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Abstract. The application of Voronoi and Delaunay tessellation based methods for
reconstructing continuous fields from discretely sampled data sets is discussed. The
succesfull operation as “multidimensional interpolation” method is corroborated
through their ability to reproduce even intricate statistical aspects of the analytical
predictions of perturbation theory of cosmic velocity field evolution. The newly
developed and fully self-adaptive technique for density field estimation by means of
Delaunay tessellations, basically exploiting their “minimum triangulation” quality,
is shown to succesfully reproduce the morphology of the foamlike structure in N-
body simulations of cosmic structure formation. The full hierarchy of structure
is implicitly and directly reproduced at every spatial resolution scale present in
the particle distribution, at the same time automatically and sharply rendering its
characteristic anisotropic filamentary and wall-like features.

1 Continuous Fields sampled by Discrete Data Sets

Astronomical observations, physical experiments as well as computer simu-
lations often involve discrete data sets supposed to represent a fair sample
of an underlying smooth and continuous field. Reconstructing the underlying
fields from a set of irregularly sampled data is therefore a recurring key issue
in operations on astronomical data sets.

Within the context of the reconstruction issue, we may distinguish two
basically distinct situations. One is that of a specific continuous field whose
values have been measured at a set of discrete locations. A typical example,
of a cosmological nature, concerns the sampling of the global cosmic mat-
ter flow involved in the build up of structure in the Universe. The measured
peculiar velocities of galaxies are supposed to be a fair reflection of the under-
lying cosmic flow. The reconstruction problem may then be described as an
issue of “Multidimensional Interpolation”. Evidently, a myriad of astronom-
ical studies involve related such issues. A second class involves the issue of
estimating the underlying continuous intensity or density field from a point
process supposedly representing a fair sampling of this field. The fact that
the sampling point process itself is a reflection of the underlying field forms
an extra complication in the case of these “Optimal Density Estimation”
problems. Conventional reconstruction methods are usually plagued by one
or more artefacts. Firstly, they often involve estimates at a finite number of
locations, usually confined to a grid. Optimal field estimators should pro-
vide a prescription for the value of that field throughout the whole sampling
volume. Conventional schemes usually restrict themselves to estimates at a
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Fig.1. The Delaunay triangulation (left frame) and Voronoi tessellation (right
frame) of a distribution of 25 nuclei (stars) in a square (central panel). Periodic
boundary conditions are assumed.

finite number of positions. For most practical purposes, a further disadvan-
tage of almost all conventional methods is their insensitivity and inflexibility
to the sampling point process. This leads to a far from optimal performance
in both high density and low density regions, which often is dealt with by
rather artificial and ad hoc means.

In particular in situations of highly non-uniform distributions conven-
tional methods tend to obscure various interesting and relevant aspects present
in the data. An illuminating example is the case of the galaxy distribution
and the cosmic matter density field. Redshift surveys as well as computer
simulations of structure formation reveal salient anisotropic features like fil-
aments and walls, extended along one or two directions while compact in
the other(s). In addition, the density fields display hierarchical structure of
varying contrasts over a large range of scales. Ideally sampled by the data
points, appropriate field reconstructions should be set solely and automati-
cally by the sampling point distribution itself. The commonly used methods,
involving artificial filtering through grid size or other smoothing kernels (e.g.
Gaussian filter) mostly fail to achieve an optimal result and are neither able
to reproduce the tenuous anisotropic structures seen in the point process,
nor a faithful rendering of the full structural hierarchy. A final, usually con-
cealed, yet fundamental aspect of field reconstruction turns out to be of key
significance for the definition of the presented tessellation methods. Most
well-known methods implicitly yield mass-weighted averages. This renders
the comparison with volume-weighted analytical quantities far from trivial.
Tessellation methods represent an elegant solution to this point.

2 Volume-averaged quantities

Given a discrete set of field values f(x) measured at N locations, the usual
procedure of field reconstruction consists of smoothing the measured discrete
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field values by some filter function. A mass-weighted field fp,qs5(%),
dx f(x) p(x)Was (x,%0)

/ dx p(x)Whr(x,%0)

(1)

fmass (XO) =

with Wi (x,%g) a filter function, is almost without exception the conven-
tionally employed filtering scheme. An example of this is probably one of the
most frequently applied class of filtering schemes, involving the interpola-
tion of field values at random sampling (galaxy) locations to those at regular
grid locations, weighing the contribution by each sampling point by the filter
function value. However, the presence of the the extra mass-weighting den-
sity field factor p introduces considerable technical repercussions. Analytical
treatments of the corresponding physics — in particular in the case of a per-
turbation analysis — is often almost exclusively limited to volume-weighted
filtered fields fy,01(x),

dx f(x)Wy(x,%0)

fvol (XO) = ) (2)

/ dx Wy (x, %)

with Wy (x,xg) the applied weight functionx. In general the properties and
behaviour of volume-weighted and mass-weighted quantities will be funda-
mentally different. A succesfull comparison and assessment of observational
or numerical results with relevant physical theory will therefore essentially
only be sensible if we have a reliable numerical estimators of volume-averaged
quantities.

In the ideal but unrealistic situation the underlying continuous field would
be reproduced from a set of field values sampled at an infinite number points
and subsequently volume filtered with a filter function Wy, whose filter radius
is infinitely small. Extrapolating from this premise, a good approximation of
volume average quantities is obtained by volume averaging over quantities
that were mass filtered onto a extremely fine-mazed grid with, in comparison,
a very small scale for the mass weighting filter function. In most practical
circumstances, however, the above prescription resorts to coarse grids, leading
to field estimates whose quality is not readily appreciated. Alternatively, we
may specifically pursue the fact that the corresponding sampling density
field can be described as the sum of delta functions at each sample location.
Combining this with the asymptotic limit of applying a volume weighted
filter with an infinitely small filter scale, we find the first-step field estimate
f1(x) (Eq. (3)) through ordering the locations ¢ by increasing distance to xg
and thus by decreasing value of w;. It is easy to see (Bernardeau & van de
Weygaert 1996) that this defines a field f(x) in which the field value at every
location in space acquires the value of the field at the closest point of the
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discrete field sample,

N
Zwif(xi) f(x1) +ZZ)}—;JC(X1')
fi(xo) = = = — f(x1) ()
=2 1

3 Voronoi and Delaunay Tessellation Interpolation

The procedure described above implies nothing else than the concept of the
Voronoi tessellation (Fig. 1). Such a tessellation consists of a space-filling
network of mutually disjunt convex polyhedral cells, the Voronoi polyhedra,
each of which delimits the part of space that is closer to the defining point
in the discrete point sample set than to any of the other sample points (see
Icke & Van de Weygaert 1987, and Van de Weygaert 1991, 1994, for exten-
sive descriptions and references). The Voronoi method defined in this way is

Fig.2. Voronoi and Delaunay tes-
sellations of a 2D set of particles
(filled circles). The solid lines form
the Voronoi tessellation, the dashed
lines the Delaunay tessellation. We
also indicated a normal vector n of
the wall separating the points A and
B. The grey circle represents the
area in which one determines the
top-hat filtered volume average of
the velocity gradients. Courtesy: F.
Bernardeau (see Bernardeau et al.
1997)

based on the assumption that the field is uniform within each Voronoi cell
of the tessellations, such that the field value throughout each of the Voronoi
polyhedra is equal to that of the sample point of the tessellation (see Fig.
2 for a summarizing illustration of the method). Basically, the Voronoi cells
are the multidimensional generalization of the bins in a 1-D zeroth-order in-
terpolation scheme in which the function value is supposed to be constant
within the interval centered on the sampling points, their value equal to that
of the respective sample point values. Bernardeau & Van de Weygaert (1996)
showed its great performance in the case of evaluating cosmic velocity fields.
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They showed the method to be of particular benefit when considering the
gradient fields of discretely sampled fields rendered by the Voronoi method.
In such situations, the Voronoi method yields a spatial geometry in which
non-zero values of the field gradients are solely localized to the (polygonal)
Voronoi walls. For the specific case of the window function for the volume
filtering being a top-hat filter, the subsequent computation of the volume
averages of the field gradients consist of a relatively simple sum of the values
of those field gradients in each of the tessellation walls k intersected or in-
side the filter sphere weighted by the surface area Ay of the part of the wall
located within the sphere.

The specific application to the statistics of the velocity divergence field
V - v was shown to be very succesfull, corroborating the prediction of analyt-
ical perturbation theory considerations from a set of N-body simulations of
structure formation (Bernardeau & Van de Weygaert 1996). Notwithstand-
ing its virtues, the Voronoi method evidently represents an artificial situation
in which the reconstructed fields are emphatically discontinous. Moreover, it
cannot be applied to filter radii that are smaller than the average Voronoi
wall distance. Below those scales the probability that a randomly placed filter
sphere does not contain or intersect any Voronoi wall gets prohibitively high,
and yielding unrealistic zero values for the field gradients.

In the one-dimensional situation a first-order improvement concerns the
linear interpolation between the sampling points, leading to a fully continuous
field. The natural extension to a multidimensional linear interpolation inter-
val then immediately implies the corresponding Delaunay tessellation (Delone
1934). This tessellation (Fig. 1) consists of a volume-covering tiling of space
into tetrahedra (in 3-D, triangles in 2-D, etc.) whose vertices are formed
by four specific points in the dataset. The four points are uniquely selected
such that their circumscribing sphere does not contain any of the other dat-
apoints. The Voronoi and Delaunay tessellation are intimately related, being
each others dual in that the centre of each Delaunay tetrahedron’s circum-
sphere is a vertex of the Voronoi cells of each of the four defining points,
and conversely each Voronoi cell nucleus a Delaunay vertex (see Fig. 1). The
“minimum triangulation” property of the Delaunay tessellation has in fact
been well-known and abundantly applied in, amongst others, surface render-
ing applications such as geographical mapping and various computer imaging
algorithms. Consider a set of N discrete datapoints in a finite region of M-
dimensional space. Having at one’s disposal the field values at each of the
(1+M) Delaunay vertices X, ...,Xum, at each location x in the interior of
a Delaunay M-dimensional tetrahedron the linear interpolation field value is
determined by the estimated constant field gradient within the tetrahedron,
f(x) = f(x0) + (Vf)|pet (x —x0) . Given the (1+M) field values f(x;),
the value of the M components of the Delaunay field gradient (Vf)|pe can
be computed straightforwardly by solving this linear relation for each of the
M points x1,...,XM.
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This multidimensional Delaunay procedure of linear interpolation was in-
troduced and described by Bernardeau & Van de Weygaert (1996) in the
context of defining procedures for volume-weighted estimates of cosmic ve-
locity fields. As they specifically focussed on the statistics of the velocity field
gradients, in essence they defined a velocity gradient field of constant gradi-
ent values within each individual Delaunay tetrahedron, its value set by the
measured velocity values at each of the 4 Delaunay vertices. They showed
the superior performance of the first-order Delaunay estimator in reproduc-
ing analytical predictions of gravitational instability perturbation theory. The
virtues and promise of the Delaunay method is in particularly underlined by
its ability to unequivocally estimate the cosmic density parameter {2 on the
basis of the particle velocities in the various N-body simulations of cosmic
structure formation (Bernardeau etal. 1997).

4 Delaunay Density Field Estimation

The one factor complicating a trivial and direct implementation of above
procedure in the case of density (intensity) field estimates is the fact that
the number density of data points itself is the measure of the underlying
density field value. We therefore cannot start with directly available field es-
timates at each datapoint. Instead, we need to define appropriate estimates
from the point set itself. Most suggestive would be to base the estimate of
the density field at the location x; of each point on the inverse of the vol-
ume Vv, of its Voronoi cell, p(x;) = m/Vver ;- Note that in this we take
every datapoint to represent an equal amount of mass m. The resulting field
estimates are then intended as input for the above Delaunay interpolation
procedure. However, one can demonstrate that integration over the resulting
density field would yield a different mass than the one represented by the set
of sample points (see Schaap & Van de Weygaert 2000a,b for a more specific
and detailed discussion). Instead, mass conservation is naturally guaranteed
when the density estimate is based on the inverse of the volume Wyq, ; of
the “contiguous” Voronoi cell of each datapoint, p(x;) x1/Wvyor,i. The “con-
tiguous” Voronoi cell of a point is the cell consisting of the agglomerate of
all K Delaunay tetrahedra containing point ¢ as one of its vertices, whose
volume Wy i = Zjil Vpel,j is the sum of the volumes Vpgj of each of
the K Delaunay tetrahedra. Properly normalizing the mass contained in the
reconstructed density field, taking into account the fact that each Delaunay
tetrahedron is invoked in the density estimate at 1+ M locations, we find
at each datapoint the following density estimate, p(x;) = m (1+M)/ Wy ;.
Having computed these density estimates, we subsequently proceed to deter-
mine the complete volume-covering density field reconstruction through the
linear interpolation procedure outlined above.

The outstanding performance of our Delaunay Density Estimtor is illus-
trated by Figure 3 (see Schaap & Van de Weygaert 2000a), in which its
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Fig. 3. A 9-frame mosaic comparing the performance of the Delaunay density esti-
mating technique with a conventional grid-based TSC method in analyzing a cos-
mological N-body simulation. Left column: the particle distribution in a 10~ Mpc
wide central slice through the simulation box. Central column: the corresponding
Delaunay density field reconstruction. Right column: the TSC rendered density field
reconstruction. The density grey scale is logarithmic, dp/p = 0 — 2400.

performance on an N-body simulation of cosmic structure formation is com-
pared with that of a conventional grid-based TSC technique. Cosmological
N-body simulations provide an ideal template for illustrating the virtues of
our method. They tend to contain a large variety of objects, with diverse mor-
phologies, a large reach of densities, spanning over a vast range of scales. They
display low density regions, sparsely filled with particles, as well as highly
dense and compact clumps, represented by a large number of particles. Mod-
erate density regions typically include strongly anisotropic structures such
as filaments and walls. A comparison of the lefthand and righthand columns
with the central column, i.e. the Delaunay estimated density fields, reveals the
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striking improvement rendered by our new procedure. Going down from the
top to the bottom in the central column, we observe seemingly comparable
levels of resolved detail. The self-adaptive skills of the Delaunay reconstruc-
tion evidently succeed in outlining the full hierarchy of structure present in
the particle distribution, at every spatial scale represented in the simula-
tion. The contrast with the achievements of the fixed grid TSC method in
the righthand column is striking, in particular when focus tunes in on the
finer structures. The central cluster appears to be a mere featureless blob! In
addition, low density regions are rendered as slowly varying regions at mod-
erately low values. This realistic conduct should be set off against the erratic
behaviour of the TSC reconstructions, plagued by annoying shot-noise effects.
Figure 3 also bears witness to the additional success of the Delaunay Estima-
tor in reproducing sharp, edgy and clumpy filamentary and wall-like features.
Automatically it resolves the fine details of their anisotropic geometry, seem-
lessly coupling sharp contrasts along one or two compact directions with the
mildy varying density values along the extended direction(s). Moreover, it
also manages to deal succesfully with the substructures residing within these
structures. The well-known poor operation of e.g. the TSC method is clearly
borne out by the central righthand frame. Its fixed and inflexible “filtering”
characteristics tend to blur the finer aspects of such anisotropic structures.
Such methods are therefore unsuited for an objective and unbiased scrutiny
of the foamlike geometry which so pre-eminently figures in both the observed
galaxy distribution as well as in the matter distribution in most viable models
of structure formation.

Evidently, unlike artificial tailor-made methods, the Delaunay Density
Estimator is sensitive in a fully self-consistent and self-adaptive fashion to
intrinsically important structural elements. This provides ample arguments
for its promise in great many astrophysical environments.
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