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Scattering rates for a Goldreich-Sridhar (GS) spectrum of anisotropic, incompressible, magneto-
hydrodynamic turbulence are calculated in the quasilinear approximation. Because the small-scale
fluctuations are constrained to have wave vectors nearly perpendicular to the background mag-
netic field, scattering is too weak to provide either the mean free paths commonly used in Galactic
cosmic-ray propagation models or the mean free paths required for acceleration of cosmic rays at
quasi-parallel shocks. Where strong pitch-angle scattering occurs, it is due to fluctuations not de-
scribed by the GS spectrum, such as fluctuations generated by streaming cosmic rays.

The scattering of energetic particles by turbulent magnetic and electric fields plays an important role in the accel-
eration and propagation of cosmic rays [1–7]. The turbulent fields responsible for cosmic-ray scattering can be excited
by the cosmic rays themselves or by some mechanism that is independent of the cosmic rays. This paper focuses
upon the latter case. In previous treatments of scattering, different turbulence models have been used, including
fluctuations with wave vectors k parallel to the ambient large-scale magnetic field B0 (slab symmetry) or perpen-
dicular to B0 (2D), or power spectra that are isotropic in k-space [7–10]. On the other hand, a number of studies
suggest that in magnetohydrodynamic (MHD) turbulence excited by large-scale stirring, small-scale fluctuations have
non-zero values of k‖ that are ≪ k⊥, where k⊥ and k‖ are the components of k ⊥ and ‖ to B0 [12–14]. In this paper,
the quasilinear approximation [11] is used to calculate general scattering rates for incompressible MHD turbulence
and also shear-Alfvénic turbulence on the non-MHD scales shorter than the collisional mean free path of thermal
particles [12]. These rates are then evaluated for the Goldreich-Sridhar power spectrum [12], which has significant
power at small scales only for k⊥ ≫ k‖. The condition k⊥ ≫ k‖ is found to significantly decrease the efficiency of
pitch-angle scattering relative to the slab-symmetric and isotropic cases. Astrophysical applications and limitations
of quasilinear theory (QLT) are discussed.
It is assumed that there is an inertial-range spectrum of fluctuations extending from some large scale l to a much

smaller scale d, with the fluctuations at scales ∼ l dominating the total magnetic energy. Only cosmic rays with
gyroradii ρ ≪ l are considered. A scale l′ is introduced, with ρ ≪ l′ ≪ l. The energetically dominant fluctuations on
scales > l′ are treated as a uniform field B0. The magnetic fluctuations on scales < l′, denoted B1, are small compared
to B0 and are treated using QLT. It can be verified a posteriori that the QLT scattering rates are independent of l′

to lowest order in ρ/l. In contrast to most previous treatments, the turbulence is treated as strong, in the sense that
fluctuations decorrelate in one linear wave period.
In QLT, the turbulence causes the cosmic rays to diffuse in momentum space, with the diffusion coefficients deter-

mined by the statistical properties of the turbulence [15],
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where f is the cosmic-ray distribution function averaged over the small scales of the fluctuating fields, p is momentum,
θ (the pitch angle) is the angle between p and B0, and ξ = cos θ. In equation (1) it has been assumed that the length
scale characterizing variations in f is large compared to ρ, so that f can be taken to be independent of gyrophase.
At each k, B1 and the incompressible turbulent velocity U1 are decomposed into shear-Alfvén and pseudo-Alfvén
components by projecting along the appropriate polarization vectors [12]. These components are denoted respectively
by the superscripts s and p, so that

B1(k, t) = Bs
1(k, t) +B

p
1(k, t), (2)

with an analogous equation for U1(k, t). The electric field is given by Ohm’s Law, E1 = −(1/c)U1 × B0. The
normalized power spectra of the shear-Alfvén modes are given by
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M s(k⊥, k‖, τ) = 〈Bs
1(k, t) ·B

s ∗
1 (k, t+ τ)〉/B2

0 , (3)

Cs(k⊥, k‖, τ) = 〈Us
1(k, t) ·B

s ∗
1 (k, t+ τ)〉/vAB0, and (4)

Ks(k⊥, k‖, τ) = 〈Us
1(k, t) ·U

s ∗
1 (k, t+ τ)〉/v2A, (5)

with analogous equations for the pseudo-Alfvén modes, where vA is the Alfvén speed associated with B0, and 〈. . .〉
denotes an ensemble average. It is assumed that the turbulence is homogeneous and stationary, that 〈B1(x, t)B1(x+
r, t+τ)〉 = 〈B1(x, t)B1(x−r, t+τ)〉 with analogous equations for 〈U1U1〉 and 〈U1B1〉 (no magnetic or kinetic helicity),
that 〈U1(x, t)B1(x+ r, t+ τ)〉 = 〈U1(x, t)B1(x + r, t− τ)〉 (which gives Dξp = Dpξ), and that the shear-Alfvén and
pseudo-Alfvén modes are statistically independent.
The contributions to the momentum diffusion coefficients from the shear-Alfvén modes and pseudo-Alfvén modes

are, respectively,
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where δ = vA/v, z = k⊥ρ, ρ = v⊥/Ω, Ω is the cosmic-ray gyrofrequency, v⊥ and v‖ are the cosmic-ray velocity
components ⊥ and ‖ to B0, L is the dimension of a window function that multiplies the variables before a Fourier
transform is taken, and the arguments of K, C, and M are (k, τ). Since the shear-Alfvén and pseudo-Alfvén modes
are statistically independent, Dξξ = Ds

ξξ+Dp
ξξ, etc. Equations (6) and (7) are derived using a standard method based

on the linearized Vlasov equation [11], modified to treat strongly turbulent fluctuations instead of waves satisfying
linear dispersion relations. Alternatively, they can be derived from equations (7a), (7b), and (7c) of [15], if one notes
the typographical error on the eighth line of equation (7a), namely, that QR‖ should instead be Q‖R.
A Goldreich-Sridhar spectrum of strong, anisotropic MHD turbulence [12] is now assumed, with
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for (l′)−1 < k⊥ < d−1 with d → 0, where τk = (l/vA)(k⊥l)
−2/3 is the Lagrangian correlation time appropriate for

strong anisotropic incompressible MHD turbulence, and

g(x) =

{

1 if |x| < 1
0 if |x| ≥ 1

. (9)

The spectrum of equation (8) is also taken to describe the fluctuations on scales between l′ and l, and the normalization
has been chosen so that the total magnetic energy

∫∞

l−1 k⊥dk⊥
∫∞

−∞ dk‖M
s(k⊥, k‖, 0)B

2
0/4 = L3B2

0/8π. At small scales
in MHD turbulence, there is equipartition between magnetic and kinetic energies, so that Kp = Mp and Ks = M s.
It is assumed that Mp = M s and Cp = Cs = σM s, where the arguments of each of these spectra are (k⊥, k‖, τ), and
where the fractional cross helicity σ ∈ (−1, 1) is independent of k.
In many applications, there are two small parameters,

ǫ =
v

lΩ
, and δ =

vA
v
. (10)

For sin θ ≫ ǫ1/2, one finds from equations (6) and (7) and the assumed forms of the power spectra that to lowest
order in ǫ and δ,
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The terms on the right-hand sides of equations (11) and (12) proportional to ǫ3/2 correspond to fluctuations satisfying
the magnetostatic gyroresonance condition k‖v‖ = nΩ, which states that the Doppler-shifted frequency of a static
magnetic fluctuation in the reference frame of an energetic particle’s motion along B0 is an integral multiple of the
particle’s gyrofrequency. A fluctuation is seen as static when a cosmic ray passes through one wavelength of the
fluctuation in a time (k‖v‖)

−1 ≪ τk. The gyroresonant terms in equations (11) and (12) are much smaller than in the

case of slab-symmetric or isotropic turbulence for sin θ ≫ ǫ1/2 because equations (8) and (9) imply that k⊥ > k
3/2
‖ l1/2,

so that fluctuations satisfying k‖v‖ = nΩ also satisfy k⊥ρ > n3/2ǫ−1/2 sin θ cos−3/2 θ ≫ 1. The condition k⊥ρ ≫ 1
implies that a cosmic ray traverses many uncorrelated fluctuations of the required k‖ during a single gyro orbit.
The effects of these uncorrelated fluctuations tend to cancel. The weakening of gyroresonant scattering due to this
gyro-orbit averaging would occur for any power spectrum in which all fluctuations on scales ≪ l satisfy k⊥ ≫ k‖.
The terms on the right-hand sides of equations (11) and (12) proportional to (− ln ǫ)δ correspond to non-resonant
interactions. In equation (12) the non-resonant term arises from the n = 0 term in equation (7), which represents the
effects of the magnetic-mirror force of the pseudo-Alfvén modes (transit-time damping). This term becomes large as
θ → π/2, since as v‖ → vA particles can “surf” magnetic mirrors moving at speeds ∼ vA more effectively.

For sin θ ≪ ǫ1/2, scattering is dominated by magnetostatic gyroresonant interactions with shear-Alfvén modes, and
to lowest order in ǫ and δ
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Although Dξξ vanishes as θ → 0, the pitch-angle scattering frequency ν = 2Dξξ/(1 − ξ2) (which unlike Dξξ is
independent of θ for isotropic scattering) approaches (π/4)(v/l) as θ → 0. Gyroresonant interactions are stronger for
θ <
∼ ǫ1/2 than for θ ≫ ǫ1/2, because when θ <

∼ ǫ1/2 modes satisfying k‖v‖ = nΩ also satisfy k⊥ρ <
∼ 1, so that a cosmic

ray doesn’t traverse many uncorrelated resonant modes during a single gyro orbit.

FIG. 1. The θ dependence of the pitch-angle scattering frequency ν = 2(Ds
ξξ + Dp

ξξ
)/(1 − ξ2) for ǫ = δ = 10−3. The ×s

indicate numerical evaluations of equations (6) and (7), the solid line gives the analytic results of equations (11) and (12), and
the dashed lines give the limiting value from equation (13) of ν as sin θ → 0.

In figure 1, the pitch-angle scattering frequency ν from equations (11) and (12) is plotted with the solid line, and the
limiting value of ν as sin θ → 0 from equation (13) is given by the dashed line. The ×s indicate numerical evaluations
of ν from equations (6) and (7) for the assumed spectra in which only those terms in the infinite sum with |n| ≤ 10
are kept and in which l′ = 0.1l (see introduction). The values ǫ = 10−3 and δ = 10−3 have been used. (σ, which only
weakly affects ν, has been set to 0.) The characteristic values ν ∼ v/l for sin θ < ǫ1/2, ν ∼ δ−1v/l for |π− θ| < δ, and
ν ∼ [(− ln ǫ)δ+ ǫ3/2]v/l for moderate pitch angles can be extrapolated to all values of ǫ and δ much less than 1 in the
quasilinear approximation.
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When ν is sufficiently large, f0 becomes nearly isotropic, and the pitch-angle-averaged distribution f can be treated
in the diffusion approximation [7,16],
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where l is distance along a field line, and the ellipsis indicates the omission of the advection and adiabatic-acceleration
terms. The coefficient of spatial diffusion along B0 is given by [16]

κ‖ =
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. (15)

To lowest order in ǫ and δ when ǫ3/2 ≪ (− ln ǫ)δ, QLT gives

κQLT
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−
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. (16)

[In this paper, from equation (11) on, Mp = M s; however, if either Mp or M s is set to zero, equation (16) becomes

κQLT
‖ = vl(−2δ ln ǫ)−1.] To lowest order in ǫ and δ when (− ln ǫ)δ ≪ ǫ3/2 QLT gives

κQLT
‖ = vlc1(−δ ln ǫ)−5/11ǫ−9/11, where (17)

c1 = (π/22) csc(5π/11)65/11[(2/13)
∑∞

n=1 n
−9/2]−6/11 ≃ 0.88. The pitch-angle-averaged momentum diffusion coeffi-

cient in equation (14) is given by [16]
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To lowest order in ǫ and δ, QLT gives

D
QLT

p = (π/24)(1− σ2)(− ln ǫ)p2v2A/(vl). (19)

When σ2 = 1, Dp vanishes since the small-scale fluctuations all travel in a single direction along B0 at the speed vA,
and, in the reference frame that follows their motion, particle energies are conserved.
Although QLT is a useful and standard tool, it suffers from important inaccuracies. QLT assumes that during

the time a particle is correlated with a turbulent fluctuation, the orbit of that particle is the same as in a uniform
magnetic field. However, field-strength fluctuations △|B| with △|B|/|B| ≡ α ≪ 1 magnetically trap cosmic rays
with |ξ| <∼ α1/2. (For incompressible turbulent fluctuations, which have phase velocities ∼ vA along the magnetic
field, and for cosmic rays with v ≫ vA, the trapping condition is essentially the same as if the fluctuations were
stationary.) The trajectories of such trapped particles differ greatly from the trajectories of particles in a uniform
field, violating the QLT assumptions. Because the integral in equation (18) is dominated by values of |ξ| <∼ δ ≪ 1

for which trapping is important, the value of Dp in equation (19) is unreliable. Similarly, when (− ln ǫ)δ ≪ ǫ3/2,
the integral in equation (15) is dominated by small |ξ|, and thus the value of κ‖ in equation (17) is unreliable. In
addition, assuming an unperturbed particle orbit in the presence of a slowly and non-periodically varying E1 or B1

leads to spurious changes in a particle’s magnetic moment µ = mv2⊥/2B0, which, as an adiabatic invariant, should
be virtually conserved when E1 and B1 vary on a time scale ≫ Ω−1. The non-resonant terms in equations (11) and
(12) arise from slowly varying modes and imply such spurious changes in µ, thereby significantly overestimating non-
resonant pitch-angle scattering. Since κ‖ in equation (16) is determined by this non-resonant pitch-angle scattering,
equation (16) underestimates κ‖.
Although the QLT results for the key particle-transport coefficients are inaccurate, QLT does show that resonant

scattering by MHD turbulence with k⊥ ≫ k‖ is much weaker than resonant scattering by slab-symmetric or isotropic
fluctuations. Moreover, equation (16) as a lower bound on κ‖ has important implications. If B0 = 5µG, l = 100 pc, and

vA = 106 cm/s [parameters characteristic of the interstellar medium (ISM)], then ǫ = 2.2×10−9EGeV for a relativistic
proton, where EGeV is the proton’s energy in GeV, and δ = 3.3 × 10−5. If EGeV ≪ 106, then ǫ3/2 ≪ (− ln ǫ)δ, and
equation (16) gives a lower limit to the scattering mean free path κ‖/v of 430 kpc × (20 − lnEGeV)

−1. This value
is so large that if the power-law spectrum of interstellar turbulence inferred from observations [17] is described by
equation (8), then some mechanism besides such turbulence must be invoked to explain the confinement of cosmic
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rays to the Galaxy [6]. At energies <
∼ 102 − 103 GeV, such a mechanism is provided by resonant MHD waves that

cosmic rays themselves excite, but at higher energies it is believed that self-confinement does not work [5,6]. For
EGeV > 102 − 103, cosmic-ray confinement and isotropization can be explained even if turbulent scattering is weak if
one takes into account molecular-cloud magnetic mirrors [18]. If the interstellar turbulence generated by supernovae
and stellar winds is described by equation (8), the inefficient scattering associated with such turbulence may indicate
that quasi-parallel shocks are unable to accelerate cosmic rays up to the ∼ 106 GeV energies at the “knee” of the
galactic cosmic-ray energy spectrum [2,19], although this suggestion is controversial [20]. Quasi-perpendicular shocks,
however, may be able to accelerate cosmic rays to the knee and beyond [21,22].
I thank Steve Spangler, Eliot Quataert, Torsten Ensslin, Randy Jokipii, Steve Cowley, Jon Arons, Peter Goldreich,

and Russell Kulsrud for valuable discussions.
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