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1. Introduction

In a recent paper (Hauschildt et al. 1999, hereafter: NG-giant) we have presented

a grid of spherically symmetric model atmospheres for stars with log(g) ≤ 3.5 and in

the temperature range 3000 ≤ Teff ≤ 6800 K. In this paper, we present an update of the

NG-giant grid tuned for young pre-MS (PMS) stars. This PMS grid spans the parameter

range 2000 K ≤ Teff ≤ 6800 K and 2.0 ≤ log(g) ≤ 3.5 for solar abundances. The models

were calculated for very low mass stars with M = 0.1 M⊙ but in the parameter range

considered the mass of the star changes the synthetic spectra and the atmospheric struc-

ture only marginally. A major difference from our NextGen grids of model atmospheres

(Hauschildt, Allard, & Baron 1999; Hauschildt et al. 1999) is the replacement of TiO and

H2O line lists with the newer line list calculated by the NASA-AMES group, Schwenke

(1998) for TiO (about 175 million lines of 5 isotopes) and Partridge & Schwenke (1997) for

H2O (about 350 million lines in 2 isotopes).

In the next section we give a brief overview over the model construction and the

differences from the NextGen grids. Then we discuss some results, in particular the effects

of the new line lists and we end with a summary of the paper.

http://arxiv.org/abs/astro-ph/0008464v1
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2. Model calculations

We have calculated the models presented in this paper using our multipurpose model

atmosphere code PHOENIX, version 10.7. Details of the code and the general input physics

setup are discussed in Hauschildt, Allard, & Baron (1999); Hauschildt et al. (1999) and

Hauschildt & Baron (1999) and references therein. The model atmospheres presented here

were calculated with the same general input physics as in NG-giant. However, the change

of the line lists has some impact on the model structure and synthetic spectra (see below).

Our combined molecular line list includes about 550 million molecular lines. These lines

are treated with a direct opacity sampling technique where each line has its individual

Voigt (for strong lines) or Gauss (weak lines) line profile (see Hauschildt, Allard, & Baron

1999, and references therein for details). The number of lines selected by this procedure

depends on the the model parameters. Typically, the smallest amounts of molecular lines

are selected at the cool and hot ends of the grid, e.g., about 75 million for Teff = 2000 K,

log(g) = 3.5 and 80 million for Teff = 4000 K, log(g) = 2.0. The maximum number of

selected molecular lines is about 215 million at Teff = 3000 K, log(g) = 2.0 (all data are for

solar abundances).

3. Results

We have calculated a grid of solar abundance (table 5 of Jaschek & Jaschek 1995)

model atmospheres and grids with enhanced metallicities [M/H] = +0.3 as well as re-

duced metallicities, [M/H] = −0.3. The models span a range of 2000 K ≤ Teff ≤ 6800 K

and 2.0 ≤ log(g) ≤ 3.5. These models were originally intended to be used for low mass

stellar evolution models (Baraffe et al, in preparation) and thus assume a mass of 0.1 M⊙

for the stars. In the parameter range (mainly log(g)) considered here, the synthetic spec-

tra can also be applied to other masses. Most of the basic results have been described in

Hauschildt et al. (1999), so we are concentrating here on comparison with the NG-giant

models.

3.1. Comparison with NG-giant models

The largest change from the input physics of the NG-giant models is due to the differ-

ent and larger line lists for TiO and water vapor. In Figures 1 and 2 we compare NG-giant

models (dotted lines) to the PMS grid. The main difference between these models is the

selection of the input line lists, we used the same version of PHOENIX and the same thermo-
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dynamical and opacity data (other than TiO and water vapor) for the calculations. Both

sets of models were iterated to convergence with their respective setups, so the differences

in the spectra are the results of both direct opacity changes and changes in the structure of

the model atmospheres due to the different opacities. In the optical spectrum, the result

is generally weaker TiO bands for the PMS models compared to the NG-giant models at

Teff = 3000 K but slightly stronger TiO bands at Teff = 4000 K. The situation is slightly dif-

ferent for the water bands shown in Figure 2. The NextGen-type models show stronger

H2O bands with less inter-band opacity than the PMS models. More importantly, the

shape of some water bands are noticeably different between the two setups. The reason

for this behavior is the changes in the structure of the atmosphere caused by the differ-

ent degree of completeness of the water vapor line lists used (see Allard, Hauschildt &

Schwenke, submitted). For low Teff, the strengthening of the overall water opacity go-

ing from the NG-giant models to the PMS models produces weaker TiO bands due to

changes in the structure of the atmospheres. However, in hotter models the water bands

are not as important as the TiO bands and the net effect of the overall slightly stronger

TiO lines produces stronger TiO bands in the optical. These effects are more pronounced

for higher gravities (water opacity is relatively more important for larger gravities at the

same effective temperature).

In general, the PMS setup applied to M dwarfs produces somewhat better fits to

field stars (Leggett et al. 1999; Leinert et al. 1999), although the water bands are still not

perfectly reproduced by the models (Allard, Hauschildt, & Schwenke 1999). One reason

for this are problems with the water line lists, but other opacity sources (such as dust

formation in very cool models) as well as the treatment of convection in optically thin

layers are additional sources of uncertainty.

3.2. Effects of metallicity changes

The effects of metallicity changes on low resolution synthetic spectra are shown in

Figs. 5–8 for models with Teff = 3400 K and Teff = 2400 K for the extreme values of the

gravity in our grid. For the higher effective temperature, Figs. 5 and 6, the effects of

metallicity are most pronounced in the optical (reduced metallicity causes increased flux

due to decreased TiO opacity) and in region from 1 to 1.5µm (the reaction of the atmo-

sphere causes reduced flux in this region to compensate for the larger flux in the optical).

The water band get stronger with reduced metallicity due to these redistribution effects.

For lower effective temperatures, Figs. 7 and 8, the effects of metallicity of the spectra are

significantly smaller, in particular for the lower gravity shown in Fig. 7. Here the tem-
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peratures are so low that the bands are saturated and thus will not change much within

the range of metallicities considered here (larger changes will eventually affect the spec-

tra). Significant changes occur only in localized bands, e.g., the metal hydrides and other

non-saturated bands such as VO.

3.3. Formation of radiative and convective zones

Typically, a cool stellar atmosphere has only one convective zone at the bottom of the

atmosphere whereas the top of the atmosphere is (and has to be) in radiative equilibrium.

The convective zone at the bottom of the atmosphere connects to the convective envelope

of the interior of the star. However, our calculations indicate that the convective region at

the bottom of the atmosphere can be disrupted by the onset of an isolated radiative zone

within specific parameter ranges. These ranges are illustrated in Fig. 3. Each symbol

represents a model with multiple convective and radiative zones. The plot shows that a

continuous and not an arbitrary parameter range exhibits this behavior.

We investigated the cause of this effect and found it to be due to the relative strengths

of H− absorption and H2O absorption. H− absorption is strongest in the inner part of the

atmosphere whereas H2O absorption is strongest in the outer part. The maximum of

the H2O absorption is in layers of the atmosphere with electron temperatures of roughly

2500 to 3500 K. If in this region the H− absorption is weak enough so that the slope with

depth of the overall absorption coefficient is significantly affected by H2O absorption,

an inner radiative zone forms. In that case the total absorption coefficient drops fast

enough toward the outer boundary to make the atmosphere transparent enough to form

a radiative zone. As soon as water forms and the H2O absorption becomes strong enough,

the energy is more efficiently carried by convection until the final radiative zone forms at

the very outside of the atmosphere.

For the hottest models with the lowest log(g) (i.e. the models left and below the

“multiple zone strip” in Fig. 3) the single convective zone at the bottom of the atmosphere

is substantially different from that of the models right above the “multiple zone strip”. For

the hot models with low log(g), the water absorption will never become strong enough

to change the slope of the total absorption and the intermediate radiative zone becomes

large enough to remove the intermediate convective zone. In the cool models with high

log(g), the water absorption is strong already deep inside the atmosphere and dominates

the slope of the total absorption coefficient.

This behavior is demonstrated in Fig. 4 where the most important continuous ab-
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sorption coefficients have been plotted against optical depth. In the top graph the water

absorption changes the steep slope of the total absorption already in the innermost part.

In the middle two plots, water forms further out and leaves a steep enough slope in the

absorption coefficient to produce an intermediate radiative zone. In the graph at the bot-

tom, the water absorption can no longer change the slope imposed by the H− absorption

(they are almost parallel in the outer regions) and the energy is transported by radiation.

4. Summary and Conclusions

In this paper we presented a grid of spherically symmetric model atmospheres for

pre-MS stars. The main change with respect to the NG-giant grid is the use of new

TiO and water vapor line lists. In the parameter range considered for the PMS mod-

els the changes in the structures of the atmospheres compared to similar models with the

NextGen setup are relatively small but the differences of the optical and IR spectra are no-

ticeable. We provide the model structures, spectra and broad-band colors in standard fil-

ters through the WWW and anonymous FTP for general use, see http://dilbert.physast.uga.edu/~yeti

or ftp://calvin.physast.uga.edu/pub/PMS. In a forthcoming paper we will discuss dust

formation for cool dwarfs and giants that incorporate the opacities used in this paper, and

will explore separately the effects of the present PMS models on evolution tracks for pre-

main sequence stars.
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5. Figures

Fig. 1.— Comparison of the models presented in this paper (full line) to NG-giant models

(dotted line) in the optical spectrum. The resolution has been reduced to 5Å. The top

panel shows models with Teff = 3000 K, the bottom panel for Teff = 4000 K, both sets have

log(g) = 2.0 and solar abundances.
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Fig. 2.— Comparison of the models presented in this paper (full line) to NG-giant models

(dotted line) in the near IR spectral range. The resolution has been reduced to 15Å. The

top panel shows models with Teff = 2000 K, the middle panel shows Teff = 2000 K, and

the bottom panel for Teff = 4000 K, all three sets have log(g) = 2.0 and solar abundances.

Fig. 3.— Models with multiple radiative/convective zones. Each point marks a model

that has multiple radiative/convective zones. To minimize the number of figures we

plotted all metallicities in one graph and used different symbols for different metallicities

as indicated in the figure. The log(g) values for sub- and super-solar metallicities have

been slightly shifted to keep the figure legible. Note the continuous distribution of models

with multiple radiative/convective zones, which is also continuous is metallicity space.

Fig. 4.— Absorption coefficients versus optical depth at 1.2µm. All models have z=-0.3

and log(g)=2.5. The effective temperature of the models are from top to bottom 2800 K,

3000 K, 3200 K and 3400 K. The cross hatched regions are the convective zones. For

reference, we indicate the gas pressure and the gas temperature at the respective optical

depth at the top of each figure. To the right we labeled the most important opacity sources.

Fig. 5.— Comparison of low-resolution (about 50Å) synthetic spectra for models with

Teff = 3400 K, log(g) = 2.0 and solar abundances (full line), [M/H] = −0.3 (dotted line)

and [M/H] = +0.3 (dashed line).

Fig. 6.— Comparison of low-resolution (about 50Å) synthetic spectra for models with

Teff = 3400 K, log(g) = 3.5 and solar abundances (full line), [M/H] = −0.3 (dotted line)

and [M/H] = +0.3 (dashed line).

Fig. 7.— Comparison of low-resolution (about 50Å) synthetic spectra for models with

Teff = 2400 K, log(g) = 2.0 and solar abundances (full line), [M/H] = −0.3 (dotted line)

and [M/H] = +0.3 (dashed line).

Fig. 8.— Comparison of low-resolution (about 50Å) synthetic spectra for models with

Teff = 2400 K, log(g) = 3.5 and solar abundances (full line), [M/H] = −0.3 (dotted line)

and [M/H] = +0.3 (dashed line).


