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ABSTRACT

We compute precise predictions for the two-point correlation function of local maxima
(or minima) in the temperature of the microwave background, under the assumption
that it is a random gaussian field. For a given power spectrum and peak threshold
there are no adjustable parameters, and since this analysis does not make the small-
angle approximation of Heavens & Sheth (1999), it is essentially complete. We find
oscillatory features which are absent in the temperature autocorrelation function, and
we also find that the small-angle approximation to the peak-peak correlation function
is accurate to better than 0.01 on all scales. These high-precision predictions can form
the basis of a sensitive test of the gaussian hypothesis with upcoming all-sky microwave
background experiments MAP and Planck, affording a thorough test of the inflationary
theory of the early Universe. To illustrate the effectiveness of the technique, we apply
it to simulated maps of the microwave sky arising from the cosmic string model of
structure formation, and compare with the bispectrum as a non-gaussian discriminant.
We also show how peak statistics can be a valuable tool in assessing and statistically
removing contamination of the map by foreground point sources.

Key words: cosmic background radiation - cosmology; theory - early Universe -
large-scale structure of Universe.

1 INTRODUCTION

The cosmic microwave background radiation (CMB) presents an ideal opportunity to test theories of the early Universe. At

the time of last scattering, the Universe is a relatively straightforward, almost uniform, mixture of photons, baryons, electrons

and dark matter. The physics is well-understood, and free from the very complicated effects which make interpretation of the

present-day matter distribution more complicated. The microwave background thus offers the possibility of accurately testing

models of structure formation. A generic test can readily be made between two classes of structure-formation models, based on

inflation and cosmic defects respectively. There are several ways to do this; the power spectrum itself is a useful discriminant

of specific models. We concentrate here on a generic test: most inflationary models predict that the microwave background

temperature map will be very close to a random gaussian field, whereas generically defect models predict a non-gaussian

temperature map. It turns out that testing the gaussian nature of the initial fluctuations is easier through analysis of CMB

fluctuations than large-scale structure (Verde et al. 2000), although tests based on number densities of high-redshift objects

may also be useful (Robinson, Gawiser & Silk 2000,Matarrese, Verde & Jimenez 2000).

Current evidence from Boomerang (de Barnardis et al. 2000) and MAXIMA (Hanany et al. 2000,Balbi et al. 2000)

favours inflation models, since the power spectrum is acceptable for certain combinations of cosmological parameters. Indeed,

the major scientific goal of these and future experiments such as the Microwave Anisotropy Probe (MAP) and Planck Surveyor

(Bersanelli et al. 1996), is to derive cosmological parameters from the power spectrum. To make this interpretation requires

that the temperature map is created by inflation or some similar process, not by defects, and that the map is not seriously

contaminated by foregrounds. In both of these areas, the statistics of peaks can be a valuable tool. The process is quite

straightforward: given a power spectrum, the statistical properties of peaks of a gaussian field are fully determined - there are

no free parameters. If the peaks are not consistent with the predictions, then either the CMB temperature map is not gaussian,

or it is significantly contaminated by foregrounds, or both. In either of these cases, the derived cosmological parameters from

the power spectrum will be suspect. In this paper, we compute the predictions for the correlation function of local maxima

(and minima) for a gaussian field. The paper generalises the work of Heavens & Sheth (1999) in dropping the small-angle
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approximation: the results of this paper can be used for all valid separations on the sky. There are several ways to test the

gaussian hypothesis, such as the three-point function (e.g. Hinshaw et al. 1994, Falk, Rangarajan & Srednicki 1993, Luo &

Schramm 1993, Gangui et al. 1994), the genus and Euler-Poincaré statistic (Coles 1989, Gott et al. 1990, Luo 1994b, Smoot

et al. 1994), the bispectrum (Luo 1994a, Heavens 1998, Ferreira, Magueijo & Gorski 1998), studies of tensor modes in the

CMB (Coulson, Crittenden & Turok 1994), excursion set properties (Barreiro et al. 1998, Barreiro, Martinez-Gonzales &

Sanz 2000), peak statistics (Bond & Efstathiou 1987, Kogut et al. 1995, Kogut et al. 1996, Barreiro et al. 1997) and wavelet

analyses (e.g. Mukherjee, Hobson & Lasenby 2000, Aghanim & Forni 1999, Forni & Aghanim 1999). One advantage which the

method presented here has is the possibility of assessing and removing contamination by foreground point sources. We return

to this in the discussion. Non-gaussian signals have been reported for the COBE map by Ferreira, Magueijo & Gorski (1998)

(see also Pando, Valls-Gabaud & Fang 1998, Kamionkowski & Jaffe 1998, Bromley & Tegmark 1999, Mukherjee, Hobson &

Lasenby 2000, Magueijo 2000) . If this nongaussian signal is really present in the microwave background map, and not the

result of some artefact (Banday, Zaroubi & Górski 2000), then it would be a severe challenge to inflation models, as it is many

orders of magnitude larger than expected (e.g. Verde et al. 2000 and references therein).

2 METHOD

In this section, we compute the two-point correlation function of local maxima in 2D gaussian random fields on the surface of

a sphere. The method essentially follows that of Heavens & Sheth (1999), who used a Fourier analysis which assumed a flat

sky. That analysis should be accurate for small separations; the analysis in this paper is general.

2.1 Peaks on the surface of a sphere

We define the temperature fluctuation by δ(θ, φ) ≡ T (θ, φ)/T̄−1, where T̄ is the mean temperature, and its spherical harmonic

transform by

aℓm ≡
∫

d2Ω δ(θ, φ)Y m∗
ℓ (θ, φ) (1)

where Ω = (θ, φ). The inverse is

δ(θ, φ) =
∑

m=−ℓ,ℓ; ℓ=0,∞

aℓmY
m
ℓ (θ, φ) (2)

If the temperature map is a random gaussian field, the statistical properties of the fluctuations are specified entirely by the

power spectrum, Cℓ, defined by

〈aℓma∗ℓ′m′〉 = Cℓδ
K
ℓℓ′δ

K
mm′ (3)

where angle brackets indicate ensemble averages, and δK is a Kronecker delta function. The autocorrelation function of the

temperature for points at (θ, φ), (θ′, φ′), separated by an angle ψ is

F (x) = 〈δ(θ, φ)δ(θ′, φ′)〉 =
∑

ℓ

Cℓ

(

2ℓ+ 1

4π

)

Pℓ(x) (4)

where x = cosψ and Pℓ is a Legendre polynomial. The remainder of the calculation of the peak-peak correlation function

follows the method outlined in Heavens & Sheth (1999). We compute the 12 × 12 covariance matrix Mij = 〈vivj〉, where
vi = (v1,v2) and the vectors v specify the field and its derivatives at the two points: v = (δ, δφ, δθ, δφφ, δφθ, δθθ). Note that

δφ ≡ ∂δ/∂φ etc. We show how to compute the components of the covariance matrix by an example, from which the others

can be readily generalised. Consider the correlation of derivatives in the φ direction at two points (1) and (2):

〈δ(1)φ δ
(2)∗
φ 〉 =

∑

ℓ,m

∑

ℓ′,m′

〈aℓma∗ℓ′m′〉 ∂

∂φ1
Y m
ℓ (θ1, φ1)

∂

∂φ2
Y m′∗
ℓ′ (θ2, φ2) (5)

We take the derivatives outside the summation, use the orthogonality of the aℓm (3), and use the addition theorem for spherical

harmonics:
∑

m

Y m
ℓ (θ1, φ1)Y

m∗
ℓ (θ2, φ2) =

2ℓ + 1

4π
Pℓ(x). (6)

This yields

〈δ(1)φ δ
(2)∗
φ 〉 = ∂2

∂φ1∂φ2

∑

ℓ

2ℓ+ 1

4π
CℓPℓ(x). (7)
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Writing x = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2) we can differentiate to compute the covariance matrix element. This is

aided by noting that these functions are independent of the absolute positions or orientations of the two points on the sphere,

depending only on their separation. We can therefore simplify the algebra by taking θ1 = θ2 = π/2, φ1 = 0, and φ2 = φ. This

element simplifies to

〈δ(1)φ δ
(2)∗
φ 〉 =

∑

ℓ

2ℓ+ 1

4π
Cℓ

[

dPℓ(x)

dx
cosφ− d2Pℓ(x)

dx2
sin2 φ

]

. (8)

Other elements are readily obtained by similar methods using Mathematica.

We invert M to get the joint probability distribution for the 12 variables,

p(v1,v2) =
1

(2π)6||M ||1/2 exp
(

−1

2
viM

−1
ij vj

)

. (9)

and integrate subject to constraints that the two points are maxima:

1 + ξ(r|ν1, ν2) =
1

4θ4∗npk(ν1)npk(ν2)

∫ ∞

X1=0

∫ ∞

X2=0

∫ X1

Y1=−X1

∫ X2

Y2=−X2

∫

√
X2

1
−Y 2

1

Z1=−
√

X2
1
−Y 2

1

∫

√
X2

2
−Y 2

2

Z2=−
√

X2
2
−Y 2

2

dX1dX2dY1dY2dZ1dZ2

×
(

X2
1 − Y 2

1 − Z2
1

) (

X2
2 − Y 2

2 − Z2
2

)

p(ν1, X1, Y1, Z1, η
(1)
φ,θ = 0, ν2, X2, Y2, Z2, η

(2)
φ,θ = 0). (10)

where npk(ν)dν is the number density of peaks between height ν and ν + dν, given by A1.9 of Bond & Efstathiou (1987). By

symmetry, (10) is also the correlation function of minima at −ν1, −ν2. We have defined the symbols

ν ≡ δ

σ0

ηφ ≡ δφ
σ1

ηθ ≡ δθ
σ1

X ≡ − (δφφ + δθθ)

σ2

Y ≡ (δφφ − δθθ)

σ2

Z ≡ 2δφθ
σ2

(11)

and the moments of the power spectrum are defined by

σ2
0 ≡ F (1)

σ2
1 ≡ 2F ′(1)

σ2
2 ≡ 4

[

F ′(1) + 2F ′′(1)
]

(12)

where F ′(1) = dF (x)/dx|x=1 etc. We also define the spectral parameters

γ ≡ σ2
1/(σ0σ2) θ∗ ≡

√
2
σ1

σ2
. (13)

These allow simplification of the covariance matrix, with variables in the order (ν1, ηφ1, X1, Y1, ν2, ηφ2, X2, Y2, ηθ1, Z1, ηθ2, Z2),

to the block form

Mij =





A B 0

BT A 0

0 0 C



 (14)

where

A =









1 γ 0 0

γ 1 0 0

0 0 1
2

0

0 0 0 (1− θ2∗)/2









. (15)

Defining h(x) ≡ F (x)/σ2
0, S ≡ sinφ and C ≡ cos φ,

c© 0000 RAS, MNRAS 000, 000–000



4 Alan F. Heavens and Sujata Gupta

Figure 1. (Solid line) The correlation function for peaks above a +1σ threshold, in a mixed dark matter model with CDM, vacuum
and baryon density parameters ΩCDM = 0.8, Ων = 0.15 and ΩB = 0.05. Hubble constant is H0 = 60 km s−1 Mpc−1. For comparison,
the flat sky results of Heavens & Sheth (1999) are shown dotted. The results coincide to an accuracy of better than 0.004.

B =















h
θ2
∗ (2C h′−S2 h′′)

2 γ
−S θ∗ h′

√
2 γ

S2 θ2
∗
h′′

2 γ

B21
θ4
∗ [4C h′+(8C2−6S2)h′′−8C S2 h(3)+S4 h(4)]

4 γ2

S θ3
∗ (−2 h′−4C h′′+S2 h(3))

2
√

2 γ2

θ4
∗ (6S2 h′′+6C S2 h(3)−S4 h(4))

4 γ2

−B13 −B23
θ2
∗ (C h′−S2 h′′)

2 γ2

S θ3
∗ (−2C h′′+S2 h(3))

2
√

2 γ2

B14 B24 −B34
θ4
∗ [2 (1+C2) h′′−4C S2 h(3)+S4 h(4)]

4 γ2















(16)

where h(3)(x) ≡ h′′′(x) etc, and we write the lower triangle in terms of the upper triangular matrix for conciseness. Finally,

C =















1
2

θ2
∗
h′

2 γ2 0 −S θ3
∗
h′′

√
2 γ2

θ2
∗
h′

2 γ2
1
2

S θ3
∗
h′′

√
2 γ2 0

0
S θ3

∗
h′′

√
2 γ2

1−θ2
∗

2

θ4
∗ (C h′′−S2 h(3))

γ2

−S θ3
∗
h′′

√
2 γ2 0

θ4
∗ (C h′′−S2 h(3))

γ2

1−θ2
∗

2















(17)

The correlation function for peaks above a certain threshold ν is obtained by adding two further integrations over ν1 and ν2,

and replacing the differential number densities npk(ν) in the denominator of (10) by numerically-evaluated integrals npk(> ν).

For peaks above a threshold, the 8D integration can be reduced to 6, as the integrals over ν2 and z2 can be done analytically.

Very accurate integrations can then be done on a desktop workstation in about 50 seconds.

3 RESULTS

We run CMBFAST (Seljak & Zaldarriaga 1996) to generate the power spectrum Cℓ, and model the beam with a gaussian

of FWHM b, so multiply the power spectrum by a gaussian exp
[

−σ2ℓ(ℓ+ 1)
]

, with σ = b/
√
8 ln 2. We have not included

the effects of gravitational lensing on the temperature field. As shown by Takada, Komatsu & Futamase (2000), the effect

is small except for separations up to the first peak, where the anticorrelation is reduced in magnitude. Figs. 1 and 2 show

the correlation function of peaks above a 1σ threshold for a mixed dark matter model, along with the results of the flat-sky

calculation of Heavens & Sheth (1999). The differences are at the level of ∼ 0.005.

4 CORRELATION FUNCTION VS BISPECTRUM FOR STRING MAPS

There are many methods for testing the gaussian hypothesis, and it is tempting to ask which is the best. Unfortunately the

question is badly posed, as methods will fare differently depending on the exact properties of the non-gaussian field considered.

Here we focus on one particular non-gaussian field, produced by a network of cosmic strings. Fig. 3 shows a realisation of

the temperature map expected from cosmic strings, one of two kindly provided by Francois Bouchet. The lensing effect of

the moving strings is added to a gaussian background map, approximately as expected from the string model (Pen, Seljak &

c© 0000 RAS, MNRAS 000, 000–000
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Figure 2. As Fig. 1, but at larger angle separations between 3.3 and 16.7 degrees.

Figure 3. Simulated sky map for cosmic strings, consisting of a gaussian background, with the lensing effect of a string network
superimposed. Peaks above 1σ are circled.

Turok 1997) (see also Simatos & Perivolaropoulos 2000, Avelino & Martins 2000). We consider two diagnostics: the peak-peak

correlation function, and the bispectrum (e.g. Heavens 1998, Ferreira, Magueijo & Gorski 1998, Gangui & Martin 2000). The

string maps we have are 12.5◦ on a side, and we would expect the bispectrum to have difficulty in distinguishing these maps

from gaussian maps with the same power spectrum (Luo 1994a). The interesting question is whether the peak correlation

function can do better. Since the string simulations are performed on a small, flat patch of sky, we use a Fourier transform,

to compute the flat-sky bispectrum from the Fourier coefficients δ(k) ≡
∫

d2xδ(x) exp(ik·x):

〈δ(k1)δ(k2)δ(k3)〉 = (2π)2B(k1,k2,k3)δ
D(k1 + k2 + k3) (18)

The angle brackets indicate ensemble averages, and δD is the Dirac delta function. For a gaussian field the bispectrum is

zero, and for all fields the bispectrum is zero unless k1 + k2 + k3 = 0. Following the work of Matarrese, Verde & Heavens

(1997) and Verde et al. (1998) in large-scale structure, we consider two configurations of triangles: equilaterals, and zero-area

triangles with two equal wavevectors and one of twice the size. The bispectrum is real, but the δ(k) are not, so we consider

the estimate

Dα = 〈Re(δ(k1)δ(k2)δ(k3))〉 (19)

and average over thin shells in k−space.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 4. The equilateral bispectrum as estimated from map with string foreground and gaussian temperature on last-scattering surface
(solid), and cosmic r.m.s. (dotted).

equilateral zero-area
√

2/(n − 1)

Map 1 1.06 0.96 0.19

Map 2 1.29 1.42 0.19

Table 1. Reduced χ-squared values of the deviation of the bispectra from a gaussian model of the two modified maps, consisting of
intrinsic gaussian and cosmic string generated fluctuations. The r.m.s. of the reduced χ2 for a gaussian model with n = 55 data is shown
in the final column.

Fig. 4 displays the equilateral estimated bispectrum for the string map shown in Fig. 3. Also shown is the cosmic r.m.s.

for a gaussian field of the same power spectrum, 〈|δk|2〉3/2. We show in Table 1 reduced χ2 values for both equilateral triangles

and zero-area triangles for the two simulated maps. With 55 bins, the variance in the reduced χ2 for a gaussian field is shown

in the final column. We find no significant departure from gaussianity with this test.

Fig. 5 shows the correlation function of peaks above 1σ (where σ2 is the map variance) for the map shown in Fig. 3. The

map is smoothed with a gaussian beam of FWHM 5.5′ to model the Planck beam. The errors for the peak-peak correlation

Figure 5. The correlation function of peaks above 1σ calculated from the map of Fig. 3. Errors are Poisson, and hence underestimates.
Superimposed is the correlation function from a gaussian map with the same power spectrum. Note the excess of string peaks around
10-15 arcminutes.

c© 0000 RAS, MNRAS 000, 000–000
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function are Poisson errors, which will be underestimates. However, it is clear that the peak correlation function of the string

map is significantly different from that of a gaussian map with the same power spectrum. The most striking difference is the

presence of peaks in the string map which are separated by 10− 20 arcminutes. These appear in greater numbers than in the

gaussian map, and this could be the most obvious manifestation of strings.

5 DISCUSSION

We have presented calculations of the exact correlation function of peaks in a random gaussian field defined on the surface

of a sphere. No small-angle approximation is made, so the method is an advance on the flat-sky computations of Heavens

& Sheth (1999) and now effectively complete. The formalism allows very accurate theoretical predictions of the peak-peak

correlation function for temperature fluctuations in the microwave background, which is the application considered here. We

envisage the main use of this method being as a sensitive test of the gaussian hypothesis. Since inflationary models generically

predict a temperature field which is very close to gaussian, this is a consistency test for inflation. Other structure formation

models, based for example on strings, predict non-gaussian temperature maps. Although the visual appearance of string maps

is evidently non-gaussian, it is not necessarily easy to find statistics which will unambiguously distinguish them from gaussian

fields. To illustrate this point, we have analysed 12.5-degree square simulated maps of string models, using the bispectrum

and the peak-peak correlation function as distinguishing statistics. We find that, while cosmic variance in the bispectrum

makes it difficult to use on a small patch of sky, the peak-peak correlation function clearly rules out a gaussian map.

In practice, maps of the microwave background will be contaminated at some level by point sources, amongst other things.

Peak statistics may be useful in assessing this contribution. The most straightforward example is that an uncontaminated

map has the same average number density of maxima and minima; a significant excess of maxima would be indicative of

contamination. Unfortunately the theory of peaks is not able to tell us the distribution of the number of maxima or minima

within a finite sky (only its mean), but it is a straightforward matter to determine the distribution by monte carlo realisations.

One can attempt to go further than this, by removing statistically the contribution from the point sources, provided one knows

from other observations what their correlation function is. Assuming the point sources are uncorrelated with the microwave

background peaks, the correlation function of the combined map is simply a weighted mean of the two. The point sources

will contribute to the power spectrum; one can vary the assumed contribution from point sources and modify the power

spectrum and the derived microwave background peak correlation function accordingly. If consistency can be achieved, one

will be confident both of the gaussian nature of the microwave background, and the level of point source contamination.
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