the polarization terms for photons
are different for Rayleigh scattering compared with for Thomson scattering
because Rayleigh scattering corresponds to scattering in a dipole field (see
e.g. Jackson 1962). However, this is a higher order effect which is we shall not
discuss further in the present paper.

Thus, the corrections to the standard treatment come almost solely from in-
cluding Rayleigh scattering in the calculations of the temperature power spec-

trum. We have modified the CMBFAST code to include the effect of Rayleigh
scattering. In Fig. 2 we show how the CMBR temperature power spectrum

12
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Fig. 2. CMBR power spectra for a standard flat CDM model with
Qm = 1,9, = 0.05, Hy = 50 kms~! Mpc~!, calculated with (full line) and with-
out (dotted line) the inclusion of Rayleigh scattering. The upper panel shows the
actual power spectra which are so close that they are indistinguishable on the figure.
The lower panel shows the ratio of the two power spectra.

changes due to this inclusion. The difference between the two spectra increases
with [, but is always below 1073, Since the absolute accuracy of CMBFAST
is only about 1%, one might worry that the effect is due to numerical noise.
However, the effect shown in Fig. 2 is a differential effect, and the accuracy of
CMBFAST should therefore be substantially better.

It is in fact possible from analytic arguments, to understand how the inclu-
sion of Rayleigh scattering dampens the fluctuation spectrum. Three effects
contribute to change the CMBR power spectrum: 1) Diffusion damping of the
perturbations close to recombination is changed by including Rayleigh scat-
tering, 2) The last scattering surface is moved to slightly lower redshift, so
that p,,/p, is higher. This means that the early ISW effect is less important,
and suppresses power around the horizon size at recombination. 3) Since the

13
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Fig. 3. The damping of the CMBR power spectrum as a function of [, calculated
from the analytic estimate of Eq. (58).

last scattering surface is moved to lower redshift, R = 3p,/4p,, is also higher.
This parameter changes the amplitude of the acoustic oscillations (Hu 1995).

The first effect is the most important and can to a reasonable precision be

calculated analytically. The diffusion damping of the k-space fluctuation spec-
trum can be written roughly as (Hu 1995)

P(k)damping = D2(k)P(k)no damping (56)
where

D(k) = [ dyreme 0", (57)

Here, 7 =T is the differential optical depth, and kp ~ [ dn/7 is the diffusion
scale for a photon. 7 is the conformal time coordinate, dn = dt/a.

We then use the approximate relation that [ ~ 2k/H, to write that
Cir Ji© dpipere=(R/koR) 2 s
Cl,no R l§2k2/Ho - f(;?O dnj’no Re_Tno Re_(k/kD,no R)2 ( )

This damping factor is shown as a function of [ in Fig. 3. It quite nicely agrees
with both the magnitude and shape of the damping seen in the numerically

14



calculated spectrum (Fig. 2). The oscillatory behaviour of the damping in
Fig. 2 comes from the fact that the parameter R is changed (Hu 1995, Landau,
Harari and Zaldarriaga 2000), so that the oscillation amplitudes are different
when Rayleigh scattering is included.

Thus, the behaviour of the fluctuation damping due to Rayleigh scattering,
seen in Fig. 2, is understandable in terms of simple physical arguments.

5 Discussion

We have thoroughly reviewed the interactions between different particle species
in the baryon-photon plasma during recombination, as well as written down
the complete set of Boltzmann equations for the system of photons, elec-
trons, ions and neutrals. In the standard CMBR calculations, the entire baryon
plasma is treated as infinitely tightly coupled to itself. We find that the error
introduced by this assumption is only at the 10~7 level. The main error in the
standard treatment is that Rayleigh scattering between photons and neutral
hydrogen is neglected. However, the difference in the power spectrum when
this process is included is at most of O(1073), even at high .

The benchmark for any CMBR calculation is the best possible precision with
which any measurement can be made. Because the ensemble average needed
in calculating C} in practise has to be replaced with an average over m there

is an uncertainty in Cj of
O’(C[) 2
>/ 59
;o T V2l+ 1’ ( )

which corresponds to the best precision any CMBR measurement can be made
to. Even at [ = 2000 this “cosmic variance” is o(C))/C; = 0.022, which is an
order of magnitude higher than the error introduced by neglecting Rayleigh
scattering, and several orders of magnitude larger than the error introduced
by treating neutrals and ions/electrons as infinitely tightly coupled. Notice,
however, that this calculation has been performed using a thermally averaged
Rayleigh cross section. Since photons with different energy do not exchange
energy at recombination (Hu & Silk 1993a,b), this different Rayleigh inter-
action rate can lead to different fluctuation spectra in different wavelength
bands. A full calculation of this effect requires solving the momentum depen-
dent Boltzmann equation for the photon gas (Ma & Bertschinger 1995), and is
beyond the scope of the present work. However, one can get a rough feeling for
how the effect of Rayleigh scattering scales with photon energy. In Fig. 4 we
show the effect on the power spectrum in the case where the Rayleigh scatter-
ing is increased by factors of 24 and 3* above the value for the average photon

15
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Fig. 4. The damping of the CMBR power spectrum as a function of /, calculated
for the cases of or = 2*(cp) (dashed line) and or = 3*(og) (solid line).

energy. In this case, the effect can be very significant and above the detection
threshold. To compare with observations, the highest frequency channel of the
Planck surveyor is at 857 GHz (see iffp://astro.esfec.esa.nl/Planck}]), which
corresponds to E, ~ 15Ty ~ 5(E.) [?. So for the Planck surveyor it is not
impossible that the effect at high frequencies could be detectable. However,
this simplistic analysis clearly overestimates the effect, because increasing the
general Rayleigh scattering by a certain amount implicitly assumes that all
photons have more energy, which is not really the case. A real calculation using
the momentum dependent Boltzmann equation would likely find a somewhat
smaller effect, which could nevertheless still be significant at high energy. A
second point is that the high frequency bands are subject to heavy foreground
contamination (Tegmark et al. 2000), so that a cosmological signal would
probably not be visible.
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2 Note that even though this frequency would from Eq. (6) correspond to o ~ 5*(c),
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of o = 3%(o), shown in Fig. 4.
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