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Abstract–We propose a method of simulation that is based on the averaging of formal solutions of the transfer

equation by taking the integral by the Monte Carlo method. This method is used to compute two models, which

correspond to the limiting cases of hot gas and cold background radiation and of hot background radiation and

cold gas, for E-methanol emission from a compact homogeneous spherical region. We analyse model level pop-

ulations by using rotational diagrams in the limiting cases mentioned above. Model optical depths of the lines

with frequencies below 300 GHz up to J=11 inclusive are given.

INTRODUCTION

Molecular methanol (CH3OH) emission, along with
emission of other molecules, is commonly observed
toward star-forming regions. Some molecular methanol
transitions produce narrow and intense maser lines in
some sources, while, in other sources, these transitions
produce less intense or no detectable lines; at the same
time, maser activity may show up in other transitions.
The conditions for the formation of methanol masers
can be studied by numerically simulating radiative
transfer. In such problems, we simultaneously solve
the transfer equation and the system of statistical-
equilibrium equations for a large number of lines. This
problem is commonly solved either by the Monte Carlo
(MC) method or by large velocity gradient (LVG)
method. In contrast to the LVG method, the MC
method allows computations to be performed for a
compact cloud and a small velocity gradient. In ad-
dition, the model adopted in the MC method admits
several important complications: inhomogeneity and
complex structure of an emitting cloud and a more
realistic allowance for the effect of its nonspherical
geometry (with no use of factor ε−1). However, the MC
method requires more computing time than the LVG
method does. The MC method, whose algorithm was
described by Bernes (1979), is based on the replace-
ment of the real radiation field by a number of model
photons and on the simulation of their propagation
through the medium with the computation of the num-
ber of molecular excitations in each of the shells into
which the cloud is divided. The classical MC method
assumes that model photons are emitted uniformly in

all directions in each of the shells and come from
the outside. Juvela (1997) proposed a modification of
the standard MC method: the paths of all model pho-
tons begin at the cloud edge. However, as in the classical
MC method, the formalism of model photons is used as
the basis for the computations. In this paper, we make
an attempt to deduce the method from the transfer
equation while keeping the main features of the MC
method and propose a method that is based on the
averaging of formal solutions to the transfer equation by
taking the integral by the Monte Carlo method. This
method was tested on simulations of E-methanol emis-
sion from a compact (∼0.005 pc) spherical cloud with
no velocity gradient.

THE ALGORITHM AND BASIC
APPROXIMATIONS

We performed simulations in the simplest case of a
static spherical cloud with a uniform distribution of the
H2 and CH3OH number densities and kinetic tempera-
ture. The influence of dust was ignored. The spectrum
of the background radiation was assumed to follow the
Plank law. The dilution of the background radiation
was disregarded. The radius of the cloud was set equal
to 1.5×1016 cm.

In the algorithm under consideration, as in the algo-
rithm of Bernes (1979), the solution of the problem
reduces to an iterative procedure which is implemented
using the system of statistical-equilibrium equations
(1) and which yields new approximations for the popu-
lations
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∑

k

nk{BkjI +Akjδkj + Ckj}

= nj

∑

k

{Ajkδjk +BjkI + Cjk}
∑

k

nk = const,

(1)

where δkj = 1 when and only when the relation between
the energy levels Ek > Ej holds; otherwise, δkj = 0; Ajk

and Bjk are the Einstein coefficients (which are assumed
to be zero for forbidden transitions); Cjk are the colli-
sional constants; nk is the population of the kth level;
and I is the average intensity. In the first equation in
(1), the subscript j changes in the range 1 < j < (N−1),
where N is the total number of levels involved. The
average intensity is given by

I =
1

2

+∞
∫

0

f(ν) dν

+1
∫

−1

I(ν, µ) dµ, (2)

where ν is the frequency, µ is the cosine of the angle
between the radius and the selected direction, and f(ν)
is the line profile (here it was assumed to be the Dop-
pler profile). This integral can be calculated by the
Monte Carlo method by simulating the random vari-
ables ν and µ with Gaussian (for the Doppler line pro-
file) and uniform distributions, respectively:

ν

ν0
− 1 =

1

c

(

σ sin (2πR) (− lnR′)
1/2

+ v(r)µ
)

(3)

µ = 1− 2R′′, (4)

where R, R′ and R′′ are independent random variables
with a uniform distribution in the interval 0 to 1; ν0 is
the rest frequency of the transition under considera-
tion; v(r) is the velocity field at a given point; and σ
is the Doppler halfwidth. The average intensity can be
replaced by the mean

I = MI (µ, ν) . (5)

The averaging over sufficiently thin shells into which
the cloud is divided leads to an additional integration of
(2) over the radius, which reduces to the simulation
of yet another random variable that gives the distance
from the cloud center to the common point of the bun-
dle of directions used to compute the mean (5):

r =
{

r3in +R(r3out −R3
in)
}1/3

, (6)

where rin and rout are the radii of the inner and outer
boundaries of the shell, and R is a random variable that
is uniformly distributed in the interval 0 to 1. The inten-
sity I (µ, ν) for a given direction can be estimated by
using

Iν (µ) = Iν bg (µ) exp

{

−
L
∫

0

xν(y) dy

}

+
L
∫

0

εν(X) exp

{

−
X
∫

0

xν(y) dy

}

dX ,

(7)

where xν and εν are the absorption and emission coeffi-
cients of the medium, respectively; L is the distance to
the cloud edge in the direction of integration; and Iν bg is
the intensity of the background emission for a given
direction. The integration path is broken up into seg-
ments in which the emission and absorption coeffi-
cients can be assumed to be constant (in the presence of
a velocity gradient, this path can be much shorter than
the path within a single shell where the populations are
assumed to be constant). The change in intensity within
a segment can be obtained by integrating (7):

∆Iν =

(

εν
xν

− Iin

)

(

1− e−xν l
)

, (8)

where Iin is the intensity at the beginning of the seg-
ment, and l is the segment length in the direction under
consideration. The emission and absorption coeffi-
cients are expressed in terms of the level populations

εν =
hν

4π
f(ν)Aulnu, (9)

xν =
c2Aulf(ν)

8πν2

{

gu
gl

nl − nu

}

, (10)

where Aul is the Einstein coefficient for the correspond-
ing transition; nu, gu and nl, gl are the populations and
statistical weights of the upper and lower levels, re-
spectively. Thus, the average intensity is expressed in
terms of the level populations and the intensity of the
background radiation, which allows us to implement the
iterative process using the system of statistical-equilib-
rium equations (1) for the populations. When the itera-
tive process has converged, the derived populations are
used to compute the intensity of the cloud radiation (or
brightness temperature) with the aid of the formal solu-
tion to the transfer equation (7).

RESULTS

We performed the computations for two models
with kinetic temperatures of 70 and 20 K and with
background-radiation temperatures of 2.7 and 70 K,
respectively (below referred to as models I and II
respectively). The methanol column densities in the
two models were assumed to be the same and equal to
1.5×1015 cm−2 (the radius is 1.5×1016 cm, the H2 num-
ber density is 105 cm−3, and the methanol abundance is
10−6). When computing the models, we took into
account 124 lower rotational levels of the ground tor-
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sional state of E-methanol (J < 15, |K| < 6, and
E < 200 cm−1).
Torsional transitions were ignored. We computed

the energies of the levels and Einstein coefficients
(A) by using approximate formulas from Pikett et al.
(1981). The collisional constants are known poorly and
were computed here in the gas-dynamical approxima-
tion of Lees (1974). The iterations were terminated at
an accuracy of 0.1% of the population.

DISCUSSION

The algorithm of Bernes (1979) uses the quantity
Slu,m′ (for the m′ shell and for the transition between l
and u) which is proportional to the intensity instead of
the latter; this quantity is accumulated over all model
photons in all shells. A comparison of the system of
statistical-equilibrium equations yields the relation
(
∑

Slu,m′)=I lu,m′Blu. In each step, according to formula
(6) from Bernes (1979), the following quantity is added
to (

∑

Slu,m′):

Slu,m′

= hν
4π f(ν)Blu

skW0 exp

(

−

k−1
∑

i=1

τi

)

Vm′τk
{1− exp (−τk)},

(11)

whereW0 is the initial weight of the model photon; Vm′ is
the volume of the m′ shell; and τi and si are the optical
depth and path of the model photon in the ith step,
respectively. In order to compare the method of Bernes
(1979) with the method proposed here, which we
deduced from the transfer equation, let us consider the
contribution of the intrinsic emission from the m shell,
the emission from a different m′ shell, and the back-
ground radiation to (

∑

Slu,m′). Substituting the relations
for τ1 and for the initial weight of the model photon
produced in the m′ shell, W0=Vm′Aulnu/Nph, where Nph

is the total number of model photons, we obtain the fol-
lowing expression for the contribution of the intrinsic
emission from the m′ shell:

Slu,m′ =
Blu

Nph

(

2hν3

c2
1

nlgu
nugl

− 1

)

{1− exp (−τ1)} . (12)

Since the term in parentheses is the source function and
comparing this equation with (8), we conclude that the
contribution of the intrinsic emission is accurately rep-
resented in the method of Bernes (1979). It follows
from (7) that the contribution of the background radia-
tion must be given by

Slu,m′ =
Blu

Nph
Ibg exp

(

−

k−1
∑

i=1

τi

)

, (13)

where Ibg is the intensity of the background radiation at
the frequency of the transition between levels u and
l. If the cloud is divided into shells of equal volume
(Vm′ = const), then the path of the model photon is
the same in each step (sk = const) and small enough
for the optical depth in each step to be small in ab-
solute value. Formula (13) can then be derived from
(11) by using the linear approximation for the exponent.
The contribution of the emission from a different shell
can be obtained from (11), by analogy with (12),

Slu,m′ = Blu

Nph

Vm

Vm′

exp

(

−
k−1
∑

i=1

τi

)

×

(

2hν3

c2
1

nlgu
nugl

−1

)

k

{1− exp (−τk)} ,
(14)

where the subscript k of the source function means that
this function is calculated from the populations in the
kth step (in the m′ shell rather than the m shell where
the model photon was formed). It follows from (7) that
this contribution must be equal to the product of (12),
where the source function is calculated from the popu-
lations in the first step and the exponential factor from
(13). If the cloud is divided into shells of equal volume
and if the optical depth in each step is small in abso-
lute value (which allows a linear expansion of the expo-
nent), then, using relation (9) for the emission coeffi-
cient, we obtain the last condition for the applicability
of the algorithm of Bernes (1979):

fk(ν)(nu)ksk ≈ f1(ν)(nu)1s1, (15)

where the subscripts denote the first and kth steps in the
propagation of the model photon. Relation (15) is the
condition for the equality of the specific column densi-
ties of the emitting molecule in each step in the direc-
tion of propagation of the model photon. The latter con-
dition is most stringent and is difficult to satisfy in prac-
tice. Since uncertainty in the estimate of the radiation
field in the algorithm of Bernes (1979) produces addi-
tional noise in the method, the use of the algorithm out-
lined here seems more appropriate. Our method cor-
rectly describes the radiation field (the formulas follow
from the transfer equation); therefore, its application
is restricted only by the convergence of the iterative
procedure used (matches the iterative procedure in the
classical MC method) and by the available computing
time. In practice, the convergence can be hampered in
the presence of strong masers.
The qualitative behavior of populations in the limit-

ing cases of hot gas (model I) and hot background radi-
ation (model II) is convenient to analyze as follows. Let
us consider the relation between the ratio of the level
population to its statistical weight and the energy of this
level on a logarithmic scale. In order not to overload the
picture, let us consider only the ladders with quan-
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Fig. 1. Logarithm of the ratio of the population (in cm−3) to
the statistical weight versus the energy of a given level for
the model with a background-radiation temperature of 2.7 K
and a cloud kinetic temperature of 70 K. The dashed lines
correspond to rotational temperatures of 64 and 28 K.

tum numbers K = 0 and -1. In the LTE case, the
level population would be given by Boltzmann formula,
and we would have a straight line whose slope would be
related to the temperature. In the non-LTE case, how-
ever, we have a curve (Figs. 1 and 2). The levels that
correspond to the different ladders in these figures are
indicated by different symbols. In the model with hot
gas, the K = −1 ladder is heavily overpopulated relative
to the K = 0 ladder at small quantum numbers J , while
in the radiation-dominated model, the K = 0 ladder lies
above the K = −1 ladder; i.e., there is an inversion of
other transitions. This may correspond to the division
of methanol masers into class I (Fig. 1) and class II
(Fig. 2) masers (Batrla et al. 1987; Menten et al. 1991).
The slope of the curve at energies E < 100 cm−1 in Fig. 1
corresponds to a rotational temperature Trot ∼ 64 K,
which is close to the kinetic temperature of the
medium. At high energies, Trot ∼ 28 K. In Fig. 2, rota-
tional temperatures Trot ∼ 27 K (which is close to the
kinetic temperature of the medium) and Trot ∼ 59 K
(which is close to the background-radiation tempera-
ture Tbg = 70 K) correspond to low and high energies,
respectively. Thus, the slope of the curve appears to be
mainly determined by collisions at low energies and by
radiation at high energies. The distribution of popula-
tions within the ladder (in each of the segments) is close
to the Boltzmann distribution, while, between the lad-
ders, it is an purely non-LTE distribution. For this rea-
son, no emission arises in a-type transitions (∆K = 0).

K=-1

Fig. 2. Same as Fig. 1 for the model with a background-radi-
ation temperature of 70 K and a cloud kinetic temperature
of 20 K. The dashed lines correspond to rotational tempera-
tures of 27 and 59 K.

The b-type transitions (which occur with a change in
the quantum number K) tend to produce a series of the
form (J+α)K±1−JK , where α = 0,±1 (Menten et al.
1986b). Since the series J0−(J+1)−1 includes transi-
tions from the K=0 ladder to the K=−1 ladder and vice
versa, some of the transitions in this series exhibit activ-
ity in model I (4−1 − 30, 5−1 − 40, etc.), and other are
active in model II (00−1−1, 10−2−1, 20−3−1). Masers in
this series were detected in the observations of Turner
et al. (1972), Zuckerman et al. (1972), Batrla et al.
(1987), and Slysh et al. (1997, 1999). In the models
under consideration, the series J0−J−1 at 157 GHz gives
a weak inversion of transitions for J=2 and 3. Masers
in this series were detected in the observations for 2≤J≤8
(Slysh et al. 1995). The transitions in the series J0−
(J-1)−1 have higher frequencies and show no inversion
in the models under consideration. A similar behavior
of the populations is observed for transitions between
other ladders. The (J+1)0−J1 transitions exhibit class I
and II activity for J > 2 and J < 3, respectively. Wilson
et al. (1985) detected a maser in the 21 − 30 line at
20 GHz. Slysh et al. (1992) identified weak thermal
emission in the 40− 31 line at 28 GHz. The series J1−J0
at 165 GHz and J1−(J-1)0 give no inversion in the
models under discussion. No masers in the series J1−J0
were detected in the observations of Slysh et al. (1999).
The transitions in the series J2−J1 at 25 GHz give an
inversion in model I. No masers in this series were
detected in the observations of Barret et al. (1971) and
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Peak optical depths of the lines for models with the following H2 number densities, methanol abundances, kinetic
temperatures, and background-radiation temperatures: 1 - nH2

= 105 cm−3, X = 106, Tkin = 70 K, and Tbg = 2.7 K;
2 - nH2

= 105 cm−3, X = 106, Tkin = 20 K, and Tbg = 70 K

Transition Frequency, 1 2 Transition Frequency, 1 2

GHz τ τ GHz τ τ

00 − 1−1 108.9 2.0 M2a −2.0* 40 − 31 28.3 -0.7* −Mg 3.0

10 − 00 48.4 −0.2* 2.4 40 − 30 193.4 0.7 7.8

10 − 1−1 157.3 2.6 1.6 40 − 4−1 157.2 9.8 M2b 0.1

10 − 2−1 60.5 3.8 −4.3* 41 − 32 168.6 0.7 −0.2*

11 − 00 213.4 0.4 3.0 41 − 31 193.5 0.8 7.4

11 − 10 165.1 1.0 −Ma 0.4 41 − 40 165.2 3.2 −Ma 1.2

11 − 20 68.3 0.4 −1.1* 42 − 32 193.5 1.0 2.5

2−2 − 3−1 278.3 1.2 0.1 42 − 31 218.4 −1.2* 13.9

2−1 − 1−1 96.7 −1.0* 4.7 42 − 41 24.9 −2.3* M1e 5.3

20 − 10 96.7 −0.1* 4.4 43 − 33 193.5 0.1 1.0

20 − 1−1 254.0 0.8 1.9 43 − 52 288.7 0.9 0.1

20 − 2−1 157.3 6.2 M2b −0.3* 5−4 − 4−4 241.8 0.0 0.6

20 − 3−1 12.2 4.9 M2c −6.7* 5−4 − 6−3 234.7 0.0 0.0*

21 − 11 96.8 −0.2* 3.5 5−3 − 4−3 241.9 0.2 1.7

21 − 10 261.8 0.8 4.4 5−2 − 4−2 241.9 1.3 3.9

21 − 20 165.1 1.6 −Ma 1.0 5−2 − 6−1 133.6 2.8 −Mh −0.6*

21 − 30 20.0 0.6 M2d −2.6* 5−1 − 40 84.5 −3.7* M1i 4.4

22 − 11 121.7 −2.2* 22.2 5−1 − 4−1 241.8 3.1 6.3

22 − 21 24.9 −1.0* M1e 7.6 50 − 41 76.5 −0.7* 2.6

3−2 − 2−2 145.1 −0.3* 2.6 50 − 40 241.7 1.5 6.9

3−2 − 4−1 230.0 2.1 −Ma −0.1* 50 − 5−1 157.2 9.6 M2b 0.6

3−1 − 2−1 145.1 0.1 6.9 51 − 42 216.9 1.1 0.4

30 − 20 145.1 0.2 7.7 51 − 41 241.9 1.4 6.4

30 − 3−1 157.3 8.7 M2b −0.5* 51 − 50 165.4 3.9 −Ma 1.2

31 − 22 120.2 0.2 −0.5* 52 − 42 241.9 1.7 3.1

31 − 21 145.1 0.2 6.5 52 − 41 266.8 −0.3* 9.3

31 − 30 165.1 2.3 −Ma 0.9 52 − 51 25.0 −2.2* M1e 3.0

32 − 22 145.1 0.0* 1.6 53 − 43 241.8 0.4 1.6

32 − 21 170.1 −2.0* 19.0 53 − 62 240.2 1.2 0.1

32 − 31 24.9 −2.0* M1e 7.9 54 − 44 241.8 0.0 0.5

4−4 − 5−3 283.1 0.0 0.0 6−5 − 5−5 290.1 0.0 0.3

4−3 − 3−3 193.5 0.0 1.2 6−4 − 5−4 290.2 0.1 1.0

4−2 − 3−2 193.5 0.5 3.5 6−4 − 7−3 186.3 0.0 0.0*

4−2 − 5−1 181.8 2.7 −0.4* 6−3 − 5−3 290.2 0.3 1.8

4−1 − 30 36.2 −4.5* M1f 5.5 6−2 − 5−2 290.3 1.9 3.7

4−1 − 3−1 193.4 1.6 6.8 6−2 − 7−1 85.6 2.8 −0.6*
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Table. (Contd.)

Transition Frequency, 1 2 Transition Frequency, 1 2

GHz τ τ GHz τ τ

6−1 − 50 132.9 −2.7* M1g 3.4 82 − 81 25.3 −1.3* M1e 0.3

6−1 − 5−1 290.1 4.2 5.5 83 − 92 94.5 0.8 −0.1*

60 − 51 124.6 −0.6* 2.2 9−5 − 10−4 268.7 0.0 0.0

60 − 50 289.9 2.4 5.7 9−4 − 10−3 41.1 0.0* −0.1*

60 − 6−1 157.0 8.8 M2b 0.7 9−3 − 10−2 282.0 0.4 0.0

61 − 52 265.3 1.4 0.9 9−1 − 80 278.3 −0.5* 1.5

61 − 51 290.3 1.9 5.2 9−1 − 8−2 9.9 −2.0* M1k 0.5

61 − 60 165.7 4.0 1.0 90 − 81 267.4 0.1 1.1

62 − 52 290.3 2.3 3.3 90 − 9−1 156.0 5.1 0.5

62 − 61 25.0 −1.9* M1e 1.5 91 − 90 167.9 2.4 0.5

63 − 53 290.2 0.7 1.9 92 − 91 25.5 −1.0* M1l 0.1

63 − 72 191.7 1.2 0.0* 93 − 102 45.8 0.6 −0.1*

64 − 54 290.2 0.1 0.8 10−5 − 11−4 220.4 0.0 0.0

65 − 55 290.1 0.0 0.2 10−3 − 11−2 232.9 0.2 0.0

7−4 − 8−3 137.9 0.0 −0.1* 10−1 − 9−2 57.3 −1.4* 0.4

7−2 − 8−1 37.7 2.4 M2j −0.6* 100 − 10−1 155.3 3.7 0.4

7−1 − 60 181.3 −1.8* 2.6 101 − 100 169.3 1.6 0.3

70 − 61 172.4 −0.3* 1.8 102 − 101 25.9 −0.7* 0.0

70 − 7−1 156.8 7.7 M2b 0.7 11−5 − 12−4 172.1 0.0 0.0*

71 − 70 166.2 3.7 0.8 11−3 − 10−4 7.3 0.0 0.1

72 − 71 25.1 −1.6* M1e 0.7 11−3 − 12−2 183.7 0.1 0.0

73 − 82 143.2 1.1 −0.1* 11−1 − 10−2 104.3 −0.9* 0.3

8−4 − 9−3 89.5 0.0 −0.1* 110 − 11−1 154.4 2.4 0.3

8−1 − 70 229.8 −1.0* M1a 2.0 111 − 110 171.2 0.8 0.3

80 − 71 220.1 −0.1* 1.4 112 − 103 2.9 −0.3* 0.1

80 − 8−1 156.5 6.5 M2b 0.6 112 − 111 26.3 −0.4* 0.0*

81 − 80 166.9 3.2 0.6 114 − 123 253.9 0.0 0.0

Note: M1 – a class I maser was observed; M2 – a class II maser was observed; −M – no maser was detected; * – the optical depth in this
transition is negative; (a) – Slysh et al. (1999); (b) – Slysh et al. (1995); (c) – Batrla et al. (1987); (d) – Wilson et al. (1985); (e) –
Barret et al. (1971); (f) – Turner et al. (1972); (g) – Slysh et al. (1992); (h) – Slysh et al. (1997); (i) – Zuckerman et al. (1972); (j) –
Haschick et al. (1989); (k) – Slysh et al. (1993); (l) – Menten et al. (1986a).

Menten et al. (1986a). Inversion in class I models is also
observed for the transitions of the series (J+1)2−J1.
The first two transitions in the series (J = 1 and 2) turn
out to show the greatest inversion. In model II, inver-
sion is observed in the 31 − 22 transition from the series
(J+1)1−J2. Since the series J−2−(J+1)−1 contains
transitions from K = −2 ladder to the K = −1 ladder
and vice versa, some of the transitions show inversion
in model I (9−1−8−2, 10−1−9−2, etc.), and others show
inversion in model II (5−2−6−1, 6−2−7−1, 7−2−8−1; tran-
sitions with smaller J have higher frequencies and show
no inversion or their inversion is marginal). The lowest
frequency transitions 7−2−8−1 at 37 GHz and 9−1−8−2

at 9.9 GHz, which were observed in the direction of
star-forming regions (Haschick et al. 1989; Slysh et al.
1993), are the most intense transitions in this series. No

maser emission was detected in the 5−2−6−1 and 3−2−4−1

transitions (Slysh et al. 1999). The series (J+1)2−J3
(J> 9) gives inversion in model I. The optical depth in
transitions between ladders with different K is small
because of the low population (although inversion may
exist). Our computations are in qualitative agreement
with the data of Cragg et al. (1992), which were
obtained by the LVG method. Candidates for class II
masers coincide with those of Sobolev et al. (1997),
with the exception of the series J1−J0 at 165 GHz. This
result may be related to the difference in the model
parameters. Peak optical depth for the lines with fre-
quencies below 300 GHz up to J = 11 inclusive in models
I and II are given in the table. When computing the
spectra, we assumed that all sources were observed
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against the background radiation with a temperature of
2.7 K.

CONCLUSION

(1) The method of Bernes (1979) is applicable if the
cloud is divided into shells of equal volume, if the paths
of model photons and the optical depths in each step are
sufficiently small, and if the column densities of the
emitting molecule in the direction of propagation of the
model photon are equal for each step. The applicability
of the method proposed here is restricted only by the
convergence of the iterative procedure, which may be
hampered in the presence of strong masers.

(2) The populations within the ladder (Figs. 1 and 2)
in the segments before and after the break are well
described by the Boltzmann formula, while the popula-
tions between the ladders have a non-LTE distribution.
For this reason, no masers are formed in transitions that
occur with no change in the quantum number K. The
position of the break in the ”logarithm of population-
to-statistical-weight ratio versus level energy” diagram
appears to be determined by the ratio of the rates of col-
lisions and radiative processes.

(3) The transitions 22 − 11 at 121 GHz, 32 − 21 at
170 GHz, 102 − 101 and 112 − 111 at 26 GHz, 50 − 41 at
76 GHz, 60−51 at 124 GHz, 70−61 at 172 GHz, 7−1−60
at 181 GHz, 10−1 − 9−2 at 57 GHz, 11−1 − 10−2 at
104.3 GHz, 112 − 103 at 2.9 GHz are candidates for
new class I masers, while the transitions 10 − 2−1 at
61 GHz, 11−20 at 68 GHz, and 6−2−7−1 at 86 GHz are
candidates for class II masers.
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