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ABSTRACT

We investigate the non-Gaussian signatures in Cosmic Microwave Background (CMB) maps induced
by the intervening large-scale structure through weak lensing. In order to measure the deviation from
the Gaussian behavior of the intrinsic temperature anisotropies, we use a family of three morphological
descriptors, the so-called Minkowski functionals. We show analytically how these quantities depend
on the temperature threshold, and compare the results to numerical experiments including the instru-
mental effects of Planck. Minkowski functionals can directly measure the statistical properties of the
displacement field and hence provide useful constraints on large-scale structure formation in the past.

Subject headings: Methods: statistical — cosmic microwave background — dark matter —
gravitational lensing — large-scale structure of Universe

1. INTRODUCTION

The temperature anisotropy in the CMB is a powerful
probe of the content and nature of our Universe. Most
inflationary scenarios (Sato 1981; Guth 1981) predict that
the temperature fluctuation field obeys Gaussian statistics
(Guth & Pi 1985), so all its statistical properties can be ac-
curately predicted based on the Gaussian theory (Bardeen
et al. 1986; Bond & Efstathiou 1987). However, gravita-
tional lensing by the matter inhomogeneities between the
last scattering surface and us imprints non-Gaussian sig-
natures on the CMB. These signatures directly probe the
mass distribution up to very high redshift, and their mea-
surement could greatly help to constrain cosmological pa-
rameters.
Various statistical methods have been used to investi-

gate lensing of CMB maps. The effect on the power spec-
trum Cℓ itself is rather small (Seljak 1996). The prob-
ability density function (PDF) of peak ellipticities of the
lensed temperature field is in principle sensitive to the lens-
ing signatures on scales below 10′, but the finite beam size
of detectors tends to circularize the deformed ellipticities
again (Bernardeau 1998). Using the correlation between
ellipticities of the lensed CMB map and distant galaxies
proves more robust against the beam smearing effect (van
Waerbeke et al. 2000). Takada et al. (2000) measure lens-
ing signatures on scales around 75′ with the two-point cor-
relation function of hotspots.
In this Letter, we suggest to detect weak lensing sig-

natures in CMB maps with the Minkowski functionals
(Minkowski 1903). To illustrate that the method is useful
at all, we perform quantitative analyses on numerical ex-
periments (Takada & Futamase 2000). Section 2 describes
the production of the CMB maps used in our work. In
Section 3, we summarize some of the properties of the
Minkowski functionals and apply them to the maps. Sec-
tion 4 provides an outlook. The Appendix briefly derives
the dependence of the Minkowski functionals of a lensed

CMB map on the temperature threshold.

2. NUMERICAL EXPERIMENTS

We consider two currently fashionable cosmologies,
namely Cold Dark Matter variants with Ωm=1 and h=0.5
(SCDM) and Ωm=0.3, Ωλ=0.7, and h=0.7 (ΛCDM). Ωm

and Ωλ are the energy densities of matter and vacuum
relative to the critical density, respectively, and h is the
Hubble constant in units of 100kms−1Mpc−1. The baryon
density is chosen as Ωbh

2 = 0.019 from recent Big Bang
Nucleosynthesis results (Burles & Tytler 1998). We use a
Harrison-Zel’dovich initial power spectrum and the trans-
fer function of Bardeen et al. (1986) with the shape param-
eter form (Sugiyama 1995). After that, we can only vary
the normalization, or equivalently σ8, the mass fluctuation
in a sphere of radius 8h−1Mpc.
For each model, we calculate the Cℓ with CMBFAST

(Seljak & Zaldarriaga 1996) and compute 30 realizations
of the CMB on an 80◦ × 80◦ square divided into 2′ pixels.
The lensing effect can be treated as a mapping of the

primary CMB anisotropies. When we observe the CMB
temperature ψ in a certain direction θ on the sky, we ac-
tually see the intrinsic field ϕ at a different position θ+ ξ
on the last scattering surface:

ψ(θ) = ϕ(θ + ξ(θ)). (1)

To obtain the lensing displacement field ξ, we first gener-
ate the convergence field κ. Its power spectrum Pκ(ℓ) is
the matter power spectrum Pδ(k) projected along the line
of sight:

Pκ(ℓ) =
9
4H

4
0Ωm

×
∫ χrec

0

dχa−2

(

r(χrec − χ)

r(χrec)

)2

Pδ

(

k =
ℓ

r(χ)
, χ

)

. (2)

χ and r(χ) denote the comoving radial distance and the
corresponding comoving angular diameter distance, and
χrec is the radial distance to the last scattering surface.
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From κ we compute the displacement field ξ in Fourier
space through ξ(k) = 2ikk−2κ(k) and transform to real
space. According to Equation (1), the displacement field
only distorts the locations of the values in the primordial
map. So we interpolate the original temperature values
with a cloud-in-cell procedure to obtain the lensed temper-
ature map on a regular grid. Finally, we mimic an obser-
vation through Planck (Mandolesi et al. 1995) by adding
a Gaussian beam smearing and white noise. The beam
FWHM and the noise level per FHWM pixel are chosen
as 5.5′ and 4.3 × 10−6, respectively (Efstathiou & Bond
1999).
As an example, Figure 1 shows a map with and without

lensing.

3. INTEGRAL GEOMETRY FOR CMB MAPS

Minkowski functionals were formally introduced into
cosmology by Mecke et al. (1994). Although the whole
family of these geometric descriptors was already men-
tioned in (Coles 1988), Schmalzing & Górski (1998) first
applied them to CMB maps. Bernardeau (1997) sug-
gested Minkowski functionals for detecting weak lensing
signatures in the CMB. For a continuous field, we use the
Minkowski functionals to describe the geometry of its ex-
cursion sets, that is the area above a given temperature
threshold. In two dimensions, there are three Minkowski
functionals which correspond to well-known geometrical
quantities, namely the area v0, the circumference v1, and
the Euler characteristic v2.
The unlensed CMB maps obey Gaussian statistics.

Therefore, their statistical properties can be completely
characterized by the power spectrum Cℓ. Following
Tomita (1990), we parametrize the Minkowski functionals
of the isotemperature contour at the normalized threshold
ν with τ , the variance of the field’s first derivative3

vGauss
0 (ν) =

1

2
− 1

2
Φ

(

ν√
2

)

,

vGauss
1 (ν) =

√
τ

8
e−ν2/2,

vGauss
2 (ν) =

τ√
8π3

νe−ν2/2.

(3)

The Appendix shows that the shapes of the Minkowski
functional curves of the lensed field remain the same as in
the Gaussian case. So the non-Gaussianity manifests it-
self only in the normalization of the curves. Let us denote
the constants of proportionality from Equations (A4) and
(A6) with α1 and α2, respectively. Equation (3) yields

αGauss
1 =

√
τ

8
, αGauss

2 =
τ√
8π3

. (4)

Therefore, for the Gaussian random field the quantity

α =
(

8
π

)3/2 α2
1

α2
(5)

equals unity. As we shall see, lensing leads to deviations
from unity.
Even with high resolution and large sky coverage, these

changes are easily overcome by the cosmic error. There-
fore, accurate evaluation of the Minkowski functionals is
crucial. We use three independent methods and take
care that they produce compatible results. One of them
uses contour integration to evaluate the circumference and
the Morse theorem (Morse & Cairns 1969) to determine
the Euler characteristic (see e.g. Novikov et al. 1999).
Two more elaborate methods (Schmalzing & Buchert
1997) evaluate the Minkowski functionals via Crofton’s
formula (Crofton 1868), and by averaging over invariants
formed from derivatives, respectively. Figure 2 shows the
Minkowski functionals of one of the models.
For each realization, we determine the non-Gaussianity

parameter α by fitting the measured Minkowski function-
als to their expected Gaussian shapes. Since each of our re-
alizations covers only 15% of the sky, while for the Planck
satellite a sky coverage of 60% and more is expected, we
reduce our estimated variances by a factor of two. It is
also worth mentioning that we assume Gaussianity of the
convergence field on scales of 5’ and above. This is not ex-
actly true (Jain et al. 2000), so we expect an even stronger
signal from a refined analysis with a convergence field cal-
culated from N–body simulations.
Table 1 summarizes our results. As expected, neither of

the unlensed models deviates significantly from Gaussian-
ity. For the maps that include the weak lensing effect, the
average α is different from one. In all but one case, this
difference is significant, and in two out of the four investi-
gated models with lensing, the significance level is above
95%.

4. DISCUSSION AND OUTLOOK

We have measured the weak lensing effect of large-scale
structure on the observed temperature anisotropies of the
CMB with Minkowski functionals. Numerical simulations
have shown that the effect can be significant when ob-
served with the experimental specifications of Planck. It
remains to be seen whether the Minkowski functionals can
directly measure any characteristics of large-scale struc-
ture. Since they are sensitive to smoothing, we expect that
varying the smoothing scale can reveal information on the
convergence field on different scales. Most importantly,
however, we have proven that this method can measure
non-Gaussian signatures induced by weak lensing at all.
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APPENDIX

ANALYTICAL TREATMENT

Consider a scalar random field ψ in two dimensions, e.g. the observed CMB temperature anisotropy. It can be related
to a scalar Gaussian random field ϕ, the intrinsic temperature anisotropy, through the vector-valued random field ξ, the
displacement, by Equation (1).
It is well-known that the PDF of the temperature field, and hence the zeroth Minkowski functional v0, which is just the

integrated PDF, does not change at all under lensing. We write the other two Minkowski functionals as spatial averages
over invariants formed from the field’s derivatives4 (Schmalzing & Górski 1998):

v1(ν) =
π

4

〈

δ(ψ − ν)
√

ψ2
,1 + ψ2

,2

〉

, v2(ν) =
1

2π

〈

δ(ψ − ν)
2ψ,1ψ,2ψ,12 − ψ2

,1ψ,22 − ψ2
,2ψ,11

ψ2
,1 + ψ2

,2

〉

. (A1)

In order to evaluate these two averages, we need to express the first- and second-order derivatives of ψ in terms of the
fields ϕ and ξ. Straightforward differentiation yields5

ψ,i = ϕ,i + ϕ,kξk,i, ψ,ij = ϕ,ij + ϕ,ikξk,j + ϕ,jkξk,i + ϕ,klξk,iξl,j + ϕ,kξk,ij . (A2)

For the circumference v1, Equation (A1) involves only the first derivatives of the observed field ψ and therefore, by
Equation (A2), only the first derivatives of the intrinsic field ϕ. Since these are independent of the value ϕ itself (Adler
1981), and ξ is of course independent of the field ϕ, the average splits neatly into two factors:

v1(ν) =
π

4
〈δ(ψ − ν)〉

〈√

ψ2
,1 + ψ2

,2

〉

=
π

4

e−ν2/2

√
2π

〈√

ψ2
,1 + ψ2

,2

〉

. (A3)

The remaining average is independent of ν, so the curve has the Gaussian shape:

v1(ν) ∝ e−ν2/2. (A4)

Turning to the Euler characteristic v2, we observe that Equation (A1) expressed in terms of the fields ϕ and ξ depends
linearly on the second derivatives ϕ,ij and ξk,ij . Therefore, v2 depends on the threshold ν only through

〈δ(ϕ− ν)ϕ,ij〉 = −τν e
−ν2/2

√
2π

δij and 〈δ(ϕ− ν)ξk,ij〉 = 0. (A5)

The remainder of the average in Equation (A1) again produces factors that do not depend on the threshold ν. So the
curve v2(ν) also has the shape expected for the Gaussian case:

v2(ν) ∝ νe−ν2/2. (A6)

4Indices following a comma denote a spatial derivative.
5Summation over pairwise indices is implied throughout.
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Table 1

The “non-Gaussianity parameter” α from Equation (5). For a Gaussian random field, α should be unity, while
deviations from one are expected for a weakly lensed CMB sky. α and ∆α are the average and standard error

over all realizations of each model.

model experiment σ8 α ∆α

ΛCDM Planck no lensing 1.00019 0.00182
ΛCDM Planck 1.0 1.00099 0.00153
ΛCDM Planck 1.5 1.00209 0.00184
ΛCDM Planck 2.0 1.00502 0.00186
SCDM Planck no lensing 0.99912 0.00171
SCDM Planck 1.5 1.00355 0.00183

Fig. 1.— The same patch of the microwave sky seen without (left) and with (right) the lensing effect by the large-scale structure of a
Standard Cold Dark Matter model normalized with σ8 = 1.5. The temperature of the CMB is reflected in the temperature of the colors, and
contours are drawn at intervals of 0.5 times the variance. Both the deformation of individual peaks and the distortion of the relative positions
of the peaks are clearly visible.
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Fig. 2.— Minkowski functionals for the lensed and unlensed maps observed by the Planck satellite. Results for the unlensed maps are
shown in grey, while black lines indicate the Minkowski functionals of the lensed maps. For both, the average and standard deviation are
shown in solid lines, while the expectation values for a Gaussian random field with the same two-point characteristics are displayed in dashed
lines. Note that we only show the region around the maxima of the Minkowski functional curves, where the differences are visibly significant.


