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Maximally incompressible neutron star matter
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Relativistic kinetic theory, based on the Grad method of moments as developed by Israel and
Stewart, is used to model viscous and thermal dissipation in neutron star matter and determine
an upper limit on the maximum mass of neutron stars. In the context of kinetic theory, the equa-
tion of state must satisfy a set of constraints in order for the equilibrium states of the fluid to be
thermodynamically stable and for perturbations from equilibrium to propagate causally via hyper-
bolic equations. Application of these constraints to neutron star matter restricts the stiffness of the
most incompressible equation of state compatible with causality to be softer than the maximally
incompressible equation of state that results from requiring the adiabatic sound speed to not exceed
the speed of light. Using three equations of state based on experimental nucleon-nucleon scattering
data and properties of light nuclei up to twice normal nuclear energy density, and the kinetic theory
maximally incompressible equation of state at higher density, an upper limit on the maximum mass
of neutron stars averaging 2.64 solar masses is derived.

PACS number(s): 26.60.+c, 04.40.Dg, 97.60.Jd
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I. INTRODUCTION

The problem of the maximum possible mass of neu-
tron stars has a long history. Baade and Zwicky in 1934
proposed a star composed of densely packed neutrons
as the final state resulting from the supernova process
[1]. Oppenheimer and Volkoff in 1939 demonstrated a
star composed of noninteracting neutrons is supported
against gravitational collapse to a black hole by the Fermi
degeneracy pressure only for stellar masses up to 0.72 so-
lar masses (M⊙) [2]. The discovery of the first pulsar
in 1967 and the realization pulsars are highly magne-
tized rotating neutron stars triggered substantial theoret-
ical work towards understanding the structure of neutron
stars. Pulsar masses can be measured from observations
of Doppler shifts of periodic emissions from neutron stars
in binary systems. Some 20 radio pulsar masses have
been accurately determined so far, with most masses clus-
tering around 1.4 M⊙ [3]. This is well beyond the value
of 0.72 M⊙ computed for noninteracting neutrons, so the
short-range repulsion of the strong nuclear force must
make a substantial contribution to the pressure support-
ing neutron stars against gravitational collapse. There is
also evidence for neutron stars with substantially larger
masses than the radio pulsars due to accretion of matter
from a binary companion. The mass of the x-ray pulsar
in the Vela X-1 binary has been estimated to be 1.9 M⊙
[4], and the x-ray burster Cygnus X-2 has been deter-
mined to be 1.8 M⊙ [5]. Quasiperiodic oscillations in the
x-ray emissions from neutron stars accreting matter from
low mass companions have been argued to imply a mass
of up to 2.3 M⊙ for the neutron stars in these systems
[6,7].
An accurate theoretical determination of the maximum

possible mass of neutron stars is of practical interest for
identifying as a black hole any compact object with a
larger mass. The maximum mass value remains uncer-
tain because the equation of state of neutron star matter
is not well understood at the high density values found
in neutron star interiors. Modern methods develop the
equation of state by fitting experimental nucleon-nucleon
scattering data and properties of light nuclei to two and
three-body interaction potentials [8,9]. Confidence in the
results of these methods is high near normal nuclear den-
sity (energy density = 152 MeV/fm3 = 2.7 X 1014 g/cm3,
baryon density = 0.16 fm−3) because, at low density, ex-
perimental verification is possible with existing facilities.
The validity of extrapolating the experimentally verified
low density equation of state to high density, or as an
alternative theoretically modeling the physical processes
thought to occur at high density, is uncertain because of
the lack of high density laboratory data. The sources of
the uncertainties in the high density equation of state are
incomplete knowledge of the three-nucleon interactions,
the contributions of mesonic and other baryonic besides
nucleonic degrees of freedom, and a possible quark de-
confinement transition [9].

In light of these uncertainties in the exact form of the
high density equation of state, several authors have de-
rived an upper limit on the maximum neutron star mass
using only general restrictions on the equation of state.
Oppenheimer and Volkoff suggested [2], and Rhoades
and Ruffini rigorously proved [10], the maximum mass
of a stable neutron star results when the stiffest equation
of state compatible with thermodynamic stability and
causality is used. Rhoades and Ruffini derived an upper
limit on the maximum neutron star mass of 3.2 M⊙ by
using the experimentally verified Harrison-Wheeler equa-
tion of state [11] up to 1.7 times normal nuclear energy
density, and the stiffest equation of state compatible with
causality at high density. They defined a casual equation
of state to be one having an adiabatic sound speed less
than the speed of light, so they took the most incompress-
ible equation of state to have the sound speed equal to
light speed. Kalogera and Baym [12] updated the result
of Rhoades and Ruffini, using an equation of state de-
veloped by Wiringa, Fiks, and Fabrocini [8] up to twice
normal nuclear energy density. They derived an upper
mass limit of 2.9 M⊙ using the same maximally incom-
pressible equation of state as Rhoades and Ruffini above
twice normal nuclear energy density.
The purpose of this paper is to apply insights from

relativistic kinetic theory to the problem of the maxi-
mum possible mass of neutron stars. Kinetic theory used
to model viscosity and heat conduction shows requiring
the sound speed to be less than the speed of light is a
necessary but not sufficient condition for causality. The
equation of state must satisfy a set of constraining condi-
tions for the fluid to have stable equilibrium states with
perturbations from equilbrium that propagate causally
via a system of hyperbolic equations [13,14]. If any one
of these constraints is violated, there will be at least one
fluid mode with a superluminal propagation speed. In
particular, it is possible for the fluid to be acausal in a
transverse mode or a different longitudinal mode even
though the sound speed is below light speed. These con-
straints generally fix the stiffest possible equation of state
to have an adiabatic sound speed significantly less than
the speed of light. The main result of the present paper
is application of these constraints to neutron star mat-
ter at high density softens the maximally incompressible
equation of state and reduces the maximum neutron star
mass significantly below the value found using a high den-
sity equation of state having the adiabatic sound speed
equal to the speed of light. In the next section the ther-
modynamic constraint conditions from relativistic kinetic
theory are reviewed. Then the maximally incompressible
equation of state of neutron star matter is developed from
these constraint conditions. Finally, neutron star mod-
els are constructed using this stiffest possible equation of
state at high density, and the resulting maximum neu-
tron star mass is determined. Gravitational units having
G = c = 1 are used.
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II. RELATIVISTIC KINETIC THEORY

CONSTRAINTS ON THE EQUATION OF STATE

The influences of dissipation in the form of bulk and
shear viscosity and thermal conductivity in neutron star
matter are modeled here using relativistic kinetic the-
ory based on the Grad method of moments [15] as de-
veloped by Israel and Stewart [16–19]. Reference [20]
contains a concise overview of the Israel-Stewart theory.
The simpler relativistic fluid theories of Eckart [21] and
Landau-Lifshitz [22] are not appropriate for this problem
because they have been demonstrated to exhibit patho-
logical properties. These theories do not possess stable
equilibrium states regardless of the equation of state used
[23], and there are fluid modes having propagation speeds
greater than the speed of light [24].
The Israel-Stewart theory has been shown to possess

stable equilibrium states, and linear perturbations from
equilibrium propagate casually via a hyperbolic system
of equations and form a well-posed initial value problem
[13,14,25]. The thermodynamic variables describing the
fluid must satisfy a set of conditions in order for the fluid
to be thermodynamically stable, causal, and hyperbolic:

1

ρ+ p

(

∂ρ

∂p

)

s

≥ 0 , (2.1)

1

ρ+ p

(

∂ρ

∂s

)

p

(

∂p

∂s

)

Θ

≥ 0 , (2.2)

(ρ+ p)

[

1−
(

∂p

∂ρ

)

s

]

−
1

β0

−
2

3β2

−
K2

Ω
≥ 0 , (2.3)

ρ+ p−
β1 + 2β2 + 2α1

2β1β2 − α2
1

≥ 0 , (2.4)

β0 ≥ 0 , (2.5)

Ω ≥ 0 , (2.6)

β1 −
α2
1

2β2

≥ 0 , (2.7)

β2 ≥ 0 , (2.8)

where

K = 1 +
α0

β0

+
2α1

3β2

−
n

T

(

∂T

∂n

)

s

, (2.9)

Ω = β1 −
α2
0

β0

−
2α2

1

3β2

−
1

nT 2

(

∂T

∂s

)

n

. (2.10)

Satisfaction of these conditions is necessary and sufficient
for stability, causality, and hyperbolicity of linear per-
turbations. In Eqs. (2.1)-(2.10), ρ, p, n, T , and s are,
respectively, the energy density (including mass-energy),
pressure, particle density, temperature, and entropy per
particle, each as measured in a comoving frame. The
thermodynamic potential Θ is the relativistic chemical
potential divided by the temperature:

Θ =
ρ+ p

nT
− s . (2.11)

β1, β2, and β3 are effectively relaxation times for, respec-
tively, bulk viscous, thermal, and shear viscous dissipa-
tion. α0 is the strength of the bulk stress-heat flow vec-
tor coupling, and α1 is the shear stress-heat flow vector
coupling strength (see Ref. [20] for details). A complete
fluid description requires specification of an equation of
state and functional forms for the bulk and shear viscosi-
ties, thermal conductivity, relaxation times, and bulk-
thermal and shear-thermal couplings. Whether or not a
fluid state is thermodynamically stable, causal, and hy-
perbolic is determined solely by the equation of state, the
relaxation times, and the viscous stress-heat flow vector
coupling strengths.
For neutron star matter it is convenient to choose the

particle (baryon) density n and the temperature T as
the independent thermodynamic variables. The energy
density and pressure can then be written as

ρ(n, T ) = n [m+ E0(n) + I(n, T )] (2.12)

and

p(n, T ) = n2

[

dE0

dn
+

(

∂I

∂n

)

s

]

. (2.13)

In neutron stars the thermal energy per baryon I is small
compared to the baryon rest mass energy m and the
ground state energy per baryon E0.
The functional forms for the relaxation times and

the viscous-thermal coupling strengths are currently un-
known for fully interacting nuclear matter. Their forms
have been calculated for noninteracting degenerate Fermi
gases [19,20]:

α0 =
9 (1 + ν)

(

ν2 + 2ν + 2
)

(βν)
2

A0π2ν2 (ν2 + 2ν)3/2
+O (βν)0 , (2.14)

α1 = −
6 (1 + ν)

A0 (ν2 + 2ν)
5/2

+O (βν)−2 , (2.15)

β0 =
405 (1 + ν)

5
(βν)

4

16A0π4ν4 (ν2 + 2ν)
1/2

+O (βν)2 , (2.16)

β1 =
9 (1 + ν) (βν)

2

A0π2ν2 (ν2 + 2ν)
3/2

+O (βν)0 , (2.17)
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β2 =
15 (1 + ν)

2A0 (ν2 + 2ν)
5/2

+O (βν)−2 , (2.18)

where

A0 =
m4g

2π2h̄3
(2.19)

and g is the spin weight. Equations (2.14)-(2.18) are valid
for any inverse dimensionless temperature (β = m/kT )
provided the degenerate limit βν >> 1 is satisfied. The
dimensionless potential ν is the nonrelativistic chemical
potential per particle divided by the baryon rest energy:

ν =
ρ+ p

nm
−

s

kβ
− 1 . (2.20)

The shear stress relaxation time Eq. (2.18) has recently
been used to show the coupling predicted by kinetic the-
ory between vorticity and shear viscous stress may cause
colder neutron stars undergoing accertion spin-up to re-
main stable against r-mode instabilities at higher spin
rates [26]. Here the noninteracting degenerate Fermi
gas forms will also be used to approximate the relax-
ation times and viscous-thermal couplings for neutron
star matter. The thermal energy per baryon I is poorly
understood for neutron star matter, and the noninteract-
ing degenerate Fermi gas form (which is proportional to
1/β2) will be used.
When Eqs. (2.14)-(2.18) are substituted into Eqs.

(2.1)-(2.8) and the low temperature limit β → ∞ is
taken, the result is

ρ ≥ 0 , (2.21)

p ≥ 0 , (2.22)

(ρ+ p) v2s ≥ 0 , (2.23)

v2s ≤
ρ− 1

3
p

ρ+ p
, (2.24)

p ≤ 3ρ . (2.25)

If any of Eqs. (2.21)-(2.25) are violated, kinetic the-
ory predicts the corresponding equilibrium state will
be unstable and the fluid will possess at least one
mode with a propagation speed exceeeding light speed.
Both the energy density and pressure must be nonneg-
ative for stability. Further, the adiabatic sound speed
vs

[

v2s = (∂p/∂ρ)s
]

must be real so that pressure does not
decrease with increasing density: if Eq. (2.23) is violated,
small elements of matter would be predicted to sponta-
neously collapse. The equation of state of neutron star
matter was assumed to satisfy Eqs. (2.21)-(2.23), along
with v2s ≤ 1, by Rhoades and Ruffini [10] and Kalogera
and Baym [12] in deriving the maximum neutron star

mass limit. Here the adiabatic sound speed will be re-
quired to satisfy Eq. (2.24) rather than v2s ≤ 1. Equation
(2.24) implies the fluid state is acausal, even though the
adiabatic sound speed is less than the speed of light, when

ρ− 1

3
p

ρ+ p
< v2s < 1 . (2.26)

Equation (2.25) does not affect the value of the maxi-
mum neutron star mass because it is not violated until
the central density is well above the value yielding the
maximum mass limit.
For neutron stars the thermal energy can be neglected

and Eqs. (2.21)-(2.25) expressed solely in terms of the
ground state energy per baryon and the rest energy:

m+ E0 ≥ 0 , (2.27)

dE0

dn
≥ 0 , (2.28)

n
d2E0

dn2
− 2

dE0

dn
≥ 0 . (2.29)

m+ E0 − n2 d
2E0

dn2
−

7n

3

dE0

dn
≥ 0 , (2.30)

3m+ 3E0 − n
dE0

dn
≥ 0 , (2.31)

The zero temperature adiabatic sound speed can be writ-
ten as

v2s =
n2 d2E0

dn2 − 2ndE0

dn

m+ E0 + ndE0

dn

. (2.32)

III. MAXIMALLY INCOMPRESSIBLE

EQUATION OF STATE

In a fully relativistic theory of neutron star matter
fluid perturbations would propagate causally. One mode
for propagation of fluid perturbations is via adiabatic
sound waves, and many of the equations of state which
are based on fitting experimental nucleon scattering data
predict sound waves will travel faster than the speed of
light at high density. For example, the beta-stable A18
+ δv + UIX∗ equation of state of Akmal, Panharipande,
and Ravenhall [9] has an adiabatic sound speed that is
greater than the speed of light above n = 0.86 fm−3. At
zero temperature the pressure is a function of only the
energy density, and so v2s = dp/dρ. The pressure must
not increase with increasing energy density faster than

p(ρ) = ρ+ const (3.1)
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if the adiabatic sound speed is to not exceed light speed.
Using the expressions for the energy density and pres-
sure written as functions of the ground state energy per
baryon [Eqs. (2.12) and (2.13)], Eq. (3.1) at zero temper-
ature can be written as a first-order ordinary differential
equation for E0:

n2 dE0

dn
= n (m+ E0) + const . (3.2)

The general solution of Eq. (3.2) is

E0(n) = C1

(n

ñ

)

+ C2

(n

ñ

)−1

−m . (3.3)

Equation (3.3) can be regarded as the maximally incom-
pressible equation of state consistent with a subluminal
sound speed.
Relativistic kinetic theory has shown an adiabatic

sound speed less than the speed of light is a necessary
but not sufficient condition for the causal propagation of
fluid perturbations. The equation of state must satisfy
Eqs. (2.21)-(2.25) for all densities relevant for neutron
star models for the equation of state to be causal. In this
paper the maximally incompressible equation of state is
taken as the form that satisfies Eq. (2.24) with an equal-
ity:

v2s =
ρ− 1

3
p

ρ+ p
. (3.4)

Equations (2.12), (2.13), and (2.32) can be used to write
Eq. (3.4) as a second-order ordinary differential equation
for E0:

n2 d
2E0

dn2
+

7

3
n
dE0

dn
− E0 = m . (3.5)

The corresponding differential equation for the total en-
ergy per baryon E = m0 + E0 is homogeneous:

n2 d
2E

dn2
+

7

3
n
dE

dn
− E = 0 . (3.6)

This is a form of the Cauchy linear equation. The sub-
stitution n = ez results in

d2E

dz2
+

4

3

dE

dz
− E = 0 , (3.7)

which has constant coefficients and can be solved for E(z)
with standard methods. After the substitution z = ln(n)
the general solution to Eq. (3.5) results in

E0(n)= D1

(n

ñ

)(
√
13−2)/3

+D2

(n

ñ

)−(
√
13+2)/3

−m

≈ D1

(n

ñ

)0.535

+D2

(n

ñ

)−1.869

−m . (3.8)

Equation (3.8) can be regarded as the maximally incom-
pressible equation of state compatible with the causal-
ity condition Eq. (2.24). Equation (3.8) predicts the

ground state energy increases more slowly with increas-
ing baryon density than for Eq. (3.3), so the pressure,
which is proportional to the rate of change of the ground
state energy, will increase more slowly. Hence Eq. (3.8) is
a softer maximally incompressible equation of state than
Eq. (3.3) and will less readily support the star against
gravitational collapse, hence yielding a lower maximum
neutron star mass limit than Eq. (3.3).

IV. MAXIMUM MASS OF NEUTRON STARS

In this section the kinetic theory maximally incom-
pressible equation of state Eq. (3.8) is used to deter-
mine a new least upper bound on the maximum neu-
tron star mass stable against gravitational collapse to a
black hole. An experimentally verified equation of state
is used at low density, and the maximally incompressible
equation of state Eq. (3.8) is used at high density and
compared to using the sound speed equals light speed
maximally incompressible equation of state Eq. (3.3).
The low density equation of state consists of the BPS
equation of state [27] below normal nuclear density, as
in Ref. [12], and one of the recently developed equations
of state which utilize fits of nucleon scattering data and
light nuclei properties to cover the density range above
normal nuclear density. Three of these experimentally
based equations of state will be used here as represen-
tative examples: the beta-stable AV14 + UVII and the
beta-stable UV14 + UVII models of Ref. [8] (hereafter
WFF-A and WFF-U), and the beta-stable A18 + δv +
UIX* model of Ref. [9] (hereafter APR). The maximum
mass value is insensitive to the particular equation of
state applied below normal nuclear density because lit-
tle of the stellar mass is in the subnuclear crust when
the star is near the mass limit. The low and high den-
sity equations of state are matched at a baryon density
ñ by choosing the integration constants Ci and Di in
Eqs. (3.3) and (3.8) so that the ground state energy and
pressure values of the low and high density equations of
state have the same value at the match point. For exam-
ple, using the WFF-A equation of state at low density
and choosing the match point to be twice normal nu-
clear energy density (304 MeV/fm3, 0.317 baryons/fm3),
the ground state energy and pressure at the match point
are E0(ñ) = 21.9 MeV and p(ñ) = 8.67 MeV/fm3. The
corresponding values of the Ci and Di in the maximally
incompressible equations of state are

C1 =
ρ(ñ) + p(ñ)

2ñ
≈ 494 MeV , (4.1)

C2 =
ρ(ñ)− p(ñ)

2ñ
≈ 467 MeV , (4.2)

D1 =

(

2 +
√
13
)

ρ(ñ) + 3p(ñ)

2
√
13ñ

≈ 759 MeV , (4.3)

5



D2 = −
(

2−
√
13
)

ρ(ñ) + 3p(ñ)

2
√
13ñ

≈ 203 MeV . (4.4)

The Oppenheimer-Volkoff equation describes the inte-
rior of a static star in general relativity:

dp

dr
= −

(ρ+ p)
[

m(r) + 4πr3p
]

r [r − 2m(r)]
, (4.5)

where

m(r) =

∫ r

0

4πρ (ξ) ξ2dξ . (4.6)

The calculation of the maxmimum neutron star mass
limit begins by choosing a central energy density value
ρc (or, equivalently, a central baryon density nc) and in-
tegrating Eq. (4.5) radially outward to the edge of the
star, marked by the radius R where the pressure drops
to zero. One of the maximally incompressible equations
of state are used in the high density interior out to the
radius where the energy density drops below the match-
ing energy density ρ̃ = ρ (ñ). The experimentally ver-
ified low density equation of state is then used out to
the edge of the star, and the mass of the star M(R) de-
termined from Eq. (4.6). The integration of Eq. (4.5)
is repeated for a series of progressively increasing central
densities. The maximum mass value is determined by the
central density for which M (ρc) has its stationary point
(dM/dρc = 0). Above this central density dM/dρc < 0
and the star will be unstable to collapse to a black hole
from radial perturbations (see, for example, Refs. [28] or
[29]).
Shown in Fig. 1 is the neutron star mass as a func-

tion of the central baryon density, with the BPS equation
of state used below normal nuclear density, the WFF-A
equation of state used above normal nuclear density and
below the matching energy density, and the kinetic the-
ory maximally incompressible equation of state Eq. (3.8)
used above the matching energy density. Mass models
having a matching density corresponding to one, two,
and four times normal nuclear energy density ρnn are
shown. Also shown for comparison are models with the
sound speed equal to light speed maximally incompress-
ible equation of state Eq. (3.3) of Refs. [10] and [12]
used above the matching density, and models with the
WFF-A equation of state used at all densities above nor-
mal nuclear density. Tables I-III list some specific nu-
merical values of the maximum mass for a few different
matching densities for the WFF-A, WFF-U, and APR
equations of state. The softer kinetic theory maximally
incompressible equation of state is seen to yield smaller
maximum mass values than the sound speed equal to
light speed maximally incompressible equation of state.
If the WFF-A equation of state is regarded as experimen-
tally verified up to twice normal nuclear energy density,
as was assumed in Ref. [12], the result of using the ki-
netic theory maximally incompressible equation of state

instead of the sound speed equal to light speed maxi-
mally incompressible equation of state is to reduce the
maximum neutron star mass from 2.92 M⊙ to 2.63 M⊙.
The average maximum mass reduction for these three low
density equations of state, when using a matching energy
density of twice normal nuclear density, is 0.29 M⊙, from
an average of 2.93 M⊙ to 2.64 M⊙.
Figure 2 shows the maximum neutron star mass as a

function of the matching energy density for the three low
density equations of state and the two maximally incom-
pressible high density equations of state. The three low
density equations of state yield similar maximum mass
values for matching densities up to twice normal nuclear
energy density, so the value of the maximummass derived
from the kinetic theory maximally incompressible equa-
tion of state is substantially independent of the low den-
sity model for matching densities in this density range.
Using the WFF-A, WFF-U, or APR equations of state
for all densities above normal nuclear density yields a
maximum mass of, respectively, 2.13, 2.19, or 2.21 M⊙.
Examination of Fig. 2 shows when the matching energy
density approaches four times normal nuclear energy den-
sity, the stellar mass value is largely determined by the
low density equation of state. As was noted by Kalogera
and Baym [12], once nuclear physics advances to where
the experimentally based equation of state is verified up
to four times normal nuclear density, the maximum neu-
tron star mass problem will be solved.

V. DISCUSSION

The principal finding of this paper is stability and
causality constraints resulting from applying kinetic the-
ory to thermal and viscous dissipative processes in neu-
tron star matter yields a softer maximally incompressible
equation of state, and a lower maximum mass of neutron
stars, than for the sound speed equal to light speed max-
imally incompressible equation of state. The reduction
in the maximum mass averages from 2.93 M⊙ down to
2.64 M⊙ for the three low density equations of state con-
sidered if the low density equation of state is regarded as
experimentally verified up to twice normal nuclear energy
density.
The softening of the maximally incompressible equa-

tion of state is a generic prediction of kinetic theory,
but the specific value of the resulting maximum neu-
tron star mass derived here rests upon the accuracy of
approximating the relaxation times and viscous-thermal
couplings with their noninteracting degenerate Fermi gas
forms, and the overall validity of dissipative relativistic
kinetic theory for strongly interacting nuclear matter at
high density. Future data from the Relativistic Heavy
Ion Collider holds promise for experimental testing of the
applicability of the kinetic theory approach to modeling
high density nuclear matter.
Only static neutron star mass models have been con-
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structed in this paper. Rotation can support larger mass
stars against collapse, but only for stars rotating rapidly
enough to be nearly shedding mass from the equator is
the maximum mass value significantly changed from its
nonrotating value. For these rapidly rotating stars the
increase in the maximum mass is at most approximately
20% over the static value when undergoing uniform rota-
tion [30,31]. Differential rotation is strongly damped [32].
The remnant of binary neutron star coalescence may un-
dergo a short period of dynamically stable differential
rotation, and thus briefly support a much larger mass
neutron star remnant against prompt black hole collapse
than is possible for a static or uniformly rotating star
[33].
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TABLE I. The maximum neutron star mass, in solar
masses, with the WFF-A equation of state used at low den-
sity and a maximally incompressible equation of state used at
high density.

Matching energy density
ρnn

a 2ρnn 3ρnn 4ρnn

Luminalb 4.08 2.92 2.45 2.22
Kineticc 3.68 2.63 2.22 2.03

aNormal nuclear energy density.
bSound speed equal to light speed maximally incompressible
equation of state.
cKinetic theory maximally incompressible equation of state.

TABLE II. The maximum neutron star mass, in solar
masses, with the WFF-U equation of state used at low den-
sity and a maximally incompressible equation of state used at
high density.

Matching energy density
ρnn 2ρnn 3ρnn 4ρnn

Luminal 4.08 2.93 2.48 2.27
Kinetic 3.68 2.65 2.25 2.10
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TABLE III. The maximum neutron star mass, in solar
masses, with the APR equation of state used at low den-
sity and a maximally incompressible equation of state used at
high density.

Matching energy density
ρnn 2ρnn 3ρnn 4ρnn

Luminal 4.08 2.93 2.48 2.28
Kinetic 3.68 2.65 2.26 2.12

FIG. 1. The maximum neutron star mass as a function
of the central baryon density and the matching energy den-
sity. The matching energy density is in units of the normal
nuclear energy density ρnn. The lines labeled ”kinetic” are
for the WFF-A equation of state used at low density and
the kinetic theory maximally incompressible equation of state
used at high density. The lines labeled ”luminal” are for the
WFF-A equation of state used at low density and the sound
speed equal to light speed maximally incompressible equation
of state used at high density. The ”WFF-A” line is for the
WFF-A equation of state used for all densities above normal
nuclear density.

FIG. 2. The maximum neutron star mass as a function of
the matching energy density for the WFF-A, WFF-U, or the
APR equation of state used at low density. The lines labeled
”kinetic” are for the kinetic theory maximally incompressible
equation of state used at high density, and the lines labeled
”luminal” are for the sound speed equal to light speed maxi-
mally incompressible equation of state used at high density.
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