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Abstract. I review the statistical techniques needed to extract information
about physical parameters of galaxies from their observed spectra. This is
important given the sheer size of the next generation of large galaxy redshift
surveys. Going to the opposite extreme I review what we can learn about
the nature of the primordial density field from observations of high-redshift
objects.

1. Extracting cosmological information from galaxy spectra

Most of the information about the physical properties of galaxies comes
from their electromagnetic spectrum. It is therefore of paramount impor-
tance to be able to extract as much physical information as possible from
it. In principle, it is straightforward to determine physical parameters from
an individual galaxy spectrum. The method consists in building synthetic
stellar population models which cover a large enough range in the parame-
ter space and then use a merit function (typically a x?) to evaluate which
suite of parameters better fits the observed spectrum. There are two obvi-
ous limitations of the above method: first, the number of parameters that
govern the spectrum of a galaxy may be very large and thus difficult to
explore fully. Secondly, in the case of ongoing large redshifts surveys which
will provide us with about a million galaxy spectra, it will be computa-
tionally very expensive (and possibly intractable for redshift surveys like
the 2dF and SDSS) to apply a plain x? to each individual spectrum which
itself may contain of the order of 10° data points.

The non-obvious route to tackle the problem is to compress the orig-
inal data set in order to weight more those pixel in the spectrum that
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carry most information about a given parameter. It is worth reminding
that non—optimal data compression is commonly applied to galaxy spec-
tra: photometric filters. Not surprisingly, this empirical data compression is
not optimal since it has not been devised to be lossless, i.e. contain all the
information for a given parameter. For example, the photometric B filter
alone is not optimal to recover the age of a galaxy. On the other hand, more
sophisticated and non-empirical methods have been proposed for extract-
ing information from galaxy spectra, some of them as old as the Johnson’s
filter system itself. Many of these are based on Principal Component Anal-
ysis or wavelet decomposition (Murtagh & Heck 1987; Francis et al. 1992;
Connolly et al. 1995; Folkes, Lahav & Maddox 1996; Galaz & deLappar-
ent 1998; Bromley et al. 1998; Glazebrook, Offer & Deeley 1998; Singh,
Gulati & Gupta 1998; Connolly & Szalay 1999; Ronen, Aragon-Salamanca
& Lahav 1999; Folkes et al. 1999). PCA projects galaxy spectra onto a
small number of orthogonal components. The weighting of each component
corresponds to it’s relative importance in the spectra. However while these
components appear to correlate well with physical properties of galaxies,
their interpretation is difficult since they do not have known, specific phys-
ical properties; they can be amalgams of different properties. To interpret
these components, we have to return to model spectra and compare them
with the components (Ronen, Aragon-Salamanca & Lahav 1999). This is a
disadvantage of PCA since one important goal of the analysis is to study
the evolution of the physical properties which dramatically affect galaxy
spectra, such as the age, metallicity, star formation history or dust con-
tent. More sophisticated methods have been recently proposed (Heavens,
Jimenez & Lahav 2000; Slonim et al. 2000). Here I will concentrate in de-
scribing the optimal parameter extraction method proposed by Heavens,
Jimenez & Lahav (2000).

The main idea of the method in Heavens, Jimenez & Lahav (2000)
is that, in practice, some of the data may tell us very little about the
parameters we are trying to estimate, either through being very noisy, or
through having no sensitivity to the parameters. So in principle, we may
be able to throw some data without loosing much information about the
parameters. It is obvious that throwing away data is not the most optimal
way. On the other hand, by performing linear combinations of the data we
will do better and then we can throw the linear combinations which tell us
least. Given a set of data x (in our case the spectrum of a galaxy) which
includes a signal part p and noise n, i.e. x = g+ n, the idea then is to find
a weighting vector b such as y = b'x, it is these numbers y which we are
after.

In Heavens, Jimenez & Lahav (2000) an optimal and lossless method
was found to calculate b for multiple parameters (as is the case with galaxy
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spectra). Specifically:

and
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where a comma denotes the partial derivative with respect to the pa-
rameter m and C' is the covariance matrix with components C;; =< n;n; >.

The specific steps to build m linear combinations to estimate m param-
eters are the following:

by, (2)

1. Choose a “fiducial” model (a first guess)
2. Compute the mean spectrum for the m parameters and m partial
derivatives with respect to the m parameters (p ).
. Now compute m eigenvectors b; from Eq.1 and 2.
4. Finally, compute the m y; values. This dataset is orthonormal, so the
new likelihood is easy to compute (the y,, have mean (y,,,) = bt p and
unit variance), namely:

w
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This procedure can be applied to derive the metallicities, ages, star
formation rates and dust content of galaxy spectra (Reichardt, Jimenez &
Heavens 2000).

It is very instructive to illustrate the method by trying to recover the
age and normalization of single stellar populations (SSP), i.e. the star for-
mation rate is SER(t') = Ad(t' +t) where § is a Dirac delta function. The
two parameters to determine are age t and normalization A. We built a
simulated spectra with Gaussian noise and variance given by the mean,
C = diag(py,...). This is appropriate for photon number counts when the
number is large. It should be stressed that this is a more severe test of the
model than a typical galaxy spectrum, where the noise is likely to be dom-
inated by sources independent of the galaxy, such as CCD read-out noise
or sky background counts. In the latter case, the compression method will
do even better than the example here (e.g. Reichardt, Jimenez & Heavens
(2000)). The simulated galaxy spectrum is one of the galaxy spectra (age
3.95 Gyr, model number 100), and the maximum signal-to-noise per bin is
taken to be 2. Noise is added, approximately photon noise, with a Gaussian
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Figure 1. Full likelihood solution using all pixels. There are 6 contours running down
from the peak value in steps of 0.5 (in In £), and 3 outer contours at —100, —1000 and
—10000. The triangle in the upper-right corner marks the fiducial model which determines
the eigenvectors to set the initial weights.
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Figure 2. Likelihood solution using the compressed data set, i.e. the age datum and the
normalization datum. Contours are as in Fig. 1.

distribution with variance equal to the number of photons in each channel.
Hence C = diag(py, b9, - - .). Figure 1 shows the contours in the likelihood
surface using all the points in the spectra. Figure 2 shows the contours in
the likelihood surface using only two linear combinations: y; and ys. As
it transpires from the figures, only two numbers suffice to determine two
parameters.
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Figure 8. The effect on the PDF for a Gaussian field ® of adding the square of itself.
Note how the peaks get enhanced and the valleys suppressed.

2. The abundance of high—redshift objects

Now that cosmic-microwave-background (CMB) experiments (de Bernardis
et al. 2000; Jaffe et al. 2000) have verified the inflationary predictions of
a flat Universe and structure formation from primordial adiabatic pertur-
bations, we are compelled to test further the predictions of the simplest
single-scalar-field slow-roll inflation models and to look for possible devia-
tions. Measurements of the distribution of primordial density perturbation
afford such tests. The observed abundance of high-redshift objects contains
precious information about the properties of the initial conditions. The rea-
son for this is that the first objects to collapse, for a given mass, will be
due to fluctuations in the tail of the distribution of the primordial density
field and therefore will reflect the “strength” of it. Furthermore, high—z ob-
jects constrain the small scale part of the spectrum of the primordial mass
density field that cannot be probed directly by the large scale structure of
cosmic microwave background (CMB) observations.

The importance of using the mass-function as a tool to distinguish
among different non-Gaussian statistics for the primordial density field, was
first recognized by Lucchin & Matarrese (1988); Colafrancesco, Lucchin &
Matarrese (1989) and more recently, by Chiu, Ostriker & Strauss (1998),
followed by Robinson & Baker (1999), Robinson, Gawiser & Silk (1999a);
Robinson, Gawiser & Silk (1999b), Koyama, Soda & Taruya (1999), Willick
(2000), Avelino & Viana (1999). To make predictions on the number counts
of high-redshift structures in the context of non-Gaussian initial conditions,
a generalized version of the Press—Schechter (PS) theory has to be intro-
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duced. The PS theory exploits the fact that in most cosmological scenarios
the large scale power exceeds that generated by non-linear coupling. This
in conjunction with specifying an “artificial” filtering of the initial density
field and a threshold for which we define objects that are able to collapse,
provides us with a description of the mass function in terms of the proba-
bility density field (PDF) — see Peacock (1999). Thus in order to extend the
PS theory to the non-Gaussian case one needs to compute the “smoothed”
PDF for the non-Gaussian field. Furthermore, numerical simulations tell
us that the PS theory provides a reasonable approximation for the num-
ber of objects produced in tails — provided we do not consider fluctuations
that deviate more than 50 from the mean where serious deviations from
the PS prediction occur (Press & Schechter 1974; Lee & Shandarin 1998;
Sheth & Tormen 1999; Jenkins et al. 2000). Obtaining analytical results
in this context is extremely important. Direct simulations of non-Gaussian
fields are generally plagued by the difficulty of properly accounting for the
non-linear way in which resolution and finite box-size effects, present in any
realization of the underlying Gaussian process, propagate into the statistical
properties of the non-Gaussian field. Moreover, finite volume realizations
of non-Gaussian fields might fail in producing fair samples of the assumed
statistical distribution, i.e. ensemble and (finite-volume) spatial distribu-
tions might sensibly differ. This problem, of course, becomes exacerbated
and hard to keep under control in so far as the tails of the distribution
are concerned. Thus, in looking for the likelihood of rare events for a non-
Gaussian density field, either exact or approximate analytical estimates
should be considered as the primary tool.

Robinson & Baker (1999); Robinson, Gawiser & Silk (1999a); Robinson,
Gawiser & Silk (1999b) considered a PDF which had a log-normal distribu-
tion and assumed that it was the PDF which described the smoothed field
of fluctuations for a wide range of non—Gaussian models (mostly those aris-
ing from structure formation by topological defects), based on comparison
s with numerical experiments. Their non-Gaussianity depends on a single
parameter, G which is nothing but the ratio of 3¢ peaks in a non-Gaussian
model compared to the Gaussian case. An Einstein-deSitter universe pro-
duces a noticeable deficit of high-redshift objects at high-redshift (e.g.
Peacock et al. (1998)), RGS were able to find a region in the og — G plane
for which the predicted cluster abundance in an EdS universe agrees with
observations (but see below).

Willick (2000) studied in great detail the mass determination of the
high-redshift cluster MS1054-03 concluding that its mass lies in the range
1.440.3 x 10! M, for 0, = 0.3. He then investigated the amount of non-
gaussianity needed to accommodate this cluster within the CDM scenario
using a parameterization for non-gaussianity similar to that of Robinson,
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Figure 4. Ratio R(M,z) = Nng(> M,z)/N(> M, z) for galaxies at redshift z = 8,9
and 10 for ea = 5 x 10™* (non-Gaussianity in the density field, left panel) and clusters at
redshift z = 1,2 and 3 (right panel), for eg = 200 (non-Gaussianity in the potential) as a
function of M. Lines are plotted only for masses where, for Gaussian initial conditions, one
would expect to observe at least one object in the whole sky. Note that these high-redshift
objects represent 3- to 5-0 peaks. The values for the number density enhancement R that
can safely be attributed to primordial non-Gaussianity are R = 100 for galaxies (left
panel) and R = 10 for clusters (right panel)

Gawiser & Silk (1999a). He found that MS1054-03 cannot be accommo-
dated in a CDM scenario with €, > 0.3 unless some non-gaussianity exists.

Matarrese, Verde & Jimenez (2000) have computed an analytic expres-
sion for the probability distribution function for a parameterization of pri-
mordial non-Gaussianity that covered a wide range of physically motivated
models: the non-Gaussian field is given by a Gaussian field plus a term
proportional to the square of a Gaussian ® = ¢ + eg(¢? — (¢?)), where
® applies to both the density perturbation field §(Z) and the primordial
gravitational potential. They also introduced a generalized version of the
PS approach valid in the context of non—Gaussian initial conditions. Note
that Matarrese, Verde & Jimenez (2000) considered only small departures
from Gaussianity. They also showed how this tiny departures can have a
large impact in the number density of observed objects at high-redshifts
(see their Fig. 6). Note also that if one considers large deviations from
non-gaussianity, then the normalization for og derived for Gaussian initial
conditions is no longer valid.

Verde et al. (2000b) have devised a method to constrain non-gaussianity
by studying the size-temperature distribution of galaxy clusters. The size-
temperature distribution is sensitive to the redshift of formation of the
clusters. If clusters originate from rare peaks of an initially Gaussian distri-
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bution, the spread in formation redshift should be small and so should be
the scatter in the size-temperature distribution. On the other hand, if the
initial distribution has long non-Gaussian tails, clusters we observe today
should have a broad formation redshift interval and therefore a large scatter
in the size-temperature distribution. They found that for the non-Gaussian
parameters derived by Robinson, Gawiser & Silk (1999a) to explain the
observed abundance of high-redshift objects in an EdS universe, the spread
in the size-temperature relation would be much larger than is currently
observed, thus excluding the possibility that the EAS universe could be rec-
onciled with observations of high-redshift objects through a large amount
of non-gaussianity. It is worth noting though that this would not be the
case for a non-gaussianity which comes from a bimodal distribution with
one of the modes centered at the cluster scale.

A comparison of the sensitivities for detecting non-gaussianity for sev-
eral tests has been investigated in Verde et al. (2000c); Verde et al. (2000a).
Using the kind of non-gaussianity described in Matarrese, Verde & Jimenez
(2000), they conclude that the CMB is superior at finding non-Gaussianity
in the primordial gravitational potential (as inflation would produce), while
observations of high-redshift galaxies are much better suited to find non-
Gaussianity that resembles that expected from topological defects. Thus
observations of high-redshift objects with the Next Generation Space Tele-
scope and the currently proposed 30—100 m class telescopes should help us
to shed light on the nature of the primordial density field if — and this is
a big if — mass determinations of these objects can obtained with a 100%
error (see Fig. 4).

It is a pleasure to thank my collaborators in this work: Alan Heavens,
Marc Kamionkowski, Ofer Lahav, Sabino Matarrese and Licia Verde.
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