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ABSTRACT

We use numerical simulation of cosmological reionization to calculate the secondary CMB
anisotropies in a representative flat low density cosmological model. We show that the kinetic
Sunyaev-Zel’dovich effect (scattering off of moving electrons in the ionized intergalactic medium)
is dominated by the nonlinear hydrodynamic and gravitational evolution of the density and
velocity fields, rather than the detailed distribution of the ionization fraction (“patchy reion-
ization”) on all angular scales. Combining our results with the recent calculation of secondary
CMB anisotropies by Springel et al., we are able to accurately predict the power spectrum of the
kinetic SZ effect on almost all angular scales.

Subject headings: cosmic microwave background - cosmology: theory - cosmology: large-scale structure

of universe - galaxies: formation - galaxies: intergalactic medium

1. Introduction

The reionization of the intergalactic medium
(hereafter, IGM) stands out as one of the most im-
portant physical processes that have taken place in
the early universe. Recent observational progress
measuring the angular spectrum of anisotropies
in the Cosmic Microwave Background radiation
(hereafter CMB) on sub-degree angular scales (de
Bernardis et al. 2000; Hanany et al. 2000), and
in obtaining the absorption spectra of the most
distant quasars (Stern et al. 2000; Zheng et al.
2000; Fan et al. 2000a) allows us to limit the red-
shift of reionization to somewhere between 6 and
30 (Griffiths, Barbosa, & Liddle 1998; Bond &
Jaffe 1999; Tegmark & Zaldarriaga 2000). Com-
bined with recent theoretical and numerical break-
throughs in our understanding how reionization
proceeds in the inhomogeneous universe (Giroux
& Shapiro 1996; Haiman & Loeb 1997; Gnedin
& Ostriker 1997; Madau, Haardt, & Rees 1999;
Miralda-Escudeé, Haehnelt, & Rees 1999; Ciardi
et al. 1999; Valageas & Silk 1999; Chiu & Os-

triker 2000; Gnedin 2000), these data finally place
a study of reionization on much more solid footing.

Among the many effects of reionization, the
secondary CMB anisotropies have been the sub-
ject of active study for a long time, beginning
with the pioneering works of Ostriker & Vish-
niac (1986) and Vishniac (1987) and up to the
most recent careful investigations (Hu & White
1996; Aghanim et al. 1996; Knox, Scoccimarro,
& Dodelson 1998; Gruzinov & Hu 1998; Jaffe &
Kamionkowski 1998; Peebles & Juszkiewicz 1998;
Haiman & Knox 1999; Hu 2000; Bruscoli et al.
2000; da Silva et al. 2000; Refregier et al. 2000;
Seljak, Burwell, & Pen 2000; Springel, White, &
Hernquist 2000). However, most of the recent
studies have not benefited from the recent progress
on reionization, and were based on over-simplified
ad hoc models. In addition, many of these studies
only considered the formerly favored “Standard”
Cold Dark Matter (CDM) model. However, there
appears finally to be convergence toward a low
density CDM model with the cosmological con-
stant (the so-called CDM+Λ model; c.f. White,
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Scott, & Pierpaoli 2000; Tegmark & Zaldarriaga
2000; Bridle et al. 2000; Hu et al. 2000; Jaffe et al.
2000), and thus it would make sense to calculate
the secondary anisotropies for this currently most
favored model.

In this paper we reconsider the effect of reion-
ization on the CMB, using the latest numerical
simulations of reionization (Gnedin 2000). By
combining our numerical results with analytical
calculations and with recent numerical calculation
by Springel et al. (2000) on larger angular scales,
we are able to extend the range of angular scales
over which predictions are reliable to over more
than six orders of magnitude. We also take spe-
cial care to make sure that our results are not con-
taminated by numerical artifacts, the dominant of
which is the periodicity of the simulation bound-
ary conditions.

2. Theory

2.1. Secondary CMB Anisotropies

Thomson scattering of CMB photons by ionized
gas is usually called the Sunyaev-Zel’dovich (SZ)
effect, which is often divided into “thermal” and
“kinetic” SZ effects. The “thermal” SZ effect is
the upscattering of CMB photons after compton
scattering by hot gas (most pronounced in clus-
ters of galaxies). The “kinetic” SZ effect is the
temperature fluctuation induced by bulk motions
of the gas. Both effects play a role in generat-
ing secondary CMB anisotropies during and after
reionization.

The fractional temperature perturbation in the
direction θ̂ induced by bulk motions (“kinetic ef-
fect”) is

∆T

T
(~θ) = −

∫ η0

0

neσT e
−τ [θ̂ · ~v(wθ̂;w)]a(w) dw,

(1)
where ne is the electron density along the line of
sight, ~v(~w;w) is the bulk peculiar velocity at posi-
tion ~w at a conformal time η0−w, σT is the Thom-
son cross section, τ is the optical depth from us to
w, and the subscript 0 denotes a quantity at the
current moment. The factor of a(w) arises because

the physical time is dt = a(w)dw. Note that θ̂ rep-
resents a three-dimensional unit vector along the
line of sight, whereas ~θ will refer to a dimensionless
two-dimensional vector in the plane perpendicu-

lar to the line of sight—i.e., for directions near ẑ,
θ̂ = (θ1, θ2,

√

1− θ21 − θ22) ≃ (θ1, θ2, 1), whereas
~θ = (θ1, θ2, 0).

It is convenient to rewrite equation (1) in the
following dimensionless form:

∆T

T
(~θ) = −τ0

∫ η0

0

χe−τ (θ̂ · ~v
c
)
dw

a2η0
, (2)

where τ0 ≡ cη0σT (n̄H,0 + 2n̄He,0) and

χ ≡ ne

n̄H + 2n̄He

= xe(1 + δ).

Here xe is the ionization fraction, δ is cosmic over-
density, and n̄H and n̄He are the mean hydrogen
and helium number densities.

Analogously, the “thermal” SZ effect is de-
scribed by the following integral (for observations
in the Rayleigh-Jeans regime):

∆T

T
(~θ) = −2τ0

∫ η0

0

χe−τ kB(Tg − T0)

mec2
dw

a2η0
, (3)

where Tg and T0 are the gas and the CMB tem-
peratures respectively.

For a particular realization, we can simply cal-
culate integral (1) or (3) along each line of sight
and make a map of temperature anisotropy. In
this paper we use numerical simulation of cosmo-
logical reionization (described in detail in the fol-
lowing section) to directly calculate the anisotropy
map on the patch on the sky subtended by the
computational box.

Often however it is just the two-point cor-
relation function of the anisotropies, C(θ), or
its spherical-harmonic transform, the power spec-
trum, Cℓ, which are of interest. In this case we
can directly calculate the correlation function from
equation (1),

C(θ) ≡ 〈∆T

T
(~θ1)

∆T

T
(~θ2)〉cos θ=~θ1·~θ2

, (4)

which can be reduced to the following form:

C(θ) = τ20

∫ η0

0

dw1

a21η0
e−τ1

∫ η0

0

dw2

a22η0
e−τ2

× Cee(η1, η2, θ)Cvv(η1, η2, θ), (5)

where Cee and Cvv are the electron density and
velocity correlation functions,

Cee(η1, η2, θ) ≡ 〈χ(~r1, η1)χ(~r2, η2)〉,

Cvv(η1, η2, θ) ≡ 〈θ̂1
~v

c
(~r1, η1) · θ̂2

~v

c
(~r2, η2)〉,(6)
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with cos θ = (~r1 · ~r2)/(r1r2), provided we make a
usual assumption (c.f. Bruscoli et al. 1999) that
the electron density and velocity are uncorrelated,
i.e.,

Cev(η1, η2, θ) ≡ 〈χ(~r1, η1)θ̂2 ·
~v

c
(~r2, η2)〉 = 0. (7)

We will return to the accuracy of this assumption
below.

2.2. Terminology for Secondary Anisotropies

In reality we have to deal with only one uni-
verse, and thus we can only observe the total
CMB anisotropies given by equation (1), generi-
cally labeled as the kinetic Sunyaev-Zel’dovich ef-
fect. Historically, this was first investigated by
restricting to a much simpler, unphysical situa-
tion: homogeneous reionization and the linear evo-
lution of velocity and density fields. This is the
“Ostriker-Vishniac effect” (OV; Ostriker & Vish-
niac 1986; Jaffe & Kamionkowski 1998), also some-
times called the “Vishniac effect.” In this case, we
observe the autocorrelation of the total gas density
and velocity fields, related to the power spectrum
of density fluctuations by linear theory.

In this work, we will further distinguish be-
tween the “Linear Ostriker-Vishniac Effect” (LOV)
and the “Nonlinear Ostriker-Vishniac effect”
(NLOV). The former is the usual calculation of
OV, using the linear relationship between velocity
and density. This comes into the needed calcu-
lation of the four-point function 〈vδvδ〉, in which
it is assumed that (1) the linear relationship be-
tween v and δ holds; and (2) that the four-point
function is appropriate for an underlying Gaus-
sian density field, which only holds in the fully
linear regime (and only with Gaussian initial con-
ditions). The NLOV assumes a homogeneous ion-
ization fraction, but the full nonlinear gas density
and velocity fields.

Recently, the LOV calculations have been com-
plimented by consideration of the distribution of
the ionized hydrogen in the universe as it under-
goes reionization, so-called “patchy” or “inhomo-
geneous” reionization. Workers in the field have
considered models for the distribution of the ion-
ization fraction in the linear regime (e.g., Knox,
Scoccimarro, & Dodelson 1998; Gruzinov & Hu
1998), as well as full simulations or semianalytic
models of the ionized gas, as in this work (see also

Bruscoli et al. (2000), Benson et al. (2000), and
Springel et al (2000)).

This separation is obviously somewhat artifi-
cial. Nevertheless, for academic purposes, we can
denote those two effects in the following fashion:

∆T

T

∣

∣

∣

∣

OV

= −τ0

∫ η0

0

x̄e(1 + δ)e−τ (θ̂ · ~v
c
)
dw

a2η0
(8)

for the NL Ostriker-Vishniac effect, and

∆T

T

∣

∣

∣

∣

PR

= −τ0

∫ η0

0

(xe− x̄e)(1+ δ)e−τ (θ̂ · ~v
c
)
dw

a2η0
(9)

for patchy reionization.

Thus, the NL Ostriker-Vishniac effect describes
anisotropies generated in the universe in which the
ionization fraction is homogeneous in space (“ho-
mogeneous reionization”), and patchy reionization
includes the rest of the anisotropies. We again
emphasize that this separation is artificial and un-
physical, and we adopt it purely for historical rea-
sons, as the two effects were often considered to
be “distinct” effects.

Using the above definition, we can also define
the electron density correlation functions due to
NL Ostriker-Vishniac and patchy reionization ef-
fects,

COV
ee (η1, η2, θ) ≡ x̄2

e〈δ(~r1, η1)δ(~r2, η2)〉,
CPR

ee (η1, η2, θ) ≡ 〈∆χ(~r1, η1)∆χ(~r2, η2)〉,(10)

where ∆χ ≡ (xe−x̄e)(1+δ). The total correlation
function Cee is then a sum of these two functions
plus the cross-correlation,

Cee = COV
ee + CPR

ee + 2COV−PR
ee ,

where

COV −PR
ee (η1, η2, θ) ≡ x̄e〈δ(~r1, η1)∆χ(~r2, η2)〉.

(11)

3. Method

3.1. Simulation

We use a cosmological simulation of reioniza-
tion reported in Gnedin (2000). The simulation
includes 3D radiative transfer (in an approximate
implementation) and other physical ingredients re-
quired for modeling the process of cosmological
reionization.
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The simulation of a representative CDM+Λ
cosmological model1 was performed in a comov-
ing box with the size of 4h−1Mpc with the mass
resolution of 5 × 105M⊙ in baryons and the co-
moving spatial resolution of 1h−1 kpc.

The simulation was stopped at z = 4 because at
this time the rms density fluctuation in the com-
putational box is about 0.25, and at later times
the box ceases to be a representative region of the
universe.

As was noted in Gnedin (2000), this simula-
tion is still insufficient to give the fully converged
numerically result. As we show below, the com-
putational box size of this simulation is not large
enough to allow for accurate computation of the
CMB anisotropies, as perturbations at z < 4
contribute about 20% of the signal. We there-
fore must emphasize here that our calculations are
valid only on a semi-qualitative basis, within a fac-
tor of 1.5-2, and a still larger simulation is required
to accurately model all the relevant scales present
in the problem. But since the observations of the
secondary anisotropies are some years away, theo-
rists have time to improve upon their models and
perform larger, highly accurate simulations.

Our simulation assumes that all cosmologi-
cal reionization occurs via radiation from stel-

lar sources, with star formation parameterized by
the phenomenological Schmidt law as discussed in
Gnedin (2000). We ignore alternative and compli-
mentary scenarios in which the bulk of reionization
is produced by Active Galactic Nuclei. In light of
recent high-redshift quasar counts (e.g., Fan et
al. 2000b), a scenario in which the universe is
reionized by bright optically selected QSOs seems
unlikely in any event. There remains however the
possibility that low brightness AGNs contributed
significantly (if not dominantly) to the reioniza-
tion of the universe. In the latter case however
they will be clustered on scales similar to the
stellar sources, and thus will not result in a qual-
itatively different reionization scenario, although
the epoch of reionization in this case is less well-
determined.

1With the following cosmological parameters: Ω0 = 0.3,

ΩΛ = 0.7, h = 0.7, Ωb = 0.04, n = 1, σ8 = 0.91, where

the amplitude and the slope of the primordial spectrum are

fixed by the COBE and cluster-scale normalizations.

3.2. Numerical Issues

Given a cosmological simulation, we are now
faced with the task of calculating the secondary
CMB anisotropies accurately from the simulation.
Since perturbations are generated over a consider-
able redshift range, ideally we would like to have
a simulation with the box size that extends from
z = 0 until z ∼ 30 in one direction. However, with
currently feasible simulations this is impossible,
and we utilize the cubic box with the 4h−1 Mpc
side used in Gnedin (2000).

If we take the output of a simulation as is, the
artificial periodicity of the universe will amplify
the anisotropies by a large factor, simply because
in real universe the signal will be averaged over
many randomly placed Hii regions, while in a sim-
ulated periodic universe a photon, on its way along
the line of sight, will encounter the same struc-
ture over and over again. This case is depicted in
the first two rows of Figure 1. In order to avoid
this artificial amplification, we randomly flip and
transpose the computational box around any of
its six edges, and in addition shift it by a random
distance in a random direction. This “random-
ization” procedure ensures that the next periodic
image of the computational box is not correlated
with the given image, and thus we lose the corre-
lations over the scales larger than half the size of
the computational box along the line-of-sight di-
rection. (In addition to the flipping, transposition
and shifting of the simulation box, we have also
rotated it by a random amount, but this has neg-
ligible effect). This is sketched in the third row
of Fig. 1. Thus, our procedure actually underes-

timates true anisotropies by ignoring large-scale
signal. However, we can add the missing large-
scale signal using the linear theory calculation, as
we discuss below.

In addition, since we cannot unambiguously
eliminate periodicity in the plane of the sky, we
restrict our image to the image of one periodic
simulation box, which corresponds to the angular
size of

θmax =
L

R(tim)

where L = 4h−1Mpc is the comoving size of our
computational box, R(t) is the comoving angular-
diameter distance from time t to the current mo-
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Fig. 1.— Cartoon showing the effect of the pe-
riodic box on the calculated CMB anisotropies.
Right panels depict a piece of the universe along
the line of sight with Hii regions in it, and left
panels show the correlation function of any physi-
cal quantity as a function of the distance w along
the line of sight. The upper row depicts the ac-
tual Universe, with random positions for Hii re-
gions and the correlation function extending to
large scales. The middle row shows the periodic
universe as given in a cosmological simulation. Fi-
nally, the lower row depicts our method of calcu-
lating the anisotropies, with the periodic box ran-
domly shifted and flipped in the subsequent im-
ages. Arrows in the last two rows show the orien-
tation of the computational box. For simplicity,
we do not show random shift of the box in the last
row which is actually performed in our calculation
in addition to random flipping and transposing.

ment,

R = c

∫ t0

t

dt

a(t)
,

and we choose to scale all the computational boxes
along the line-of-sight to the box taken at aim ≡
a(tim) = 1/(1+zim) = 0.115, the epoch just before
reionization which contributes most to the CMB
anisotropies. For our calculations, θmax ≃ 60 arc-
sec corresponding to a spherical harmonic multi-
pole of ℓ ≃ 104.

Because in the simulation the bulk velocity of
the computational box is set to zero, whereas a
volume with the size of our box in real universe will
have some non-vanishing bulk velocity, we add to
each box a random bulk velocity drawn from the
Gaussian distribution with the dispersion equal to
the linear rms velocity on the scale of the compu-
tational box at each redshift. Because this effect
depends on the correlation of density with velocity,
our results on all angular scales depend on such an
appropriate realization of the velocities.

In summary, our procedure to calculate the
CMB anisotropies from the cosmological simula-
tion with a periodic computational box can be de-
scribed as follows:

1. We select the outputs from the simulation
spaced with ∆a in scale factor.

2. For each pair of outputs at ai and ai+1,
where index i numbers the outputs, we cal-
culate the number of computational boxes
along the line of sight between ai and ai+1.

3. Then for all boxes between ai and (ai +
ai+1)/2 we fill them in with the simulation
output data at ai, and the boxes between
(ai + ai+1)/2 and ai+1 we fill in with the
data at ai+1.

4. Then each of thus-filled-in boxes (including
the original simulation boxes at ai and ai+1)
is randomized by a random shift in the plane
of the sky and by a random flip and transpo-
sition, removing correlations on scales larger
than half the box size. In addition, each box
is assigned a bulk velocity along the line-of-
sight according to the linear theory.

5. We repeat steps 2-4 for all pairs of outputs
in the descending order from the last output

5



at z = 4 (a = 0.2) until the start of the
simulation at ∼ 100.

6. After arranging all the boxes, we calculate
the CMB map on a square patch on the
sky (corresponding to the image of our cu-
bic computational box at z = 7.7, the epoch
when about half the box is ionized) with a
given resolution (we achieve the highest res-
olution of 5122 pixels).

This procedure allows us to construct an im-
age on the sky. However, it is customary to
present the CMB anisotropies on the sky in terms
of the power spectrum Cℓ, which is the spherical-
harmonic transform of the correlation function
C(θ). In the small-angle limit, the spherical-
harmonic transform reduces to the Hankel trans-
form of zeroth order,

Cℓ = 2π

∫ ∞

0

dθ θ J0(θℓ)C(θ), (12)

where J0 is the zero order Bessel function. How-
ever, because of the numerical errors and artificial
ringing due to a finite box size, the power spec-
trum calculated from equation (12) is noisy. An
alternative method of calculating the power spec-
trum is a direct Fourier transform of the CMB
anisotropies on the sky,

Cℓ = θ2max〈|∆~ℓ|
2〉, (13)

where θmax is the angular size of a square patch
on the sky (obviously, θmax ≪ 1), and

∆~ℓ ≡
1

θ2max

∫

∆T

T
(~θ)ei

~θ · ~ℓd2θ

is the Fourier transform of the CMB anisotropies.

Figure 2 shows a comparison between the two
methods for computing the power spectrum Cℓ.
One can see that the correlation function method
produces an extremely noisy estimate of the power
spectrum, whereas the one computed directly is
well defined up to the maximal possible multipole

ℓmax =
√
2ℓNy =

√
2N

π

θmax

,

where ℓNy is the Nyquist frequency of a square
image on the sky and N is the number of pixels
along one dimension in the image.

Fig. 2.— Comparison of the power spectrum of
the CMB anisotropies computed by equation (12)
(dotted line), and by equation (13) (solid line).
In the latter case also shown are the statistical
error-bars for the computed power spectrum. Two
arrows show the angular size of the computational
box and the angular resolution of our calculation
respectively (for the 2562 pixelization).

Fig. 3.— Corrected (bold lines) and uncorrected
(thin lines) power spectra at four different angular
resolutions: 642 pixelization (dotted lines), 1282

pixelization (short-dashed lines), 2562 pixelization
(long-dashed lines), and 5122 pixelization (solid
lines). Notice that our correction fully removes
the effect of pixelization on small scales.
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The process of pixelization - binning of the com-
puted image on the square patch on the sky of a
given size - produces small-scale smearing similar
to the one produced by assigning density on a reg-
ular mesh from a particle distribution in cosmo-
logical N -body simulations. However, in our case
the precise form of this smoothing cannot be com-
puted from the first principles, because the compu-
tational box subtends somewhat different angular
size at different redshifts. Instead, we correct for
the small-scale smearing empirically. Let Cℓ be
the true power spectrum. Since the smearing is
caused by pixelization, the computed power spec-
trum C̃ℓ will be a product of the true power spec-
trum and the window function W which depends
only on the ratio of the multipole ℓ and the maxi-
mal possible multipole ℓmax for a given pixel size,
or, in other words, on the product of ℓ and the
number of pixels along one dimension N . Thus,

C̃ℓ = W (ℓ/ℓmax)Cℓ,

and if we take the ratio of the power spectra from
two different pixelizations, this ratio will depend
only on the window function,

C̃1,ℓ

C̃2,ℓ

=
W (ℓ/ℓ1,max)

W (ℓ/ℓ2,max)
. (14)

Using equation (14), we find the following approx-
imate form for the window function

W (ℓ/ℓmax) =

[

1 + 10/3(ℓ/ℓmax)
2
]2

1 + (ℓ/ℓmax)4
. (15)

Figure 3 shows the uncorrected and corrected
power spectra for four resolutions: N = 64, 128,
256, and 512. One can see that the corrected
power spectra agree with each other up to their
respective ℓmax. We also notice that the power
spectrum seems to continue as a power law with in-
dex -3 to the smallest scales. Thus, we are unable
to achieve convergence on small angular scales,
which implies that even with resolution of 5122

pixels per 2.2 arcmin patch on the sky, there ex-
ists structure on the unresolved scales. As we men-
tioned above, this structure is due to small-scale
density inhomogeneity in the ionized high density
regions. Our simulation has a dynamical range
of 4000, and thus in principle we can measure the
power spectrum of the secondary anisotropies from
our simulation up to l ∼ 3 × 107 (compared to

l = 3.5×106 for our highest 5122 resolution). How-
ever, making CMB maps with resolution higher
than 5122 is beyond the limit of computational re-
sources available to us (doing a 40002 image would
take more computer time than the simulation it-
self consumed). We thus conclude that the cut-off
in the power spectrum at l ∼ 3 × 105 reported in
Bruscoli et al. (2000) is not real and due to the
finite angular resolution (2562) of their final CMB
map.

The outputs from our simulation are only
stored at discreet moments in time (which we
choose to parametrize with the cosmological scale
factor a ≡ 1/[1 + z]). Integration over the path
of a photon is done numerically using the out-
puts from the simulation, and thus the numerical
value of the integral depends on the interval ∆a
between the consequent outputs, converging to
the exact value in the limit ∆a → 0. Of course,
we cannot reach this limit as it would require an
infinite number of outputs, and thus we must en-
sure that our choice of ∆a is sufficiently small to
give an accurate value for the integral over the
photon path. Figure 4 shows the power spectra
of the CMB anisotropies for two choices of ∆a.
Both values give convergent results for the CMB
anisotropies, and so we adopt ∆a = 0.005 as our
choice for this parameter (which is equivalent to
having about 40 outputs until z = 4). It also
becomes prohibitively expensive to calculate the
integral with a smaller ∆a. We also show in Fig.
4 with the long-dashed line the CMB anisotropies
calculated without randomization (i.e., in an un-
realistic periodic universe), which are off by up to
a factor of 10.

We would like to note here that a recent similar
analysis by Bruscoli et al. (2000) did not use ran-
domization in calculating the CMB anisotropies,
and by adopting a periodic universe, overesti-
mated the correct result by a factor of 3-10.

Finally, since our simulation is stopped at z =
4, we need to estimate the contribution from the
lower redshifts. Since the universe is fully ion-
ized at z = 4, this contribution is entirely due to
a homogeneous ionization fraction, xe = 1 (the
NL Ostriker-Vishniac effect). We can calculate it
by extrapolating from higher redshifts. Figure 5a
shows the rms CMB temperature anisotropy as a
function of the final redshift of calculation z from
our simulation (up to z = 4) with the solid line.
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Fig. 4.— Power spectra of the CMB anisotropies
pixelized on the 2562 image computed with two
different values of the sampling frequency of nu-
merical integration: ∆a = 0.01 (dotted line),
∆a = 0.005 (solid line). The dashed line shows
a calculation with no randomization, i.e., with the
periodic universe, which gives about a factor of 3-
10 larger signal. Two arrows give the angular size
of the computational box and the angular resolu-
tion of our calculation respectively (for the 2562

pixelization). Fig. 5.— (a). The rms CMB temperature
anisotropy as a function of the final redshift of
integration. The solid line shows our simulation,
which is stopped at z = 4, and the dotted line
shows an extrapolation to z = 0 assuming that
perturbations do not change in comoving coor-
dinates. (b). A comparison of the perturbation
power spectrum as extrapolated to z = 0 (solid
line) and at z = 4 (dashed line). The difference
between the two curves is representative of the un-
certainty of our calculation.
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One can see that even at z = 4 the rms tempera-
ture anisotropy continues to rise (despite the fact
that the universe is fully ionized by then), and
thus we miss a portion of the total signal. In or-
der to estimate the missing signal, we extrapolate
the signal to z < 4 assuming that the density and
velocity structure remains fixed in the comoving
coordinates (in other words, taking the output of
the simulation at z = 4 and adopting it for all
lower redshifts). Then we find that

∆T

T

∣

∣

∣

∣

RMS

(z = 0) = 1.25
∆T

T

∣

∣

∣

∣

RMS

(z = 4),

i.e., we miss about 20% of the signal. This number
is likely to be an overestimate, as the gas pressure
effects will erase the structure on spatial scales up
to 500kpc by z = 0, which corresponds to an-
gular scales which are much larger than the ones
dominating the signal. Nevertheless, since we can-
not continue the simulation beyond z = 4, we use
the extrapolated power spectrum as our final re-
sult. The two spectra, the extrapolated one and
the one directly computed from the simulation, are
shown in Fig. 5b. The difference between the two
is larger than, albeit comparable to, the statistical
error due to the finite box size of the simulation,
and is the largest uncertainty of our calculation
on small angular scales (must less than the size of
the box). On the angular scales comparable to the
box size, an additional uncertainty is introduced
by the missing large-scale power.

3.3. Perturbations Outside of the Simula-

tion Box

Since the size of the simulation box is fixed to
4h−1Mpc in comoving units, we are unable to cal-
culate directly anisotropies due to perturbations
on larger scales. However, we can include them
analytically using the linear theory. Since we are
not able to follow the ionization state of the gas on
these scales, we assume that in the linear regime
the ionization fraction is spatially homogeneous.
This is not a bad approximation after all, since
the size of a typical Hii region is smaller than the
simulation box size, and thus on larger scales we
average over a sufficiently large volume of the uni-
verse. The latter implies that in the linear regime
we can consider only the Ostriker-Vishniac effect
– the NLOV effect is the same as the LOV effect.

As we argue below, it is the dominant contribution
to the total anisotropies on all angular scales.

To calculate the pure LOV effect (linear fluc-
tuations and homogeneous reionization), we use
the approach described in Jaffe & Kamionkowski
(1998). We use a small-angle Fourier-space ver-
sion of Limber’s equation which decouples the
line-of-sight projection from the three-dimensional
power spectra. As discussed above, we also assume
the linear relationship between density and veloc-
ity, uniform reionization, and Gaussian statistics.
This reduces the calculation to a multiple integral
over a product of the linear power spectrum of
density perturbations with itself.

To check our methods against this analytic cal-
culation, we perform an additional “simulation” of
the LOV effect in which we assume that the den-
sity and velocity fields evolve only according to lin-
ear theory, and we assign the ionization fraction at
a given redshift uniformly over the computational
box with the value given by the volume average
ionization fraction in the full numerical simula-
tion. We then make an image and calculate the
CMB power spectrum in precisely the same fash-
ion as in the full simulation. Thus, the spectrum
of the anisotropies from a such “linear” simulation
includes all the finite-box effects present in the full
numerical simulation.

The full nonlinear power spectrum is shown
with the bold solid line in Fig. 6. In addition,
we show the output from our linear “simulation”
along with the analytic OV calculation, which
match over all scales computed. We emphasize
that this agreement requires the imposition of ap-
propriate velocities on scales larger than the sim-
ulation box, as discussed above. We also note
that our full nonlinear prediction (bold solid line)
matches the linear theory on the angular scale
corresponding to the box size. This is of course
is an artifact of our procedure (and the limited
size of our simulation box), which does not in-
clude nonlinear perturbations outside the simula-
tion box. In reality, there exists additional power
on scales which we can not resolve, simply because
the nonlinear scale at z = 0 is about twice larger
than our whole box. To account for this power,
we show the nonlinear power spectrum computed
by Springel et al. (2000). They assumed precisely
the same cosmological model and the redshift of
reionization. In addition, their mass resolution al-
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Fig. 6.— The spectrum of the CMB temperature
anisotropy as calculated in linear theory (short-
dashed line), from the full numerical simulation
(bold solid line), and from the “linear” simula-
tion (dotted line). Also shown with the long-
dashed lines the nonlinear power spectra (for two
box sizes) of kinetic SZ effect on large scales from
Springel et al. (2000).

Fig. 7.— Secondary temperature anisotropies in
a 2.2′ × 2.2′ patch on the sky as generated dur-
ing reionization (left panel) and with randomized
phases (i.e., a realization of a Gaussian with the
same power spectrum, right panel). The color
bars show the color-scale correspondence, where
the anisotropies are measured in µK.

most exactly corresponds to 1/8 of the total mass
of our simulation box (corresponding to 1/2 the
box size - the largest scale which can be resolved
in our simulation). Thus, Springel et al. (2000)
begin precisely at the scale where our calculation
ends, and we will use their results to compliment
ours below. (Conversely, this means that we un-
fortunately cannot actually check the calculations
against one another.)

4. Results

4.1. Maps and non-Gaussianity

It is customary to characterize the CMB tem-
perature anisotropies on the sky by the power
spectrum Cℓ. The power spectrum is sufficient
to fully describe properties of a physical quantity
only if this quantity is Gaussian distributed. For
the primary temperature anisotropies this is in-
deed the case, since they are generated in the lin-
ear regime. Reionization however is a non-linear
process, and secondary anisotropies we consider in
this paper are not necessarily Gaussian.

This is illustrated in Figure 7, which shows
the actual maps of the CMB anisotropies on the
square patch on the sky in the simulation. The left
panel shows the actual anisotropies on 2.2 arcmin
patch on the sky (the angular size of our compu-
tational box at z = 8, just before the full overlap
of Hii regions). The right panel, however, shows
anisotropies with the same power spectrum but
distributed as a Gaussian. We notice that the ac-
tual map is highly non-Gaussian: it is much more
structured than the Gaussian version and contains
higher fluctuations than would be expected in a
Gaussian field.

To illustrate this further, we show in Figure
8 the one-point distribution of the actual tem-
perature fluctuations, and a Gaussian distribution
for comparison. We notice that the temperature
anisotropies are non-Gaussian, and thus more in-
formation than simply Cℓ can be extracted from
the actual distribution on the sky. In addition
to temperature anisotropies on the sky, we also
show in Fig. 8 the one-point distribution func-
tion of spherical multipole amplitudes aℓm, which
are defined in the usual fashion by expansion over
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Fig. 8.— One-point probability distribution of
the temperature anisotropies (solid line), the one-
point probability distribution of spherical multi-
pole amplitudes aℓm (dashed line), and a Gaus-
sian distribution (dotted line), all normalized to
unit dispersion.

Fig. 9.— The electron density correlation func-
tion Cee(η, η+∆η, θ) as a function of angular size
θ (measured in units of comoving distance Rθ at
this redshift) and ∆η (also measured in units of
comoving distance Rη) at three redshifts (values
of η): (a) z = 10, (b) z = 7, and (c) z = 5. Sub-
sequently heavier shaded contours show increase
in the correlation function by a factor of 10. The
outmost contour corresponds to Cee = 1.

spherical harmonics,

∆T

T
(θ, φ) =

∑

ℓ,m

aℓmY m
ℓ (θ, φ).

The one-point distribution of the amplitudes is
actually quite similar to a Gaussian, which indi-
cates that it is indeed the the phase correlations
between different multipoles what drive the non-
Gaussian patterns. In order to characterize this
non-Gaussianity, one would have to measure the
higher-order moments (bispectrum, trispectrum,
etc.) at non-zero lags, or other quantities such as
the Minkowski functionals, but that is outside the
scope of this paper.

4.2. Correlation Functions

We now investigate the behavior of the correla-
tion functions. In particular, the electron density
correlation function Cee(η1, η2, θ) is of highest in-
terest. We show in Figure 9 the electron density
correlation function at three redshifts: before the
overlap of Hii regions at z = 10, during the overlap
at z = 7, and after the overlap at z = 5. One can
notice that there is no drastic change in the shape
of the correlation function despite the qualitative
change in the structure of the ionized regions; only
the correlation length increases with time. This
indicates that the signal is dominated by the ion-
ized high density regions at all times, and is not
sensitive to the ionization state of the low density
intergalactic medium. We will elaborate on this
below.

Figure 10 shows both the electron density cor-
relation function Cee and the velocity correlation
function Cvv as a function of angle (measured
as comoving distance at this redshift) at z = 7.
We also show with the dotted line the quantity
C2

ev/Cvv, which is much smaller than Cee if the
cross-correlation between the electron density and
velocity is not significant, and is equal to Cee is
they are completely correlated. One can see that
the cross-correlation only becomes significant on
very small scales, about 0.1 arcsec (ℓ ∼ 6 × 106),
and thus the usual assumption that velocity and
electron density are uncorrelated is highly accu-
rate on all scales of interest.
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Fig. 10.— The electron density correlation func-
tion Cee(η, η, θ) (solid line) and the velocity corre-
lation function Cvv(η, η, θ) (dashed line) at z = 7.
The dotted line shows the quantity C2

ev/Cvv.

Fig. 11.— Comparison of the power spectrum of
the secondary CMB anisotropies in the computa-
tional box generated by the kinetic SZ effect (eq.
[1], solid line) and the thermal SZ effect (eq. [3],
dashed line).

4.3. Kinetic vs Thermal SZ Effect

It is interesting to compare the kinetic SZ effect
given by equation (1) with the thermal SZ effect,
given by equation (3). One can expect a priori
that the kinetic SZ effect, generated in the gas
moving with some 300 km/ s is about 1000 times
more important (in terms of the power spectrum)
than the thermal SZ effect, generated due to ther-
mal motions in the 104K hot gas. Indeed, this is
demonstrated in Figure 11. Thus, for all practical
purposes, the kinetic effect is the only one that
needs to be taken into account on these scales.
Of course, for clusters of galaxies, the situation is
reversed and the temperature fluctuation induced
by even the several-hundred km/s bulk motion of
the cluster is dwarfed by the thermal effect, simply
because the cluster gas temperature is some four
orders of magnitude higher than the IGM temper-
ature, whereas the bulk gas velocity in a cluster is
only about a few times that of the IGM. We return
to the comparison between the two effects below.

4.4. The Ostriker-Vishniac Effect versus

Patchy Reionization

We now focus on a comparison between the NL
Ostriker-Vishniac effect and patchy reionization.
Figure 12 shows the comparison between the two
correlation functions CPR

ee and COV
ee , which are de-

fined by equations (10). The dotted line, mark-
ing the cross-correlation term in comparison with
CPR

ee , only falls significantly below CPR
ee at large

radii (R > 0.1h−1Mpc, where the inhomogeneous
distribution of the ionized fraction due to expand-
ing Hii regions make the NL Ostriker-Vishniac ef-
fect and patchy reionization effect uncorrelated.
However, as the thin dashed line shows, in the
high density regions (i.e., on small scales) the ef-
fect of patchy reionization is almost equivalent to
having xe = 1, i.e., to having almost all high den-
sity regions ionized. This implies that the bulk
of the signal comes from high density regions and
correlations between them.

In order to investigate the relationship between
the two effects further, we have constructed a
simulation which contains only the “Ostriker-
Vishniac” effect by assigning a uniform ionization
fraction (equal to the volume average at a given
redshift) to the outputs of our full numerical sim-
ulation, and performing line-of-sight integration
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Fig. 12.— The electron density correlation func-
tion Cee(η, η, θ) for the patchy reionization effect
(CPR

ee , solid line) and for the NL Ostriker-Vishniac
effect (COV

ee , bold dashed line) at z = 9 (at other
redshifts the two correlation functions look quite
similar except for the change of the characteris-
tic scale). We also show with the dotted line the

quantity
(

COV −PR
ee

)2
/COV

ee , which coincides with
CPR

ee if cross-correlations are important. The thin
dotted line shows the NL Ostriker-Vishniac cor-
relation function COV

ee rescaled by the quantity

[(1− x̄e)/x̄e]
2.

as described above. Thus, this “NLOV simula-
tion” has the density and velocity structure of
our full numerical simulation, and has the same
evolution of the volume averaged ionization frac-
tion, but has uniform ionization at all densities
and spatial locations. In particular, the Patchy
Reionization correlation function CPR

ee is equal
to zero in that simulation, and its NL Ostriker-
Vishniac correlation function (COV

ee ) is the same
as in the full simulation. Thus, the NLOV simula-
tion allows us to construct an image of the CMB
anisotropies which correspond to just the COV

ee

correlation function, whereas the full simulations
gives us anisotropies corresponding to the sum of
the NL Ostriker-Vishniac and Patchy Reionization
effects.

Figure 13 now shows the rms temperature
anisotropy on the sky (for the 2562 pixelization)
for the total effect, and separately for the NL
Ostriker-Vishniac effect (as computed from the
“NLOV simulation”) and for the patchy reioniza-
tion effect (computed as the difference between
the two). Note, that by z = 4 almost all the sig-
nal comes from the NL Ostriker-Vishniac effect,
and the contribution of the patchy reionization
actually slightly declines at z < 7, after the over-
lap of Hii regions. This is due to the fact that
after the overlap the topology of the ionized phase
flips over: reionization starts with isolated ion-
ized regions expanding into the neutral medium,
and ends with the isolated neutral regions being
ionized from outside inward, which produces an
anti-correlation between the ionized and neutral
phases and leads to suppression of anisotropies
due to patchy reionization.

Figure 14 presents now the main result of this
paper: the power spectrum of the secondary CMB
anisotropies from the kinetic SZ effect, from the
thermal SZ effect, and from the patchy reioniza-
tion effect. For the former two, we combined our
results with the calculations by Springel et al.
(2000). In the range 3 × 104 ≤ ℓ ≤ 2 × 105 our
calculation for the kinetic SZ effect disagrees with
the extrapolation from the Springel at al. (2000),
and for the thermal SZ effect the range of dis-
agreement is even larger. Since our results can
suffer from the missing large-scale power at low
redshift, and small scale extrapolation of Springel
et al. (2000) is likely to be severely affected by lim-
ited numerical resolution, it is impossible to give
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Fig. 13.— The rms CMB temperature anisotropy
as a function of the final redshift of integration for
the NL Ostriker-Vishniac effect (dashed line), the
patchy reionization effect (dotted line), and for the
total effect (the sum of the two, solid line).

Fig. 14.— The solid line shows the total ki-
netic SZ power spectrum of the secondary CMB
anisotropies, computed by combining our full non-
linear results (the solid line from Fig. 6) for ℓ >
104 with the results of Springel et al. (2000) for
102 < ℓ < 3 × 104 and linear theory for ℓ < 102),
whereas the long-dashed line shows the same cal-
culation for the thermal SZ effect. For both the ki-
netic and thermal effects, the bold portions of the
lines show the regions of the spectrum reliably cal-
culated in this work (large ℓ tail), in Springel et al.
(2000), or in linear theory, and the thin line shows
the regions of ℓ where existing predictions are un-
reliable (and thus the curves we show are some-
what arbitrary). Two dotted lines show the result
for the patchy reionization, calculated from our
simulation as the difference between the full sim-
ulation and the “NLOV simulation” (bold dotted

line), and an approximate prediction from Gruzi-
nov & Hu (1998) (thin dotted line). Also shown
is the spectrum of primary anisotropies for the as-
sumed cosmological model (thin solid line).
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a reliable prediction for the CMB power spectra
in this range of angular scales, and we emphasize
this fact by using the bold lines to show the calcu-
lations where they are reliable, and by using the
thin lines in the range of scales where consider cal-
culations to be unreliable.

We also show the prediction from an analyt-
ical calculation of the patchy reionization effect
by Gruzinov & Hu (1998) for our cosmological
model. Note that this prediction is a factor of
102 lower than the one given in Gruzinov & Hu
(1998) for the standard CDM model, because they
adopted the value for the rms velocity at z = 0 of
1200km/ s, whereas in our model this number is
about 3 times smaller, in agreement with obser-
vations (Baker, Davis, & Lin 2000). There is an
additional reduction in the amplitude of the effect
by a factor of 10 due to the redshift of reionization
being 7 in our simulation compared to an adopted
value of 30 in Gruzinov & Hu (1998). Including
all the relevant factors, we notice that Gruzinov
& Hu (1998) estimate gives roughly the right pre-
diction for the patchy reionization effect on large
scales. Of course, since the analytical estimate of
Gruzinov & Hu (1998) does not include the den-
sity structure on small scales, they are unable to
reproduce the anisotropies on small angular scales.

4.5. Dependence on the Redshift of Reion-

ization

Up to know we assumed a fixed value for the
redshift of reionization, since we only used one
simulation. In order to investigate the dependence
of the power spectrum on the redshift of reioniza-
tion properly, we would need to run several sim-
ulation with different reionization histories, which
is not realistic at the current moment due to re-
quired computational resources. However, in or-
der to illustrate the dependence of anisotropies on
the redshift of reionization, and using the fact that
at zREI = 7 the NL Ostriker-Vishniac dominates
the contribution to the anisotropies due to Patchy
Reionization, we have computed three additional
“NLOV” simulations where we changed the red-
shift of reionization by simply rescaling the vol-
ume averaged ionization fraction as a function of
redshift. In other words, if ne,0(a) is the electron
density and x̄e(a) is the volume averaged ioniza-
tion fraction as a function of the scale factor for the
original “NLOV” simulation, for rescaled “NLOV”

simulations we assumed

ne(a) =
x̄e(8aREIa)

x̄e(a)
ne,0(a),

where the factor 8 is simply 1/0.125 = 1/aREI =
1 + zREI for our simulation.

Figure 15 shows the CMB power spectra for
four different values for the redshift of reioniza-
tion in our rescaled “NLOV” simulations. We note
that in linear theory, δ ∼ a and v ∼ a1/2 at high
redshift, and therefore the total anisotropy

∆T

T
∼

∫ t

a3/2n̄bdt ∼ log(t)

goes only logarithmically as a function of the mo-
ment of reionization (which is the upper limit in
the integral [1] for a model with sudden reioniza-
tion). The dependence that we find in the non-
linear calculation is somewhat steeper than that
from the linear theory, but not by much.

We also note here that the analytical model of
patchy reionization by Gruzinov & Hu (1998) pre-
dicts that the spectrum of the CMB anisotropies
increases as (1 + zREI)

3/2RHii, where RHii is the
characteristic comoving size of Hii regions, which
is likely to go down as the redshift of reioniza-
tion increases. Thus, the total dependence on
the redshift of reionization of the patchy reioniza-
tion effect is somewhat slower than (1 + zREI)

3/2

but perhaps not as slow as the nearly logarith-
mic dependence of the NL Ostriker-Vishniac ef-
fect. Thus, if reionization occurred early, the role
of patchy reionization (as compared to the NL
Ostriker-Vishniac effect) would be greater, albeit
the current observational limits of zREI . 30 will
not allow a regime when patchy reionization be-
comes dominant.

5. Conclusions

We use a cosmological numerical simulation
that models time-dependent and spatially-inhomo-
geneous cosmological reionization to compute sec-
ondary CMB temperature anisotropies in a rep-
resentative CDM+Λ cosmology. We compare our
numerical results with analytical calculations and
compliment them with the numerical simulations
of Springel et al. (2000) (whose mass resolution al-
most exactly compliments ours, and accidentally
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Fig. 15.— The power spectra of the secondary
CMB anisotropies computed in the “NLOV” sim-
ulation with four different values for the redshift
of reionization: zREI = 5 (dotted line), zREI = 7
(short-dashed line), zREI = 11 (long-dashed line),
and zREI = 19 (solid line).

both simulations have the same values of cosmo-
logical parameters). We thus are able to compute
the power spectrum of secondary anisotropies for
the kinetic SZ effect and for the patchy reioniza-
tion effect over a wide range of angular scales.
The thermal SZ effect, dominated at medium ℓ
by massive clusters of galaxies, is more difficult
to compute on all scales due to the extreme non-
linearity of the problem.

We find that the role of patchy reionization
per se (i.e., evolution of Hii regions around the
sources of ionization) in generating the secondary
anisotropies is subdominant. This conclusion is
however only valid when the sources of reioniza-
tion are clustered on scales comparable to the mat-
ter correlation length, in which case one can ex-
pect to find a source (or multiple sources) in al-
most every dark matter halo. If, in the oppo-
site case, the sources of reionization are rare (like
bright quasars), the relative role of patchy reion-
ization will be greater, as many high density re-
gions will remain neutral for a long time, and may
not be negligible. The latter scenario is, however,
less likely given the current observational limits
on the abundances of bright quasars (Fan et al.
2000b), and thus CMB observations on small an-
gular scales may not be as useful as hoped to study
the details of reionization.

A real window onto reionization is provided by
the detailed morphology of the fluctuations, that
is, the non-Gaussianity discussed above. The an-
gular scale of the fluctuations traces the three-
dimensional separation scale of the ionized regions.
Of course, a full understanding of this will re-
quire not just a detection of broad-band fluctu-
ation power at very small angular scales, but a
detailed, high signal-to-noise map of these very
small-scale fluctuations with an angular resolution
of arc seconds, which is definitely some years away.

While the details of reionization may not be
easily discernible from the broad-band power spec-
trum, the amplitude of the fluctuations, which
is directly related to the redshift of reioniza-
tion, surely is. However, as our comparison with
Springel et al. (2000) shows, on medium angu-
lar scales (l . 105) the signal is dominated by
lower redshifts (z ∼ 2 − 4), and only on small
angular scales (several arc seconds) the amplitude
of the anisotropies is related to the redshift of
reionization. In addition, this dependence is quite
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weak, unless reionization occurred close to the
currently allowed observational limit of zREI . 30.
Nevertheless, observations on those angular scales
can put significant constraints on the redshift of
reionization. Such arcsecond-scale CMB observa-
tions are best accomplished with interferometers,
and indeed the recent development of compact
submillimeter-wave arrays has paved the way for
such observations. For example, the ATCA tele-
scope finds a limit of 〈ℓ(ℓ+1)Cℓ/(2π)〉 < 2×10−10

at ℓ ∼ 4000 (Subrahmanyan et al. 2000), well
above the values presented here. In addition,
these observations are inevitably plagued by point
source confusion, especially dangerous when the
signal also has a compact galaxy-like component.
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